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Abstract: ChatGPT, a large language model (LLM) developed by OpenAI, fine-tuned on a massive dataset of text and
source code, has recently gained significant attention on the internet. The model, built using the Transformer
architecture, is capable of generating human-like text in a variety of tasks. In this paper, we explore the use of
ChatGPT for Automated Program Repair (APR); that is, we ask the model to generate repair suggestions for
instances of buggy code. We evaluate the effectiveness of our approach by comparing the repair suggestions
to those made by human developers. Our results show that ChatGPT is able to generate fixes that are on par
with those made by humans. Choosing the right prompt is a key aspect: on average, it was able to propose
corrections in 19% of cases, but choosing the wrong input format can drop the performance to as low as
6%. By sampling real-world bugs from seminal APR datasets, generating 1000 input examples for the model,
and evaluating the output manually, our study demonstrates the potential of language models for Automated
Program Repair and highlights the need for further research in this area.

1 INTRODUCTION

The ability of ChatGPT (OpenAI ChatGPT, 2023a) to
generate human-like text and code has led to its use in
news articles and personal websites, raising concerns
about the potential misuse of such technology. De-
spite these concerns, the advancements in language
models like ChatGPT have opened up new opportu-
nities for research and have the potential to revolu-
tionize the way we interact with computers. The urge
for new and improved software encourages develop-
ers to develop rapidly, often without even testing the
created source code, thus bugs are inevitable (Mon-
perrus, 2020). The field of Automated Program Re-
pair (APR) has emerged and gained attention in recent
years. It has the potential to significantly improve
software reliability and reduce the cost and time as-
sociated with manual debugging and repair (Weimer
et al., 2009).

The conventional APR approach is to generate a
patch (e.g., using genetic algorithm) and then validate
it against an oracle (i.e., test suite). Although these
approaches have been criticized several times, they
still define the research direction of APR (Kechagia
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et al., 2022). Their standalone and easy-to-use na-
ture makes them competitive against learning-based
approaches (Liu et al., 2020). On the other hand, data-
driven APR approaches utilize machine learning tech-
niques to learn from a dataset of programs and their
corresponding repair patches. These approaches of-
ten require a huge train-test-validate dataset to adapt
to different repair strategies and programming lan-
guages (Yi et al., 2020; Lutellier et al., 2020). The
training of such methods is resource-intensive, and
the approaches are often not usable due to availability
issues (e.g., confidentiality), executability concerns
(e.g., specific execution environment), or configura-
bility limitations (Kechagia et al., 2022).

As the field of Natural Language Processing
(NLP) continues to advance, it is likely that we will
see more applications of ChatGPT and its variants,
further expanding their impact on the internet and so-
ciety. In this paper, we propose an approach that
fixes buggy programs automatically using ChatGPT,
thus bypassing the cumbersome process of design-
ing, training, and evaluating a new model, but sim-
ply relying on this Large Language Model (LLM).
We not only explore the capabilities of ChatGPT in
the domain of Automated Program Repair but also
want to discuss its performance on different program-
ming languages, and we experiment with prompts to
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Can ChatGPT Fix My Code?.
DOI: 10.5220/0012120800003538
In Proceedings of the 18th International Conference on Software Technologies (ICSOFT 2023), pages 478-485
ISBN: 978-989-758-665-1; ISSN: 2184-2833
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)



JAVA

JAVASCRIPT

100 RANDOM

SAMPLE

100 RANDOM

SAMPLE

P1 P2 P3

P4  P5

CHATGPT

P*
ANSWER

It looks like the code is trying to return the stored energy, while making sure it is 

within the range of 0 and the maximum storage capacity. However, there are a few 

improvements that could be made:  1. The variable `energyStored_internal` should be 

declared as a class variable, rather than a local variable, so that it can be 

accessed by other methods within the class.  2. The `clamp()` method should be 

refactored to take three arguments: the lower bound, the value to be clamped, and the 

upper bound.  3. Add a meaningful name for the method, for example:  ``` public int 

getStoredEnergy() {     return cr0s.warpdrive.Commons.clamp(0, getMaxStorage(), 

energyStored_internal); } ```  And then update the calls of the method accordingly.  

4. It might be better to use the `Math.max()` and `Math.min()` methods instead of 

using a separate utility method `clamp()`.  ``` public int getStoredEnergy() {     

return Math.min(Math.max(energyStored_internal, 0), getMaxStorage()); } ```  This way 

you can avoid an additional dependency on the `Commons` class and make the code more 

readable. 

ANALYZE CODE

Figure 1: High-level approach of this paper.

inspect which type yields the best performance.
From previous works (Lajkó et al., 2022; Lajkó

et al., 2022), we know that GPT-2 (Alec Radford, Jef-
frey Wu, Rewon Child, David Luan, Dario Amodei,
2020) is able to generate fixes, and when it is fine-
tuned, its performance is even better. It is also clear
that GPT-3.5 (Brown et al., 2020) and Codex (which
is essentially the same as GPT-3.5 but trained on a
lot of source code) are superior compared to GPT-2
and are surprisingly effective at generating repair can-
didates, despite not being trained to do so (Prenner
et al., 2022). To investigate the capabilities of Chat-
GPT, we organize our experiment along the following
research questions:
RQ1: How do various prompts perform compared to
each other?
RQ2: What is the impact of the programming lan-
guage on the repair performance?
RQ3: Are some bugs easier for ChatGPT to fix or
not?

We find that prompt engineering has a major role
when working with ChatGPT, and different prompts
tend to trigger different repair mechanisms of the
model. Based on our evaluation, it seems that the
proposed approach generated higher quality patches
for Java and lower quality patches for JavaScript. Al-
though the same patterns are apparent in the results,
the overlap of the fixed bugs is insignificant, and we
did not find easy-to-fix bug types in either of the
datasets. The generated answers for each prompt,
patch classifications, and examples can be found in
the online repository of this paper 1.

2 METHODOLOGY

Our proposed method is quite straightforward, which
we illustrated in Figure 1: ChatGPT is used with vari-
ous input configurations to generate a repair patch for
a buggy program. This process is illustrated in Fig-
ure 1. First, 100 random buggy programs are selected
from both a Java and JavaScript database. Then, an
input is formulated from the combination of this code

1https://github.com/AAI-USZ/ICSOFT-ChatGPT

and the prompts proposed in this work (a total of 200
distinct samples, forming 1000 inputs). Finally, the
generated answer is evaluated and classified by expe-
rienced software engineers.

2.1 ChatGPT

The original Generative Pre-trained Transformer, or
GPT for short, was published in 2018. ChatGPT is
a descendant of this architecture. Its base is a Trans-
former, which is an attention model that learns to fo-
cus attention on the previous words that are most rel-
evant to the task at hand: predicting the next word in
the sentence. ChatGPT is fine-tuned from a model
in the GPT-3.5 series, which finished training on a
blend of text and code in early 2022. At the time of
writing this paper, some details of the underlying ar-
chitecture of ChatGPT are unknown, but the research
community knows that ChatGPT was fine-tuned using
supervised learning as well as reinforcement learn-
ing (ChatGPT: Understanding the ChatGPT AI Chat-
bot, 2023). In both cases, humans were involved to
improve the model’s performance by ranking answers
from previous conversations and imitating conversa-
tions (OpenAI ChatGPT, 2023a). Although GPT-4
became available while writing this paper, in our ex-
periments, we used the GPT-3.5 version of ChatGPT.

2.2 Dataset

APR and program generation, in general, have re-
cently been criticized (Liu et al., 2020) because the
used samples are oversimplified, and datasets are usu-
ally artificially created. Hand-crafted training data
does not reflect real software defects. Thus, inputs for
ChatGPT were sampled from seminal APR datasets
consisting of real-world bugs. To work with multi-
ple programming languages, we included the dataset
by Tufano et al.(Tufano et al., 2019) (also included
in CodeXGLUE (Lu et al., 2021)), which was cre-
ated for Java program repair, and FixJS (Csuvik and
Vidács, 2022), which contains JavaScript bug-fixing
information from commits. From both datasets, we
randomly sampled 100 instances each and formed the
input using the prompts from Section 2.3.
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Table 1: The used prompts with example code snippets to generate a fix for a specific software bug.

Fix or improve the following code: public int nextId() { return (com.example.pustikom....studentList.size()) + 1; }

Modify the following Java code: public int nextId() { return (com.example.pustikom.....studentList.size()) + 1; }

Fill in the missing part in the following code applying 78 tokens: public int nextId() { ___________ + 1; } }

Continue the implementation of the following function using 78 tokens: public int nextId() { _

Fix or improve the following code (with bug location hint): public int nextId() { * Refinement starts here * return

(com.example.pustikom.adapterplay.user.StudentList.studentList.size()) * Refinement ends here * + 1; }

2.3 Prompts to Generate Patches

At the time of writing this paper (Q2 2023), ChatGPT
is available via API and also via a graphical interface,
where users can communicate with the model by in-
putting a prompt (OpenAI ChatGPT, 2023b). To fix a
candidate buggy function, we experimented with dif-
ferent configurations: the input of the model consists
of the sample code snippet from the observed datasets
+ one of the below-listed prompts. These prompts are
proposed by us, but note that the choice of these is
arbitrary, and we included the below ones in the pa-
per because during our experiments, we found them
interesting. We illustrated example usages of these
prompts with a code snippet on Table 1. We propose
the following prompts:
P1: Fix or improve the following code:
[code] The most natural way to prompt the
model is to just input the buggy function with the
instruction to fix it.
P2: Modify the following Java/JavaScript
code: [code] Based on our observations, the
keyword fix or repair can confuse the model: it looks
for a syntactical error, but in most cases, the bug
is semantic - thus only refinement/modification is
needed.
P3: Fill in the missing part in the
following: [code] ___ [code] By deleting
the original buggy part of the code, we force the
model to generate something in its place.
P4: Continue the implementation of the
following function using X tokens:[code]
Since the underlying model (GPT-3) was trained to
estimate the next word in a sequence, it makes sense
to use the first few statements in the code and ask
ChatGPT to generate the rest.
P5: Fix or improve the following code (with
bug location hint): [code] * Refinement
starts here * [code] * Refinement ends here
*[code] Essentially the same as the first prompt
listed here, but here the bug location is marked with
comment blocks. The specification of the exact
location of a bug might not be too realistic since
real-life bug localization is usually less precise, but
for the sake of experimentation, it might provide
interesting insights.

2.4 Evaluation

Since the goal of ChatGPT is to mimic a human con-
versationalist, it is in its nature that answers are long
and explanatory, with a lot of natural language text.
Thus, the use of standard evaluation metrics (e.g., pre-
cision, recall) is not possible. Therefore, we manually
analyzed the answers and classified them into one of
the following categories:

1. Undecided: when we were uncertain about the
correctness of the response or ChatGPT was un-
able to generate a fix

2. Incorrect Patch: the output code is different
from the developer patch

3. Fix in Answer: the generated answer contains the
correct fix for the given bug

4. Semantical Match: the proposed fix semanti-
cally matches the one generated by a human en-
gineer

5. Syntactical Match: the returned fix is the same
as the developer patch, except for whitespaces

Due to space limitations, we do not include the
generated answers here, but the interested reader can
find them in the online repository of this paper. Note
that the category Fix in answer does not imply seman-
tic correctness, since ChatGPT often only highlights
code snippets and does not regenerate the whole input
code. It also provides technical suggestions in natu-
ral language that are meaningful for developers. For
scientific correctness, we cannot state in these cases
that the model generated a patch that is semantically
identical to the developer fix, but rather an answer that
contained the correct fix.
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Figure 2: Manually evaluated results of ChatGPT on the
Java dataset.
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3 RESULTS

In this section, we present the results obtained by
feeding 100 Java and 100 JavaScript samples to Chat-
GPT using 5 different prompts (forming a total of
1000 trials/input-output pairs). Figure 2 and Fig-
ure 3 show the manually evaluated results for Java
and JavaScript, respectively. Upon examining the fig-
ures, it is evident that ChatGPT is not proficient in
generating patches that semantically or syntactically
match the developer fix. Instead, it provides sugges-
tions on how to repair the code or generates a fix that
contains the correct solution. The manual evaluation
also revealed that different prompts trigger different
response mechanisms from the language model. For
instance, candidates generated using P2 often involve
significant code changes, rarely deleting or simplify-
ing code snippets, but rather creating more advanced
solutions. Another observed pattern is that, for the
Java dataset and P5 , the generated answers typically
contain a try-catch block (which is less apparent in
the case of JavaScript).
Answer to RQ1: Based on our results, we can con-
clude that prompts have a major effect on the re-
pair performance of ChatGPT. Among the proposed
prompts, we achieved the best results in terms of re-
pair suggestions using P1 and P3 in terms of syntacti-
cal matches.

The answers generated using prompts P3 and P5
often did not include the fix because ChatGPT was
unable to generate it. This phenomenon can be ob-
served in cases where significant changes were made
during the bug fix, and these prompts essentially
delete the modified part, leaving the model with lit-
tle information about the code’s purpose. We also no-
ticed that even small modifications to a prompt can
have a significant impact. For example, modifying
P3 to include the number of tokens to be generated
(i.e.: Fill in the missing part in the following
code applying X tokens:)resulted in a significant
performance drop. The answers consistently included
combinations or reformulated versions of statements
such as (1) the missing part cannot be filled with the
information provided, (2) in order to complete the
code, more context and information about the specific
implementation is needed and (3) the information pro-
vided is not sufficient for me to understand the context
and purpose of the method. The prompt P5 also often
resulted in "undecided" answers. However, here it can
be attributed to the fact that the original code is usu-
ally syntactically correct in its context, and the bug
fix usually only makes sense when observing a larger
context or when it is a simple code refinement. Thus,
the semantics of the code remain the same.

An interesting insight is that different prompts
tend to modify the code in different styles, which sug-
gests the possibility of classifying which prompt fixes
which types of bugs, thereby optimizing the repair
performance. We observed similar patterns in both
Java and JavaScript cases. However, as shown in Fig-
ure 2 and Figure 3, ChatGPT suggested significantly
more correct fixes for Java. Based on our empirical
observations, we hypothesize that this difference is
due to the fact that JavaScript developers often use
custom object creations (e.g., {key: val, ...}) and
diverse libraries, while Java follows more standard-
ized conventions with commonly used keywords and
methods. Overall, we can conclude that the two lan-
guages are distinct and differ greatly in design. Addi-
tionally, in the JavaScript dataset, function names are
often omitted due to anonymous and arrow functions,
whereas in Java, function names are present, which
helps the model in understanding the purpose of the
function.
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Figure 3: Manually evaluated results of ChatGPT on the
JavaScript dataset.

Answer to RQ2: Although we cannot exclude the
possibility of dataset bias, based on our empirical
evaluation, we observed that ChatGPT tends to gener-
ate better repair candidates for Java and less satisfac-
tory ones for JavaScript. Further research in this area
is required to determine the exact reasons for this dif-
ference in performance.

One might wonder why variable names are not
generalized in the used samples, as it is a common
practice even in state-of-the-art approaches to reduce
vocabulary size (Lu et al., 2021). Without in-depth
analysis, we experimented with placeholders but ex-
perienced a decrease in performance. It seems that
actual variable names and types are beneficial in bug-
fixing with ChatGPT. Without them, the answers usu-
ally included the following observations: (1) TYPE_1
and TYPE_2 are not defined as actual types, and
you will need to replace these placeholders with the
appropriate types, or (2) METHOD_1 is not imple-
mented, and you will need to provide the implementa-
tion. Overall, it appears that language models, such as
ChatGPT, contain the most common names and types,
so masking them is not beneficial.
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We have previously observed that different
prompts tend to generate independent fix templates,
and this behavior is also observed for Java and
JavaScript. For example, P2 always modified large
chunks of code, while P1 modified only some parts
or even left it untouched. Based on these observa-
tions, the results in the Venn diagram in Figure 4 are
not surprising. The diagram illustrates the distribu-
tion of correct fix answers among the used prompts,
representing the overlap of fixed bugs using the pro-
posed prompts. In the case of Java, there is only one
sample that was fixed by all prompts (a variable name
change was necessary, see example 50 in the online
appendix), while in the case of JavaScript, there were
none. Furthermore, in the Java dataset, ChatGPT re-
paired 44 different bugs (including answers with the
correct fix, semantically identical patches, or syntacti-
cally identical ones), while in the JavaScript dataset, it
repaired only 24. This also demonstrates that prompts
trigger different repair mechanisms, and choosing the
right one is a crucial decision.
Answer to RQ3: Since there is insignificant overlap
in the fixed bugs and different prompts tend to repair
different types of bugs, we did not find particularly
easy-to-fix bugs during our experiments. However,
some bugs are more likely to be correctly patched by
a well-chosen prompt rather than a poorly chosen one.
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Figure 4: Distribution of correct fix answers in the used
prompts.

4 DISCUSSION

Overall, our results show that choosing the right
prompt is a key aspect as it biases the generated fix in
many ways. The impact of programming languages
is not negligible. It seems that LLMs, such as Chat-
GPT, tend to generate higher-quality patches for Java
(a classic OOP language) and lower-quality patches
for JavaScript (an event-driven, functional language).
One possible explanation might be that Java is more
human-like and its readability is more natural com-
pared to JavaScript. However, to understand the in-

depth consequences, further research in the area is
needed.

Although the same patterns are apparent in the re-
sults, the overlap of fixed bugs is insignificant, and
we did not find easy-to-fix bug types in either of the
datasets. It is clear that choosing the right prompt
holds great importance. On average, ChatGPT was
able to propose corrections in approximately 19%
of cases, but choosing the wrong input format can
drop the performance to as low as 6%. Compared
to Transformer models that were fine-tuned to auto-
matically repair programs, this accuracy is not sig-
nificantly high. For example, on the CodeXGLUE
benchmark (Lu et al., 2021), the highest-ranking ap-
proach achieved 24% on the small dataset, which is
comparable to our data. On the other hand, Chat-
GPT is surprisingly effective at generating repair can-
didates, despite not being explicitly trained for that
purpose.

As language models continue to improve and
evolve, it is possible that prompts that were effective
in the past may become less effective or even irrel-
evant in the future. One approach that can be used
to mitigate the impact of model evolution is to peri-
odically re-evaluate the model and prompt selection
process to ensure their continued effectiveness. Ad-
ditionally, we provide the necessary information and
code to enable others to replicate our results, even if
ChatGPT changes over time.

In addressing our three research questions, we fo-
cused on identifying the limitations of using Chat-
GPT for program repair, which may include several
issues such as limited data, difficulty in handling com-
plex programming languages, and potential bias in
the model. By answering these questions, we hope
to make it clear that the use of ChatGPT for program
repair can be beneficial, offering the ability to handle
natural language input and the potential to improve
developer productivity. Overall, these three questions
are interconnected and provide a framework for ex-
ploring the potential of using ChatGPT for program
repair, identifying the challenges that need to be over-
come to realize that potential, and suggesting future
research directions.

5 RELATED WORK

ChatGPT has the ability to write and debug com-
puter programs. This capability is not unique to Chat-
GPT; its predecessor was also capable, although not
as flawlessly. Lajko et al. (Lajkó et al., 2022; Lajkó
et al., 2022) utilized the GPT-2 architecture to auto-
matically repair bugs. While GPT-2 was able to gen-
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erate some correct fixes, fine-tuning the model did not
yield state-of-the-art results. In another work, Pren-
ner et al. (Prenner et al., 2022) used Codex for auto-
mated program repair, evaluating it on the QuixBugs
benchmark (Lin et al., 2017), consisting of 40 bugs in
Python and Java. Although they experimented with
different prompts, their focus was primarily on code
generation from docstrings. Although OpenAI has in-
troduced GPT-4 recently (OpenAI, 2023), the avail-
able scientific literature of it is is scarce.

There is no available scientific paper specifically
for ChatGPT and most of its use cases are undocu-
mented in scientific literature, we briefly review the
use of the GPT family. GPT-2 (Alec Radford, Jeffrey
Wu, Rewon Child, David Luan, Dario Amodei, 2020)
was introduced in 2018, followed by GPT-3 (Brown
et al., 2020) in 2020 by OpenAI. They have been ap-
plied to various tasks, including poetry, news, and
essay writing (Elkins and Chun, 2020; Zhao et al.,
2021). The capabilities of GPT have also been ex-
plored in the CodeXGLUE benchmark (Lu et al.,
2021) for multiple tasks, where CodeGPT achieved
an overall score of 71.28 in the code completion task.
In a recent work (Ahmad et al., 2021), CodeGPT
served as a baseline model for text-to-code and code
generation tasks. Another recent work introduced
Text2App (Hasan et al., 2021), which enables users
to create functional Android applications from natu-
ral language specifications.

Now, let’s provide a brief summary of the state-of-
the-art literature in Automated Program Repair. The
Transformer architecture, like GPT, has gained sig-
nificant attention, and several seminal works have
employed it to address the code repair problem us-
ing classic supervised training methods (Mastropaolo
et al., 2021; Chen et al., 2022; Dinella et al., 2020;
Lutellier et al., 2020). In addition to standard training
procedures, indirect supervised (Ye et al., 2022) and
self-supervised training approaches (Ahmed et al.,
2021) have also been explored. Despite break-
throughs in learning-based approaches, standard Gen-
erate and Validate (G&V) tools are still widely used
due to this day thanks to their availability and config-
urability (Weimer et al., 2009; Martinez et al., 2017;
Kechagia et al., 2022). Defects4J (Just et al., 2014),
which consists of 395 Java bugs, is a well-known
dataset for various software-related tasks, including
APR. ManyBugs (Le Goues et al., 2015) , on the other
hand, contains bugs written in C and has been used
to evaluate several renowned APR tools (like Gen-
prog (Weimer et al., 2009)). Bugs.jar (Saha et al.,
2018) is another notable dataset consisting of 1158
Java bugs and their patches. However, none of these
datasets specifically focus on bugs in JavaScript. In

the seminal work of Tufano et al. (Tufano et al., 2019)
created a dataset for Java program repair and evalu-
ated an NMT model on it. This work is also included
in the CodeXGLUE benchmark, which encompasses
a collection of code intelligence tasks and serves as a
platform for model evaluation and comparison.

Recently, numerous Transformer-based models
have been introduced, many of which have been eval-
uated on the CodeXGLUE benchmark. In a recent
work (Chen et al., 2022) Chen et al. addressed the
problem of automatic repair of software vulnerabil-
ities by training a Transformer on a large bug fix-
ing corpus. They concluded that transfer learning
works well for repairing security vulnerabilities in C
compared to learning on a small dataset. Variants of
the Transformer model are also used for code-related
tasks, like in (Tan, 2021) where authors propose a
grammar-based rule-to-rule model which leverages
two encoders modeling both the original token se-
quence and the grammar rules, enhanced with a new
tree-based self-attention. Their proposed approach
outperformed the state-of-the-art baselines in terms
of generated code accuracy. Another seminal work
is DeepDebug (Drain et al., 2021), where the au-
thors used pretrained Transformers to fix bugs auto-
matically. Here Drain et al. use the standard trans-
former architecture with copy-attention. They con-
ducted several experiments including training from
scratch, pretraining on either Java or English and us-
ing different embeddings. They achieved their best re-
sults when the model was pretrained on both English
and Java with an additional syntax token prediction.

6 LIMITATIONS AND FUTURE
WORK

In this paper, we used a large language model that
was trained on a variety of text information, including
source code. Despite the fact that ChatGPT was not
fine-tuned to repair programs, it is quite effective in
this task, albeit with some clear limitations.
Data Leakage - Since the language model used was
also trained on source code, we cannot guarantee that
the data used was not included in their training set.
To address this issue, one would need to know exactly
which repositories were included by OpenAI, and that
information is not widely available. However, there
are mitigating factors: (1) since ChatGPT was trained
until a certain period of time, the data used by us is
from a different version compared to the data OpenAI
might have used; (2) although our dataset satisfies our
evaluation criteria, it constitutes only a tiny fraction of
the training data used by OpenAI.
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Reproducibility - ChatGPT (specifically the model
in the correct version) is not openly available, unlike
some other LLMs, so reproducibility cannot be en-
sured. Since the model is exposed via a UI and an
API, OpenAI can change the model at any time, even
without the user knowing it. To address this limita-
tion, we included input/output prompt samples in the
online appendix of this paper.
Prompt Engineering - Although choosing the right
prompt is of great importance, in this paper, we did
not provide guidance on how to approach the choice
of prompts. During our experiments, we observed
that a certain prompt triggers a specific repair mecha-
nism, and if these templates could be mapped to bug
types, it would guide developers on how to choose the
right prompt. We find this research direction to be im-
portant and would like to discuss it in more detail in
future research.

ChatGPT may be a useful tool for improving soft-
ware reliability in practice, but one should not blindly
trust the code it generates. ChatGPT appears equally
confident when generating correct code as it does
when generating incorrect code. In future work, we
plan to assess the question of automated patch cor-
rectness in more detail. We also aim to expand the
observed dataset and automate the patch generation
process to mitigate dataset bias. Furthermore, further
research is needed to determine the exact reasons for
performance differences between programming lan-
guages in this context.

7 CONCLUSIONS

In this study, the capabilities of ChatGPT were in-
vestigated in the field of Automated Program Repair,
specifically how it performs when tasked with fixing
buggy code. We sampled 200 buggy codes from sem-
inal APR datasets, consisting of 100 Java and 100
JavaScript samples. We designed 5 input prompts for
ChatGPT. Our results demonstrate that these prompts
have a significant effect on the repair performance, as
different prompts trigger different repair mechanisms
of the LLM. The overlap of the fixed bugs is negli-
gible. Through manual evaluation of the outputs, we
observed that better repair candidates are generated
for Java compared to JavaScript. The best prompt
for Java generated correct answers in 19% of cases,
while for JavaScript, the same prompt yielded a per-
formance of only 4%. In total, 44 distinct bugs were
repaired in Java and 24 in JavaScript out of the over-
all 200 samples and 1000 repair trials. We found that
some bugs are more likely to be correctly patched
with a well-chosen prompt rather than a poorly cho-

sen one. Therefore, the most important question be-
fore starting the repair process is to select the appro-
priate prompt.
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