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Abstract: Millions of people use web browsers daily. Extensions can enhance their basic functions. As the use and
development of browser extensions grow, ensuring adequate code coverage is essential for delivering high-
quality, reliable, and secure software. This paper introduces IBE.js, a framework to monitor and assess the
coverage of browser extensions. IBE.js conducts an analysis of the main JavaScript files, background pages
and content scripts, of 4,495 browser extensions from the Chrome Web Store. By utilizing a blank HTML
file, we found that on average, more than 33% of the lines in these scripts are executed automatically. This
coverage represents the number of lines executed by default, without any influence from user interaction or
web content. Notably, IBE.js is a versatile framework that can be utilized across various platforms, ensuring
compatibility with extensions from other web stores such as Firefox, Opera, and Microsoft. This enables
comprehensive coverage analysis and monitoring of extensions beyond a single browser ecosystem.

1 INTRODUCTION

Due to their advantages, browsers have become ubiq-
uitous tools on almost all computers. According to
statistics, as of May 2023, Chrome is the most widely
used browser with 65.74% market share, followed
by Safari with 18.86%, Microsoft Edge with 4.27%,
Firefox with 2.92%, and Opera with 2.27% (Oberlo,
2023). Specifically, Chrome has over 900 million
users.

Google Chrome browser offers the popular Web
Store (Google, 2023b), an online marketplace oper-
ated and maintained by Google. The software stored
in the Chrome Web Store belongs to one of the eleven
categories: Accessibility, Blogging, Communication,
Fun, News, Shopping, Photos, Productivity, Search
Tools, Sports, and Web Development. In particular,
in the Web Store we can find extensions and visual
themes for the browser as well as web applications.

Browser extensions are small pieces of software
that most browsers nowadays allow users to install
to enrich their user experience. Changing the screen
background to help color-blind people, extracting the
URLs of every webpage the user visits, or blocking
advertisement pop-ups automatically are only a few
examples of the functionality provided by browser ex-
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tensions. One of the main reasons for the rise of ex-
tensions is that they are based on web languages such
as JavaScript, CSS, and HTML, which makes it easy
for any developer to create their extensions.

Software Analysis. To analyze extensions or any
application in general, there are two main strategies:
static and dynamic analysis (Ernst, 2003). While the
former is faster, it is impossible to statically determine
whether a line of code will be executed (reachable) or
not at run-time and, although it can be useful to min-
imize the number of tests to be performed, it is not a
substitute for such tests. Dynamic analysis was intro-
duced to solve this problem. However, despite its ad-
vantages, such as testing, performance monitoring or
debugging, dynamic analysis is computationally de-
manding and time-consuming.

In the case of JavaScript, an untyped scripting
language, even using both techniques, if a line of
code has not been executed, we cannot claim that it
will not be reachable in the future. Analyzing the
lines of code of extensions and executing them all to
study their conditions is nearly impossible. To illus-
trate this problem, imagine for example that chrome
.getCookies() is only executed when a specific ele-
ment (<div id=""></div>) whose id is generated at
runtime consisting of the user’s location and date.
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Code Coverage. One challenge in software testing
is evaluating the quality of test cases since the higher
the quality, the more bugs are found. This is known
as test adequacy criteria and the most used metric to
measure such a criterion is the code coverage (Zhu
et al., 1997). Code coverage is a software test that im-
proves the allocation of testing resources. It is defined
as an indicator of the effectiveness and completeness
of testing to select and evaluate test cases. Also,
it has been proved that high code coverage means
fewer bugs and higher software availability (Rapps
and Weyuker, 1985).

In JavaScript, code coverage is crucial since:
1) JavaScript is often used to add dynamic function-
ality to web pages and code coverage might help to
ensure that the code does not contain security vulner-
abilities (e.g., Cross-Site Scripting (XSS)) which can
allow attackers to inject malicious scripts into web
pages (Melicher et al., 2018); 2) it helps to ensure
that sensitive information is handled securely, protect-
ing it from unauthorized access or manipulation. It
might also help to ensure that this data is collected
and processed in a way that protects user privacy and
complies with privacy regulations (Ou et al., 2022);
3) it might verify security controls that JavaScript im-
plements, such as authentication and access controls
(Sun et al., 2011).

Code coverage encompasses a variety of types
(Marick et al., 1999), including i) function coverage,
which measures whether or not a function is called;
ii) branch coverage, which measures whether or not
a branch of code is executed; iii) statement coverage,
which measures whether or not a statement is run (but
does not provide information on how often it is ex-
ecuted), and; iv) line coverage, which measures the
exact number of times a line of code is executed.

Contributions. In this work we propose IBE.js, a
simple but powerful solution to instrument the source
code of browser extensions to obtain their cover-
age. Specifically, we focus on obtaining what we call
“Ground truth coverage”, that is, the coverage of the
extensions when visiting a blank HTML page. No
element such as HTML content, user interaction or
JavaScript events might alter the coverage of the ex-
tensions code. In short, the ground truth coverage
lets us know what the lines of source code shipped
by extensions executed by default are, i.e., regardless
of Web content, JavaScript events, and without any
user interaction.

To illustrate some of the advantages of IBE.js,
suppose we have an extension that changes the back-
ground color of the HTML to a black one whenever
there is a video in the content. Such an extension has

a ground truth coverage of 10%, i.e., when execut-
ing the extension using a blank webpage. We can
then examine how the web content influences an in-
crease in coverage. As a consequence, we can estab-
lish a connection between specific functionalities of
the extensions, triggered by a particular webpage, and
the resulting coverage expansion. Additionally, we
can conduct similar analyses involving user interac-
tion, as well as a combination of both user interaction
and web content. With IBE.js, we can certify that the
coverage of the extension increases to 80% when ac-
cessing to any webpage with videos such as Youtube,
while remaining at 10% on webpages without videos.
Note that, in an hypothetical scenario where the cov-
erage of the extension unexpectedly increases when
the user accesses her bank account without any video
in the HTML, IBE.js can detect such changes and po-
tentially raise security concerns.

In detail, our contributions are:
• We propose IBE.js, a framework that uses a com-

bination of static and dynamic analysis to instru-
ment the source code of browser extensions and
execute them to get the code coverage (see Sec-
tion 3). We publicly release our framework for
future research on this area1.

• We got the ground truth coverage of the exten-
sions and conclude that, on average, 33.66% of
the background pages and content scripts’ source
code is executed (see Section 4).

• We perform a second analysis called validation
coverage to validate the results got in the ground
truth coverage (see Section 4.1).
The rest of the document is structured as follows:

in Section 2, we explain some basic concepts to un-
derstand the paper; in Section 5, we present the re-
lated work, and; finally, in Section 6, we show the
conclusions drawn from this research.

2 BACKGROUND

In this section, we introduce some concepts and defi-
nitions we use in the paper.

2.1 Browser Extensions

Browser extensions consist of a mandatory file called
manifest.json and as many optional static files as
needed. The manifest file holds basic metadata,
like the extension’s name, permissions, and version
(Google, 2021). It sets the limits on API calls the
extension can access and defines its scope. Among

1https://github.com/elviraimdea/IBE.js.git
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the static files, background and content scripts are
the most significant as they determine the extension’s
logic (Google, 2023a).

Background pages are scripts loaded simultane-
ously as the extension and remain so until the exten-
sion itself is uninstalled, or disabled (Google, 2023a).
Background pages run in the browser and can access
different information as they have full access to the
extension’s API once the necessary permissions are
declared (Chen and Kapravelos, 2018).

Content scripts run within web content and lack
access to most of the browser’s privileged APIs. They
can be injected into web pages through the manifest
file or dynamically by the background page.

2.2 Abstract Syntax Tree

There are numerous tools for static code analysis
(Sonarqube, 2023; SonarCloud, 2023; Spectral, 2023;
Kundel, 2020). In particular, an Abstract Syntax Tree
(AST) (Kundel, 2020) is a tree-like representation of
the syntax of a source code program according to the
formal grammar of a programming language that de-
scribes the syntactic structure of the program. IBE.js
uses ASTs for instrumenting browser extensions. In
the following, we detail the main advantages of using
ASTs.

Lexical analysis, also known as tokenization, con-
sists of converting each element of the source code
into tokens. These tokens are used to identify the type
and value of the piece of code to which they refer. In
Listing 1, we show an example of lexical analysis of
“var aux = "Hello World"”, where we see that the
lexical analysis is only separating the sentence by type
and value.

[{ type: "VariableDeclaration", value:

"aux"},

{ type: "String", value: "Hello World

"}]

Listing 1: Lexical analysis AST of “var aux=Hello World”.

Parsing, also known as syntax analysis, is the step
that converts the tokens generated in the lexical analy-
sis into an AST. This parsing is the one that gives
meaning to the code as it represents its structure, i.e.,
we can know the function that the code performs.

Code generation allows developers to safely ma-
nipulate or even change the whole structure of an
AST.

2.3 ECMAScript

ECMAScript (ECMA, 2021), is a language specifi-
cation mainly used in general-purpose programming

languages, being JavaScript the most known one.
Even though ECMAScript was initially designed for
client applications, with the incipient popularity of
JavaScript, it also allows coding server-based soft-
ware. Therefore, ECMAScript provides not only
client-side computation, including objects represent-
ing menus, windows, and text areas but also server-
side functionality like objects representing requests,
clients, and file system management (ECMA, 2021).
Each browser and web server that supports EC-
MAScript provides its own host environment, com-
pleting the ECMAScript execution environment.

In this paper, we use Esprima2 for the gener-
ation of ASTs. Esprima is a high-performance,
standards-compliant ECMAScript parser written in
ECMAScript.

2.4 Parameters for Statistical Study

We define the main parameters for the statistical study
we carry out to obtain the code coverage. These are:
confident level, confident interval and sample size (Is-
rael, 1992).

The confidence level gives the degree of assurance
we can have. This parameter is expressed as a per-
centage so that a confidence level of 100% indicates
that it is certain that the results will not change when
the experiment is repeated. On the other hand, 0%
indicates that there is no chance that repeating the ex-
periment will produce the same results.

The confidence interval is, in short, the statistical
error that arises when the sample does not represent
the entire population. For example, if we use a confi-
dence interval of 3 and 50% of the population choose
an answer, we can be confident that if we ask the ques-
tion again, the entire relevant population would be be-
tween 47% and 53%.

Population size is known as the total number of
elements in a study. On the other hand, sample size
refers to the number of observations included in a
study. Sample size has an impact on two statistical
properties: 1) the precision of the estimates and; 2)
the study’s ability to draw conclusions.

3 IBE.js: INSTRUMENTING
BROWSER EXTENSIONS

IBE.js is a framework that uses a combination of static
and dynamic analysis to instrument the lines of code
of the JavaScript files of extensions and thus, gets the
coverage. This value is calculated as the fraction of

2https://esprima.org
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lines of code executed in a program at least once.
Note that comments and blank lines are not counted as
lines of code. The code coverage allows us to know
how many lines of code are executed by default in
the background pages and content script files of the
extensions, i.e., regardless of web content and with-
out any user interaction. Also, it is worth mentioning
that IBE.js, does not need to implement any complex
architecture based on honeypages (Kapravelos et al.,
2014; Solomos et al., 2022) nor visit any of the web-
pages (Sjosten et al., 2019) the extensions are suppose
to work to analyze and capture the coverage.

3.1 IBE.js Architecture

Figure 1 shows IBE.js’s architecture. The left part
represents the static analysis, where IBE.js parses the
manifest file and instruments the extensions. The
right part of the figure covers dynamic analysis, which
includes automatically installing the instrumented ex-
tensions on the web browser and calculating code
coverage.

3.1.1 Static Analysis

First, IBE.js parses the manifest file of the extensions
and extracts all the JavaScript files defined in the "
content_script" and "background" keys. Second,
IBE.js skips scripts that belong to any well-known li-
brary by computing the Subresource Integrity (SRI)
and comparing such a value with the ones provided
by some of the most popular Content Delivery Net-
works (CDNs) like Google3 and cdnjs4.

The instrumentation of the code takes place in the
static analysis module. The code instrumentation is
the method of adding "fetch()" commands between
the AST nodes of each file. Such a command is a
JavaScript function that makes HTTP requests to a
server. IBE.js requires that these commands follow
the following format: fetch("<URL>/<extension_id
>/<file_path>/line/<line_number>"). These para-
meters include: 1) the URL of a Web server; 2) the
ID with which the extension is identified in the Web
Store; 3) the relative file path to be instrumented in
the extension, and; 4) the number that corresponds to
the instrumented line of the file.

Let us illustrate the instrumentation process with a
random file called engine.js from a random extension
whose ID is “acaamclplaocnfddlcllkbeaelpipgkm”.
Concretely, we chose an inline conditional statement,
very common in programming languages such as
Python, Ruby or JavaScript (see Listing 2).

3https://developers.google.com/speed/libraries
4https://cdnjs.com

(function (t) {t.enabled ? r() : e.w("

app is disabled, do nothing to

taobao page")})

Listing 2: Original code from engine.js file.

After IBE.js instruments the code, it is divided
into a series of if-else statements while preserving the
original code’s conditions and alternatives.

fetch(’http://localhost/

acaamclplaocnfddlcllkbeaelpipgkm/

javascript/taobao/engine.js/line/0’

);

(function (t) {

fetch(’http://localhost/

acaamclplaocnfddlcllkbeaelpipgkm/

javascript/taobao/engine.js/line

/1’);

if (t.enabled) {

fetch(’http://localhost/

acaamclplaocnfddlcllkbeaelpipgkm

/javascript/taobao/engine.js/

line/2’);

r();

fetch(’http://localhost/

acaamclplaocnfddlcllkbeaelpipgkm

/javascript/taobao/engine.js/

line/3’);

} else {

fetch(’http://localhost/

acaamclplaocnfddlcllkbeaelpipgkm

/javascript/taobao/engine.js/

line/4’);

e.w(’app is disabled, do nothing

to taobao page’);

fetch(’http://localhost/

acaamclplaocnfddlcllkbeaelpipgkm

/javascript/taobao/engine.js/

line/5’);

};

fetch(’http://localhost/

acaamclplaocnfddlcllkbeaelpipgkm/

javascript/taobao/engine.js/line

/6’);

});

fetch(’http://localhost/

acaamclplaocnfddlcllkbeaelpipgkm/

javascript/taobao/engine.js/line/7’

);

Listing 3: Instrumented code from engine.js file.

Note that adding inline "fetch()" directly into
background pages and content scripts might be in
conflict with both permissions and Content Security
Policy (CSP) of the extensions. To bypass such lim-
itation, IBE.js automatically parses the manifest file
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Figure 1: IBE.js system architecture.

and: 1) deletes the CSP property of the manifest file in
case extensions define it, and; 2) adds the <all_urls
> string to the permissions in case it is not already
included. Performing these changes in the manifest
file do not alter any of the functionality of the exten-
sions. Rather, we allow them to work in our con-
trolled server as if they were executed in a real sce-
nario, i.e., in the webpages they were coded to work
in.

The instrumentation results in the number of in-
strumented lines, i.e., the number of added fetch state-
ments to the original file. If the files can be instru-
mented without error, the original scripts are replaced
with the same file that includes the added lines. How-
ever, if any errors occur during the process, the orig-
inal scripts remains and the total number of instru-
mented lines is “-1”.

3.1.2 Dynamic Analysis

The objective of the dynamic analysis module in
IBE.js is the installation and execution of the ex-
tensions. To do so, IBE.js relies on a combination
of Python and Puppeteer5 to automatically launch
the browser and install the corresponding extensions.
Later, every extension executes the "fetch()" to the
server specified in the command, a server that IBE.js
automatically sets up every time a new extension is
installed and executed.

Once all the requests have been made, IBE.js au-
tomatically stops the server and obtains all the data
necessary to get the code coverage. In more detail,
we: 1) calculate the coverage of each file (see Equa-
tion (1)); 2) group the files according to the extension
they belong to and calculate an average of the cov-
erage of those files; 3) group the extensions by the
category they belong to, and get the average of the

5https://github.com/puppeteer/puppeteer

coverage of those extensions, and; 4) obtain an aver-
age of the total coverage of all the categories.

coverage(%) =
coveredLines

totalLines
∗100 (1)

Let us illustrate the entire process with the same
extension as in the previous example whose ID is
“acaamclplaocnfddlcllkbeaelpipgkm”. Using Equa-
tion (1) and the data corresponding to the columns
“Lines” and “Covered Lines” (see Table 1) we get the
coverage of each file of the extension. For example, in
the file named “engine.js”, the coverage is as follows:

coverage(%) =
17
19

∗100 = 89.47

After this, we calculate the average coverage of
the files of the same extension, obtaining an average
coverage of 48.75%.

Table 1: Code coverage of acaamclplaocnfddlcllk-
beaelpipgkm extension version 1.0.1.2.

Filename Lines Covered Lines Files Coverage

debug.js 7 7 100%
engine-product.js 20 9 45%
engine.js 19 17 89.47%
pattern.js 6 6 100%
setting-dialog.js 41 0 0%
taobao-util.js 23 6 26.09%
util.js 68 0 0%
modaldialog.js 34 10 29.41%

3.2 Scope and Limitations of IBE.js

During the instrumentation, we found some code
cases that limited the number of lines that could be
instrumented. In the following, we explain the instru-
mentation process of some of them as well as some of
the limitations IBE.js has.
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Manifest File. IBE.js traverses the manifest file of
all extensions to extract the JavaScript files to be in-
strumented. Therefore, these files belong to the "
content_script" and "background" tags of the man-
ifest file. However, extensions can define HTML files
as background pages and include external JavaScripts
in them. These files are not analyzed by IBE.js.
We are working on an extension that parses all the
HTML and instruments the JavaScripts defined in the
HTMLs.

Obfuscated Code. Google detected that over 70%
of malicious code in the Web Store contained some
sort of obfuscated code (Wagner, 2018). On October
2018, Google no longer accepted extensions with ob-
fuscated code, and they even removed from the Web
Store those extensions shipping such files.

Adding Brackets. In JavaScript, as in many other
languages, it is not mandatory to add special charac-
ters to define a code block. For instance, JavaScript
allows developers to not include curly brackets in
some statements like if, else, for, forin. This is
a problem because when adding the "fetch()" com-
mands after each node, it will return an error because
the if statement will not be well defined. We ad-
dressed this by automatically adding a BlockState-
ment, preserving the code’s functionality, allowing us
to instrument it and obtain coverage.

Inline Statements. JavaScript, like Python and
PHP, allows inline statement definitions. One exam-
ple is the if..else statement, which can be expressed
as (<test>)? <consequent> : <alternate>;. We
expanded such inline statements and created extended
if..else blocks with the original <test> in the con-
dition, and generated BlockStatement for both the <
consequent>, and the <alternate>.

Variable Declaration. Even though our instrumen-
tation method is sound, it is not complete. One such
example of statement that we did not instrument is
the variable declaration based on a conditional in-
line statement, e.g., var <variable> = <test> ? <
valueIf> : <valueElse>;.
We are working on a solution that generates an ex-
tended version of a ConditionalStatement (if..else
) to instrument it as well as declaring the variable (<
variable>) on every path of the ConditionalState-
ment path with its corresponding value (either <
valueIf> or <valueElse>).

Esprima. We use Esprima to perform lexical analy-
sis. However, some files are not compatible with this
library and therefore cannot be parsed. For example,
the snipped shown in Listing 4 throws and error in Es-
prima because it needs the catch statement to contain
a parameter, e.g., catch (error){alert("Error");}
.

try{$("#btn_capture").hide();}

catch{alert("Error");}

Listing 4: Esprima error.

We could have used other more error-tolerant
JavaScript parsers like acorn-loose6. However, in do-
ing so, we might modify the source code of the ex-
tensions and alter the intended behavior. We restrict
ourselves to the source code, no matter whether it con-
tains errors or not.

Enrichment of the Fetch Command. As a proof of
concept, we only send information about the line that
has been executed (see Listing 3). However, since we
are sending the information to a local server, in this
command we can include more detailed information
such as the state of the variables and more complex
syntax such as recursion and closure. In addition, we
can use the content of the log file generated in the
dynamic execution to recreate the execution flow.

4 PROOF-OF-CONCEPT:
GROUND TRUTH COVERAGE

We implemented a proof-of-concept of IBE.js in
Python and deployed it on a Linux computer with In-
tel(R) Core(TM) i7-4790 CPU @3.60GHz, 16GB of
RAM. Performing the entire process with the 3,807
extensions took 19 hours, 34 minutes, and 41 seconds,
i.e., 13 seconds per extension on average.

Dataset. We crawled the Web Store as of February
2023 and downloaded 114,840 extensions, and got
the category they belong in the Web Store (see the
2nd column of Table 2). To get a representative sam-
ple, we used “Sample Size Calculator”7 with a confi-
dence interval of 5% and a confidence level of 95%.
This implies that if we repeat the experiment using
the same parameters, the results will be within 5% of
the previous ones 95% of the time. The third column
of Table 2 shows the number of random extensions
IBE.js analyzes per category.

6https://github.com/acornjs/acorn
7https://www.surveysystem.com/sscalc.htm
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Table 2: Code coverage obtained by category.

Category Extensions
Total Analyzed Coverage

Accessibility 10,786 371 37.67%
Blogging 1,858 318 34.51%
Communication 10,547 371 32.60%
Fun 14,495 374 38.73%
News 2,278 329 36.07%
Photos 1,223 293 35.83%
Productivity 47,969 381 39.38%
Search Tools 5,787 360 18.76%
Shopping 6,341 362 37.47%
Sports 963 275 40.02%
Web Development 12,503 373 19.20%

TOTAL 114,840 3,807 33.66%

Once IBE.js analyzed the extensions randomly
chosen for the experiment, we obtained the average
coverage of each category (see Table 2). We can
see, for example, that extensions in the Sports cate-
gory have the highest code coverage (40.02%), i.e.,
extensions belonging to Sports execute 40.02% of the
source code automatically regardless of the web con-
tent and the user interaction. On the contrary, exten-
sions in the Search Tools category have the lowest
code coverage (18.76%), i.e., extensions within the
Search Tools category are highly dependent on either
web content or user interaction.

With the coverage data obtained for each category,
we have calculated that, on average, the coverage of
the extensions analyzed is 33.66%. This means that in
most cases, more than 50% of the lines that we instru-
mented are not covered when the dynamic analysis is
performed in our controlled environment.

Table 3: Files coverage obtained by category.

Category Extensions
Files Covered Files Files Coverage

Accessibility 2.86 2.69 94.63%
Blogging 1.72 1.66 97.10%
Communication 2.06 1.97 95.64%
Fun 1.88 1.83 97.21%
News 1.60 1.52 96.66%
Photos 1.86 1.75 93.50%
Productivity 2.90 2.77 93.88%
Search Tools 2.81 2.68 96.33%
Shopping 2.61 2.50 95.50%
Sports 1.95 1.85 94.93%
Web Development 2.38 2.21 94.51%

In Table 3 we measure the quality of IBE.js. We
can see for each category, the average number of files
of the extensions (2nd column), the average number
of files successfully instrumented (3rd column), and
the files coverage (4th column). We observe, that
i) in general, the number of files that cannot be in-
strumented is very small, and; ii) the overall average

Table 4: Coverage of extensions belonging to Sport cate-
gory.

Extensions
Total Executed Coverage

Ground Truth 963 275 40.02%
Validation 963 963 41.73%

file coverage is of 95.38%. With this, we show that,
in most cases, the majority of files of each extension
are instrumented.

4.1 Threats to Validity

To validate the results obtained when computing the
ground truth coverage, we carried out a second exper-
iment which we call validation coverage where we
calculate the coverage of all the extensions of a single
category.

We chose the Sport category, the one with the
highest coverage and 963 extensions. This experi-
ment gives us a result with a confidence level of 100%
and a confidence interval of 0%, i.e., whenever we re-
peat the experiment, we will get 100% similarity in
the results. The whole process, i.e., instrumenting, in-
stalling, and parsing the results, took us over 10 hours.

As shown in Table 4, we compared the results
of the code coverage calculation for the Sports cat-
egory in both experiments and found that the results
are very similar, with 40.02% for the first execution
and 41.73% for the second.

From the ground truth and validation coverage,
we conclude that the results do not deviate from the
confidence interval and that the coverage obtained for
validation coverage is slightly higher. This increase
means that, despite having increased the number of
extensions to be analyzed (963) and the probability of
finding files not covered is greater, we have obtained
better results.

In Table 5, we show the total number of covered
files for each experiment. The coverage of covered
files is higher in the ground truth coverage than in the
validation coverage (94.93% in the ground truth cov-
erage and 94.91% in validation coverage). These re-
sults imply that, as the number of extensions to be ex-
ecuted increases, the number of erroneous files found
also increases. However, such variation is not signifi-
cant enough, so we can once again verify that the re-
sults obtained for the rest of the categories in ground
truth coverage are perfectly valid.

4.2 Cross-Platform Compatibility

We tested IBE.js with extensions stored in Google
Web Store. This means that in Chromium-based
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Table 5: Instrumented files of extensions belonging to Sport
category.

Extensions
Files Covered Files Coverage

Ground Truth 1.95 1.85 94.93%
Validation 1.96 1.86 94.91%

browsers, like Microsoft Edge, Opera and Brave, al-
though the approach to extension distribution may
vary between them (such as the use of Chrome Web
Store), all extensions in these browsers are compatible
with IBE.js. In practice, we used as input extensions
from other web stores like Firefox Browser Add-ons8,
Opera Add-ons9 and Microsoft Edge Add-On 10 and
certified that IBE.js successfully instrumented them.

Firefox is a non Chromium-based web browser
developed by Mozilla that also accepts browser exten-
sions (named add-ons). Although its architecture may
differ in some cases, it maintains the same structure,
using a directory containing a manifest file describ-
ing the background pages, content scripts and permis-
sions, and the rest of the necessary files. We checked
IBE.js using Firefox add-ons as input and obtained
successful results, concluding that IBE.js also com-
plies with Firefox add-ons.

5 RELATED WORK

In the following, we summarize the related work fo-
cusing when possible on JavaScript and more con-
cretely, on browser extensions.

Code Coverage. J-Force (Kim et al., 2017) is a
JavaScript-based application that scans multiple ex-
ecution paths of browser extensions and detects ma-
licious behavior by combining dynamic and static
analysis. Authors experimented on 100 real-world
JavaScript samples, and, as a result, they cover 95%
of the code. A year later, in 2018, Hu et al. pro-
posed JSForce, a framework that increases the code
coverage in JavaScript to detect malicious scripts (Hu
et al., 2018). JSCover (JSCover, 2023) is a specific
tool for JavaScript coverage inspired in the popular
JSCoverage11, a tool that measures code coverage for
JavaScript programs. Other tools like BullseyeCover-
age (BullseyeCoverage, 2023), Clover (Clover, 2023)
and SLIMIUM (Qian et al., 2020) are not comparable

8https://addons.mozilla.org/en-US/firefox/
9https://addons.opera.com/en/extensions/

10https://microsoftedge.microsoft.com/addons/Microsoft-
Edge-Extensions-Home

11http://siliconforks.com/jscoverage/

to ours as they focus on languages like C++, Java and
browser code debloating respectively, so they cannot
be used to measure the coverage of browser exten-
sions.

However, of those tools that focus on JavaScript
language, they do not take web content into account,
unlike IBE.js, which does. This means that although
we can manually select some of the content scripts
from the extensions to be analyzed, this is far from
the reality as content scripts can send messages to
background pages. Recall that background pages
are scripts that run in the background context of the
browser, so they cannot be analyzed by such a tool.
IBE.js offers a unique approach to measuring code
coverage in browser extensions, taking into account
web content and providing a more accurate assess-
ment. Unfortunately, the closest tool to IBE.js, J-
Force, is not online, and although we contacted the
authors, we could not get the source code to execute
and compare it.

Code Analysis. In browser extensions, although
there are some authors who analyze extensions by
grouping them into Aspects of Extension Behavior
(AEBs) (Zhao and Liu, 2013), we can clearly identify
three main approaches to analyze both their source
code and behavior. The first strategy is statically an-
alyzing the source code the extensions ship (Landi,
1992; Emanuelsson and Nilsson, 2008; Li et al., 2017;
Fass et al., 2021). The second one is dynamically ana-
lyzing the behavior in a controlled environment (Ball,
1999; Kapravelos et al., 2014; Yerima et al., 2019;
Chen and Kapravelos, 2018; Pilgun et al., 2018).
Nowadays, most authors rely on a combination of
both static and dynamic analysis (Wang et al., 2018;
Pan and Mao, 2017; Eriksson et al., 2022; Starov and
Nikiforakis, 2017). A very remarkable tool for its
high accuracy in code analysis is VEX (Bandhakavi
et al., 2010), which detects patterns and illuminates
possible security vulnerabilities in Firefox extensions
by classifying them as explicit flows. However, IBE.js
differs significantly in that it uses a combination of
static and dynamic analysis, instrumenting both the
background pages and content scripts of extensions
in web content.

Code Instrumentation. Yu et al. presented a
method for implementing JavaScript code for browser
security (Yu et al., 2007). Authors model a propri-
etary subset of JavaScript-CoreScript where they fo-
cus on the higher-order script and solve the problem
of identifying and rewriting these scripts by infecting
callbacks. Authors analyze 178,893 Chrome browser
extensions using Mystique (Chen and Kapravelos,
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2018), an information flow tracking tool based on
taint analysis for browser extensions. FPTracker
(Ashouri, 2019) is a standalone, portable and practical
browser developed as a standalone tool. It combines
static and runtime analysis of websites to track scripts
for footprinting through integration with users. As a
result, FPTracker analyzes the true purposes of en-
crypted scripts thanks to JavaScript instrumentation.
However, these specific tools focused on browser ex-
tensions, such as Mystique, mainly focus on extension
tracking based on taint analysis techniques, which are
far from our goal. Hulk (Kapravelos et al., 2014) dy-
namically install extensions and using a combination
of honeypages and event-driven approach, authors try
to execute as much functionality as possible. Note
that this approach differs from ours, where we first
statically instrument extensions and later we dynami-
cally install them to check their code-coverage.

In conclusion, IBE.js differs from other tools in
its focus on analyzing the JavaScript files of browser
extensions. To achieve this, IBE.js uses a combina-
tion of static and dynamic analysis to instrument the
extension files and obtain the final coverage. In addi-
tion, IBE.js takes web content into account, allowing
it to provide a more complete and accurate analysis
of extension coverage. Overall, IBE.js presents itself
as a simple and effective solution for monitoring and
evaluating the code coverage of browser extensions.

6 CONCLUSIONS

In this paper, we presented IBE.js, a simple yet pow-
erful solution to instrument the source code of the
browser extensions and get their coverage.

We established a ground truth dataset by using a
blank HTML, and found that IBE.js successfully in-
struments the background pages and content scripts
of extensions with an overall average coverage of
95.38%. We validated our experiments, revealing that
we instrument 94.93% of the background pages and
content scripts of the extensions from Sports category
on average and found that over 40% of their code is
automatically executed. To further confirm the reli-
ability of IBE.js, we repeated the experiment using
all the extensions from the Sports category and found
that we instrumented 94.91% of their scripts and de-
termined that they automatically execute 41.73% of
their code. This demonstrates that the sample size
used to compute the ground truth coverage is suf-
ficiently representative, even with variations in the
number of used extensions.

To validate the compatibility of IBE.js with other
browsers, we used as input extensions from other web

stores like Firefox, Opera and Microsoft Stores and
certified that IBE.js successfully instrumented them.

We conclude that the coverage that marks the
baseline of IBE.js has a value of 29.39%±10.63, be-
ing this the minimum value from which it will be pos-
sible to increase the scope of lines executed by means
of methods such as the triggering of JavaScript events.
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