
An Analysis of Improving Bug Fixing in Software Development

Daniel Caliman1, Valentina David1 and Alexandra Băicoianu2 a

1Siemens Industry Software, Braşov, Romania
2Faculty of Mathematics and Informatics, Transilvania University of Braşov 50, Iuliu Maniu, 500090 Braşov, Romania

Keywords: Software Defects Context, Bug Report, Word Embedding, Text Similarity, Encoder, Summarization.

Abstract: When a defect arises during a software development process, architects and programmers spend significant
time trying to identify whether any similar defects were identified during past assignments. To efficiently
address a software issue, the developer must understand the context within which a software defect is repro-
ducible and how it manifests itself. Another important aspect is how many other issues related to the same
functionality were reported in the past and how they were solved. The current approach suggests using un-
supervised machine learning models for natural language processing to identify past defects similar to the
textual content of the newly reported defects. One of this study’s main benefits is ensuring a valuable knowl-
edge transfer process that reduces the average time spent on bug fixing and better task distribution across team
members. The innovative aspect of this research is gaining an increased ability to automate specific steps
required for solving software reports.

1 INTRODUCTION

Efficient bug fixing is a challenge, especially in the
context of big projects. Identifying the appropri-
ate resolver and identifying similar defects from the
past can be quite difficult, while inefficient bug fixing
leads to an increased time between the transition of a
bug from one state to another (open, verified, closed,
etc.), thereby reducing the overall bug fixing time.

The bug solving process could be streamlined if
there was an application to check whether the problem
faced is similar to one from the past and to investigate
how it was resolved. By means of this solution, the
developer receives different suggestions on what may
be the proper solution for the matter at hand. The
question of identifying the bug reports that refer to
the same source problem is a demanding task in the
software-engineering life cycle, and scientists have
proposed specific methods on information-retrieval
techniques (Yang et al., 2016), (Nguyen et al., 2012),
(Saha et al., 2013). Because of the importance of
this issue, multiple studies have been actively carried
out to propose different solutions to this bug reporting
software process (Jalbert and Weimer, 2008), (Ahmed
et al., 2021), (Wang et al., 2022), (Nazar et al., 2016).
In addition, significant work and an older view of the
state of the art in search-based software engineering

a https://orcid.org/0000-0002-1264-3404

are described in the reference (Harman et al., 2012).
The experiments presented in this paper propose a

new solution that would allow identifying other bug
reports related to a given subsystem or functionality,
which were also reported in the past, starting from a
list of keywords or a bug identifier. Regarding the pro-
posed solution from this research paper, it is handling
the similarities between two or more bugs by using a
natural language processing (NLP) approach that can
predict the semantic relationship between two docu-
ments/files/problem reports (PRs)—deciding whether
specific software problems are related or not can be
achieved by using a text similarity algorithm.

The average developer spends approximately 30%
of the working time debugging errors, costing the
global software industry billions annually (Britton
et al., 2013). Therefore, finding and fixing code prob-
lems/bugs faster, more predictable, constructive, and
dynamic is crucial for developers and software devel-
opment managers.

There are several principal objectives that this
study seeks to attain, including reducing the time
spent on solving bugs and increasing the time allo-
cated for developing new features. In addition, one
more important aspect is reducing the time spent on
calls or pair programming with other developers and
providing a summary of the solution areas for already
solved problems. The presented solution offers the

470
Caliman, D., David, V. and BÄČicoianu, A.
An Analysis of Improving Bug Fixing in Software Development.
DOI: 10.5220/0012119500003538
In Proceedings of the 18th International Conference on Software Technologies (ICSOFT 2023), pages 470-477
ISBN: 978-989-758-665-1; ISSN: 2184-2833
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)



possibility to display the modified files that have al-
ready been solved in the case of similar bugs.

2 SEMANTIC TEXTUAL
SIMILARITY AND
SUMMARIZATION

Information extraction is the process of recognizing
key phrases and structured knowledge in the source
text by seeking predefined sequences in the analyzed
text with pattern matching and also NLP (Singh,
2018) approaches.

2.1 The Performance of the Text
Similarity Algorithms

Similarity algorithms measure how similar two text
descriptions are. To calculate text similarity, it is nec-
essary to transform the text into a vector of content-
specific features. A measure of similarity is a data
mining process that accounts for the distance between
the vectors of features. If the distance is small, the
characteristics have high similarity. Similarity func-
tions are used to measure the distance between two
vectors.

Within the software solution, we have chosen to
introduce several methods of similarity measurement
considering the following aspects:

• By applying several methods to the same dataset,
it can be established which algorithm is more ef-
ficient;

• In certain cases, the time difference between the
algorithms can be quite significant, an aspect that
can be taken into account when wanting to make
a calculation;

• With a large data set, consulting the results by
using another algorithm may result in a higher
chance for the user to find the right solution.

For the similarity comparison between two de-
scriptions, the text is introduced into the similarity al-
gorithm, which provides the distance, and the greater
the distance, the fewer the similarity features. For ob-
taining a useful metric that measures the similarity,
not the dissimilarity, the distance is first normalized,
following which the results will be between [0,1],
where 0 means not similar, and 1 means identical de-
scriptions. A wide variety of quality metrics can be
used (Vidal, 2021), but in this test case, three types of
similarity algorithms are involved: Cosine, Euclidean
(Elmore and Richman, ), and Jaccard (Chung et al.,
2019).

2.2 Text Summarization Approaches

The similarity algorithms offer the most similar top
results that exceed a certain minimum similarity
threshold. If there are few results for the user, it
is easy to check them thoroughly, but when the al-
gorithm offers more than 10 results, the process be-
comes more time inefficient. That is why, within the
application, we have also implemented a summariza-
tion feature that can extract only the important parts
from the solutions offered.

Summarization is a technique by which a text is
truncated by extracting only important points in the
document. The extractive based summary suggests
retrieving the dominant phrases and lines in the an-
alyzed documents. Then all the decisive lines are
combined to create the summary. In this case, ev-
ery line and word in the summary is part of the docu-
ment’s original text being analyzed and summarised.
We have chosen to use extractive summarization al-
gorithms because the sentences the developers offer
as the right solution can have a completely different
meaning if the same words are not used.

We used the library Sumy, a Python library for
extracting the summary from HTML pages or plain
texts to implement the summarization algorithms. We
chose four algorithms for text summarizing: Luhn,
LexicalRank (LexRank), Latent Semantic Analysis
(LSA), and Text Rank.

Luhn: Luhn’s algorithm is based on TF-IDF (Term
Frequency - Inverse Document Frequency) and it se-
lects words of greater significance according to their
frequency. Importance is attributed to the words
present at the beginning of the text and the algorithm
considers the most important words (Luhn, 1958).
Notice that the experiments demonstrate that Luhn’s
algorithm provides satisfactory results when: words
that do not appear frequently are not necessary, words
that appear very often are not important (e.g. ”is”,
”and”) and the input is a technical document. All
three approaches are applicable to this study.

LexRank: LexRank is an algorithm for summa-
rization based on unsupervised graphs (Erkan and
Radev, 2004). It collects only the words of greater
significance depending on their frequency. LexRank
is used to calculate the importance of sentences based
on the concept of centrality of the eigenvector in a
representation graphics of sentences where the sen-
tences are placed at the tops of the graphs and impor-
tantly, propositions are calculated using cosine sim-
ilarity procedure. Moreover, it is worth mentioning
that the LexRank algorithm provides satisfactory re-
sults when the sentence considered important is simi-
lar to other sentences in the text.

An Analysis of Improving Bug Fixing in Software Development

471



LSA: LSA is a NLP technique to analyze the com-
mon points between an input and the terms contained
in that input.

TextRank: TextRank is a text summarization tech-
nique that uses the PageRank algorithm (Bianchini
et al., 2005). PageRank is mainly used for ranking
web pages in online search results. It ranks web pages
according to the number of references a web page has,
web pages with more links to it are considered more
important. TextRank is based on the same representa-
tion as PageRank, with the following remarks:

• Instead of web pages, we use sentences;

• The similarity between two sentences is used as
equivalent to the probability of referring to the
web page.

The TextRank algorithm provides satisfactory results
when the sentence considered important is referenced
as often as possible in the document.

3 PREREQUISITES

3.1 Baseline Systems

Our research is based on the output of more than 100
software developers within a software company that
are using TAC and Jira.

TAC: TAC is an internal tool used for bug track-
ing and management. For this paperwork, we used a
data set used within a software company. This data set
contains the history of solved bugs within a develop-
ment team. The data set is stored in a database, but for
easier handling and processing it has been exported
in a CSV file. TAC is an existing system being used
in software development to report, track and resolve
PRs, and Enhancement Requests (ER), arising from
the software company products. When a software de-
fect is found in a product by an external customer or
by internal users of the product, a PR is logged in
the TAC system. Internal users or developers at re-
mote sites, without access to the company network,
but with access to the Internet, can log PRs using the
TAC system.

Jira: In large companies, the bug fixing effort
must be tracked to establish maintenance costs and
provide better estimations. For our study, the dataset
extracted from Jira brings additional details related to
the time spent on most PRs. Jira dataset is stored in a
MongoDB database due to the fact that the informa-
tion describing a bug can be stored as a single entity,
and MongoDB provides simple document storage fa-
cilities. In our case, this is especially useful for string

manipulation steps, the pre-processing operations ap-
plied on the entire input.

There is a general lack of efficiency considering
the data processing of both mentioned systems, TAC
and Jira. Our study finds the following root causes:

• Duplicates of newly created PRs.
• Incorrect assignments of PRs to appropriate per-

sons to fix them in 20% of the cases;
• Manual process to assign PRs instead of (semi)

automatic one;
• The absence of any relevant content processing of

existing PRs in order to optimize the creation of
new PRs;

• Lack of enforcement for a uniform style for the
PRs creation.
The TAC and Jira databases constitute the main

data sources for this research proposal. Even the fact
that two tools overlap in the bug fixing matter affects
the process efficiency. Therefore, another outcome of
this research is to offer guidelines related to the two
databases’ structural and logical integration on just
one unique PRs management tool. The content of the
data sources is written in English to have a common
understanding among all developers working for the
same company from different countries. Also, the in-
formation present in both data sets refers to the same
project. TAC dataset is bigger than the one from Jira
because Jira was recently adopted as the main time
tracking tool.

3.2 Datasets

Two different datasets were used for this research
study, one generated from TAC and another one from
Jira. While different in appearance, each dataset has
the same summary features and characteristics. Both
can help understand how a PR should be handled. Jira
dataset completes the one from TAC with information
about the time spent on a certain task.

Dataset1 - TAC - According to the TAC tool, a
fixed bug is structured as follows:

• PR Number: represents the number of the PR
by means of which we can find the bug in the
database;

• Short Description: represents a succinct descrip-
tion of the problem that the user encounters;

• PR Text: represents a more detailed description of
the existing problem. Here are specified details
about the mode of reproduction of the bug, the
environment used, and general characteristics;

• Final Response: represents the steps that the soft-
ware developer followed to solve this problem;

ICSOFT 2023 - 18th International Conference on Software Technologies

472



• Assigned Employee: represents the software de-
veloper who was assigned to solve this problem.

The dataset has 9918 entries/rows (1.06 MB of
data). From a total number of 14 columns, only 5
columns were used due to the fact that they contained
the most relevant information for our study.

Dataset2 - Jira - A dataset containing 8068 Jira
records (352KB) was used for this paperwork. In gen-
eral, one can retrieve information from different types
of Jira issues, like epics, stories or tasks. Still, for this
paper, we only used the task issue since they give the
most accurate details in terms of time spent on a cer-
tain problem and the exact name(s) of the staff mem-
bers involved. Furthermore, even though in Jira the
information is stored and organized in more than 17
columns, we use only 4 of them, namely those con-
taining PR workloads.

The following attributes describe each record:

• Title: The task title from Jira needs to be at least
the same as the “Short description” field from
TAC, but in most cases, it is a combination of the
“PR number” and the “Short description” fields.

• Description: This field usually contains the same
information as the “PR Text”.

• Assignee: The assignee of a task is the person that
fixed the bug that the task was created for.

• Time Spent: the amount of time needed to com-
plete the task.

4 RESULTS

4.1 Pre-Processing the Input Data

The data pre-processing phase aims to turn the raw
data into a more understandable, useful, and effi-
cient format for machine learning models. Hence, be-
fore applying any information retrieval algorithm, the
dataset must go through a pre-processing step, which
implies that the information is cleaned and ready to
be used. For any NLP problem, one would choose
to perform at least one of the following operations to
ensure the quality of the dataset:

1. Convert all the words to lowercase - this guaran-
tees that a word written in lowercase, uppercase,
or a combination of both is treated as a single
term;

2. Remove punctuation - punctuation marks are
treated as noise in this case since only the words
are relevant in the computation phase;

3. Remove stop words - stop words can also be con-
sidered noise. Usually, they represent a collec-
tion of prepositions or verbs that do not really add
value to a phrase or document.

4. Spell checking - this phase ensures that the words
are correctly written in order to maintain their true
meaning;

5. Lemmatization - a procedure used for removing
suffixes or prefixes from a word and also for
grouping different inflected forms of a term in or-
der to be treated as the same item.
All the steps mentioned above have been applied

to both datasets used for the experiments in this paper
such that we obtain more valuable input for the sim-
ilarity and summarization algorithms. For our case,
the pre-processing operations have been applied in the
same order as detailed in this section. However, de-
pending on the problem one is trying to solve, one or
more steps can be skipped or applied in a different
order.

A real PR text, labeled T 1, is converted into T 5,
after performing all the operations mentioned above,
as follows:

T 1: “The request to free a license (curfew) does
not work when using a license server Run a local li-
cense server. Use from out desktop this local license
server. Define a curfew and restart desktop. Wait until
the curfew passes... nothing happens. However, point
to a license file and do the same. Here the curfew
message is shown while it should not!”

T 5: “request free license curfew work using li-
cense server run local license server use desktop local
license server define curfew restart desktop wait cur-
few passes nothing happens however point license file
curfew message shown”

The output of T 4 and T 5 is the same because those
steps have no effect on the selected example. We have
collected some harmless examples without using sen-
sitive business information from our client, but each
of these steps is an essential step in pre-processing
phase.

4.2 The Input Data Processing Cycle

In this section, we present our approach for the
launched problem, the architecture, and the main fea-
tures built to facilitate the analysis and resolution of
bugs by providing similar bugs, which could lead to
solving the problem developers are facing. The pur-
pose of the solution is to find and analyze similar bugs
that have already been solved in the past, and the so-
lutions they propose may also be useful in other cases.

In order to solve these features, but also to eas-
ily and quickly test the results of this proposal, a Bug

An Analysis of Improving Bug Fixing in Software Development

473



Fix Suggester (BFS) web framework application was
developed. Granting a bug similar to the one that
we’re encountering is one of the most significant fea-
tures that BFS provides for users. It is through these
searches that the submitters find similar bugs in order
to get a useful starting point to solve their bug. The
architecture of the implemented framework consists
of a database component, a core module, and a Web
interface unit. Figure 1 displays a simplified structure
of the application.

Figure 1: BFS Architecture.

The database stores in an organized way - see the
pre-processing step - the bug reports from the bug
repositories to facilitate further searches and perspec-
tives. Correct, consistent, and usable input datasets
are mandatory to facilitate more accurate further pro-
cessing and analysis.

The Web module implements the user interaction
features through a Web Browser. The easiest way to
provide fast and easy-to-interpret results is by imple-
menting a web application where the user can enter
the input and see the results. To perform such a pur-
pose, we chose the following instruments and tech-
nologies: HTML, Jinja, JavaScript, CSS for the inter-
face, and Flask for the Web application.

The main unit (core) has sub-units for text pre-
processing and keyword extraction, implementation
of similarity/summarization algorithms, and deliver-
ing results. BFS Core module contains the main com-
ponents of the tool, which are responsible for running
the pre-processing, keyword extraction, and similar-
ity/summarization algorithms.

Keyword extraction is the automated process of

extracting the words and phrases that are most rele-
vant to an input text. For our study, we have built
a basic keyword extraction pipeline that can identify
and return noticeable keywords from the original text.
For our research, the semantics of the words and the
words themselves are imperative due to our engineer-
ing objective.

The embedding process uses an unsupervised sen-
tence transformer autoencoder, such as Bidirectional
Encoder Representations from Transformers (BERT)
(Devlin and Chang, 2018). The training uses a new
approach called Masked Language Modeling (MLM),
which allows bidirectional training of the transformer
in models. Usually, a transformer is meant to learn
contextual relationships between words in a docu-
ment, following two techniques. The first is repre-
sented by an encoder that reads the input, and the sec-
ond is identified as a decoder that outputs predictions
for a given task. However, BERT’s primary goal is to
produce a language model, so only the encoder part of
the transformer is used by this algorithm. The input
for BERT is represented using three different embed-
dings: token, segment, and position, while the pre-
training step is made of two components, the MLM
and the Next Sentence Prediction (NSP) model, as
follows:

1. MLM: Before feeding the model, a small amount
of the words from the input dataset are replaced
with a mask token. Then, the model tries to pre-
dict the original value of the masked terms using
the context given by the non-masked version of
the words. The prediction is made in three steps:

(a) A classification layer is needed on top of the
encoder outcome;

(b) The output vectors are multiplied by the em-
bedding matrix and then transformed into a vo-
cabulary dimension;

(c) The probability of each term in the vocabulary
is computed using SoftMax.

2. NSP: The input for NSP is structured in pairs of
sentences because the model tries to predict if the
second sentence in the pair is the sentence that
follows after the first one in the original phrase.
Half of the dataset is built up using this rule, while
the other half comprises pairs in which the sec-
ond sentence is picked randomly from the given
corpus. In the latter case, it is assumed that the
two sentences will be disconnected. Before enter-
ing the model, the input goes to a pre-processing
phase, built up from three steps, as follows:

(a) A ”CLS” token is inserted in the first position
from the first sentence, and a ”SEP” token is

ICSOFT 2023 - 18th International Conference on Software Technologies

474



inserted in the last position of the second sen-
tence;

(b) Each token receives a sentence embedding -
used for labeling one of the two sentences in
the pair;

(c) In a sentence, the token position is identified
using a positional embedding that is added to
that token.

The results obtained through the similarity algo-
rithm are bugs from history that a software developer
resolved. The multitude of solutions provided by the
similarity algorithm also helps when after consulting
the results, the user still cannot find a solution for re-
solving the bug. When the software developer needs
to find out who is most advised to help with the prob-
lem at hand, a list with the number of occurrences
in the final results of the algorithms is drawn up, and
these results are displayed to the user. This list of soft-
ware developers is formulated using the results pro-
vided by the similarity algorithm. After the list of
bugs similar to the description given as input is ob-
tained, the software developer further examines who
solved these specific bugs and creates a new list of
software developers who hold the necessary knowl-
edge to help solve the problem encountered. A soft-
ware developer who has solved several bugs will be
displayed higher on the list.

5 DISCUSSIONS AND RESULTS

In order to visually analyze the numerical results pro-
vided by the three similarity algorithms, the similar-
ity scores offered by each of them were plotted. The
Cosine similarity algorithm provides the most evenly
distributed results in the interval [0, 1], whereas the
Euclidean similarity algorithm is focused on point 0.4
but provides uniformly distributed results in the inter-
val [0.5, 1]. Furthermore, the Jaccard similarity al-
gorithm provides uniformly distributed results in the
interval [0, 0.5]. While all the algorithms yielded sat-
isfactory results, it is evident that Cosine provided all
outcomes equally likely, see Figure 2. Also, in the last
one, it is to notice the distribution of all the points for
each of the chosen algorithms.

For each similarity algorithm, a set of different
tests was done so that an optional threshold could be
selected. The selected optimal threshold varies under
different test criteria, so the optimal empirical thresh-
old used had a value of 0.2.

To conclude the effect of these algorithms on the
data sets considered, an investigation was carried out
to enable us to draw conclusions about the behavior

Figure 2: Performance for the similarity algorithms.

of these algorithms. The approach was implemented
by following two steps:

1. First Step: Accessing the PRs that are marked as
being duplicated from the database and analyzing
the result of the similarity algorithm, namely the
Cosine similarity algorithm;

2. Second Step: For each bug present in the database
10 paraphrased descriptions were analyzed where
the most similar result is the original bug. The
Pegasus paraphrase model was adopted.

First Step: For the duplicate analysis, those
PRs marked as duplicated were extracted from the
database and observed by considering the field (Short
description) containing the duplicate PR. Overall, 14
bugs have been cataloged as duplicate PRs. In order to
demonstrate the effectiveness of the Cosine similarity
algorithm, the PRs duplicates from the database were
analyzed and then entered into the BFS software solu-
tion. In Figure 3 it can be noticed that in 78% of cases,
the algorithm displayed the duplicate PR among the
results. In Figure 3 it can be noticed that when we in-
troduced the data, the algorithm resulted that in 78%
of the cases, the text given was from a duplicated PR.

Figure 3: Duplicate PRs results.

Second Step: In order to test the Cosine similarity
algorithm on several examples, 1200 bugs were con-

An Analysis of Improving Bug Fixing in Software Development

475



sidered, and for each bug, a paraphrasing approach
was applied, which would generate 10 slightly differ-
ent descriptions of the bug to see if the similarity al-
gorithm would give the same bug as the most similar.

In general, transformers are semi-supervised ma-
chine learning models mainly used with text data and
have replaced recurrent neural networks in NLP tasks
(Vaswani et al., 2017). Transformers are designed
to work with sequence data by using an input se-
quence to generate an output sequence (Chirkova and
Troshin, 2021). One transformer has two main com-
ponents: an encoder that primarily operates on the in-
put sequence and a decoder that operates on the tar-
get output sequence during training and predicts the
next element. The Pegasus model is pre-trained sim-
ilarly to a summarization algorithm, where important
sentences or words are extracted from an input docu-
ment and merged to provide the output. The way the

Figure 4: Results for PRs - Pegasus transformer.

BFS application works is the same, with the distinc-
tion that the input is not the one entered by the user
but the 10 paraphrased sentences. Notice in Figure 4
how out of 1200 bugs, in 71% of the cases, the algo-
rithm resulted in the bug that we paraphrased in all
10 iterations. As a result, 60 of the 1200 bugs have
never managed to provide the paraphrased bug. In a
more detailed examination, we observed that this hap-
pens because the paraphrasing algorithm excludes the
differentiating word from the sentence, changing the
meaning of the sentence completely.

We considered a study test example, and the cor-
rectness of the result, its relevance, and the execution
time of the algorithm were observed. The interval
[0,1] includes score values of similarity, where 0 rep-
resents a description, not at all similar, and 1 illus-
trates an identical description.

All the records in TAC and Jira are used in the
same project, which implies that the datasets are rel-
evant for the analysis. However, it is noteworthy that
TAC has more records than Jira, which is attributed to
the fact that TAC has been in use for a longer period
of time. It is important to mention that the proprietary
nature of the datasets prohibits the inclusion of a large

number of records that do not include sensitive data,
thereby limiting the scope of the analysis. A general
bug description was considered input because the real
used database is the client’s property.

The input text is: “The request to free a license
(curfew) does not work when using a license server
Run a local license server. Use from our desktop this
local license server. Define a curfew and restart desk-
top. Wait until the curfew passes... nothing happens.
However, point to a license file and do the same. Here
the curfew message is shown while it should not!” and
we will introduce it into our BFS software solution to
see if the results given would help us resolve the issue.

The best four results are:
1. License curfew does not save the project when

the project was not saved before With the solution:
Synchronous saving forced in curfew dialog before
sending to the new version of the application the mes-
sage to kill the process. Tested on a previous release
version and curfew does not work. Application does
nothing. Fixed - Cosine similarity is 0.4921.

2. Reconnect to the license server does not work
after network loss. With the solution: An extension to
heartbeat with reconnect option has been introduced.
- Cosine similarity is 0.3746.

3. Application crashes when connection to license
server is lost With the solution: I tested on version
230317and I see in case of license lost that the dialog
appears in the home page of our frontend application.
So it seems to work fine. I could not test the scenario
where I have a hardware connection active. I tried
with the application connected to the hardware and
the client open in the same time ... I cannot reproduce.
What frontend did you used? - Cosine similarity is
0.2991.

4. Reconnect to license server does not work With
the solution: Implement multiple tryouts to reconnect
to server when user presses Reconnect. It gives more
chance to establish the connection again. (it is not
guaranteed to work from the first attempt). - Cosine
similarity is 0.19.

After analyzing the results mentioned above and
their Cosine score, the first two suggestions are more
likely to be used to solve the initial bug since they
have the highest similarity scores. Also, the third re-
sult, which has a lower score, does not offer a solution
since it is mentioned that the issue could not be repro-
duced, while the latest suggestion does not provide
any helpful information - also, the similarity score for
this one suggests that it is the worst-case scenario that
one should consider since it is fuzzy and time con-
suming. The proposed solution should be straightfor-
ward, not based on tryouts or guessing.

ICSOFT 2023 - 18th International Conference on Software Technologies

476



6 CONCLUSIONS

Software defects must be tackled quickly and proac-
tively because the quality and efficiency of any soft-
ware product are essential features for it to survive on
the market.

One of the main advantages of using the proposed
solution is that it can work with any dataset from any
industry as long as the bug related data is organized
in a particular format - similar to the one mentioned
in our datasets. In addition, this approach gathers de-
tails associated with a specific application component
in a single place. It was developed to find similari-
ties between two or more software bugs that were re-
ported on a particular system so that the data that is
being displayed refers to the same feature or category
of features. Also, most of the time in the development
process is spent on discovering why a bug is present in
the software, how the code base needs to be changed
to fix it, and what other similar issues have been re-
ported in the past. All these answers can be easily
formulated by analyzing the data shown in the web
application module of the presented solution.

The solution presented can be improved and fur-
ther enriched with multiple features so users can ben-
efit even more when using it in their day-to-day ac-
tivities. For example, in this research, we used a pre-
trained model for the BERT algorithm. However, us-
ing an industry-specific vocabulary could benefit even
more from the accuracy of BERT because the more
he learns what different terms mean, the better the
prediction will be. Furthermore, the product require-
ments represent another source of relevant informa-
tion on a specific topic. For the case analyzed in this
paper, the requirements reside inside epic contracts
and epic analysis documents. Integrating this infor-
mation into the dataset used for prediction will en-
large the possibility of finding the root cause of a bug.

REFERENCES

Ahmed, H. A., Bawany, N. Z., and Shamsi, J. A. (2021).
Capbug-a framework for automatic bug categorization
and prioritization using nlp and machine learning al-
gorithms. IEEE Access.

Bianchini, M., Gori, M., and Scarselli, F. (2005). Inside
pagerank. ACM Trans. Internet Technol.

Britton, T., Jeng, L., Carver, G., Cheak, P., and Katzenel-
lenbogen, T. (2013). Reversible Debugging Software:
Quantify the time and cost saved using reversible de-
buggers.

Chirkova, N. and Troshin, S. (2021). Empirical study of
transformers for source code. New York, NY, USA.
Association for Computing Machinery.

Chung, N. C., Miasojedow, B., Startek, M. P., and Gambin,
A. (2019). Jaccard/tanimoto similarity test and esti-
mation methods for biological presence-absence data.
BMC Bioinformatics.

Devlin, J. and Chang, M.-W. (2018). Open Sourcing
BERT: State-of-the-Art Pre-training for Natural Lan-
guage Processing.

Elmore, K. and Richman, M. Euclidean distance as a
similarity metric for principal component analysis.
Monthly Weather Review - MON WEATHER REV.

Erkan, G. and Radev, D. R. (2004). Lexrank: Graph-based
lexical centrality as salience in text summarization. J.
Artif. Int. Res.

Harman, M., Mansouri, S. A., and Zhang, Y. (2012).
Search-based software engineering: Trends, tech-
niques and applications. ACM Computing Surveys
(CSUR).

Jalbert, N. and Weimer, W. (2008). Automated duplicate
detection for bug tracking systems. In 2008 IEEE In-
ternational Conference on Dependable Systems and
Networks With FTCS and DCC (DSN).

Luhn, H. P. (1958). The automatic creation of literature
abstracts. IBM Journal of Research and Development.

Nazar, N., Hu, Y., and He, J. (2016). Summarizing software
artifacts: A literature review. Journal of Computer
Science and Technology.

Nguyen, A. T., Nguyen, T. T., Nguyen, T. N., Lo, D., and
Sun, C. (2012). Duplicate bug report detection with a
combination of information retrieval and topic model-
ing.

Saha, R. K., Lease, M., Khurshid, S., and Perry, D. E.
(2013). Improving bug localization using structured
information retrieval.

Singh, S. (2018). Natural language processing for informa-
tion extraction.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L. u., and Polosukhin, I.
(2017). Attention is all you need. In Guyon, I.,
Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R.,
Vishwanathan, S., and Garnett, R., editors, Advances
in Neural Information Processing Systems. Curran
Associates, Inc.

Vidal, F. (2021). Similarity Distances for Natural Language
Processing.

Wang, Z., Tong, W., Li, P., Ye, G., Chen, H., Gong, X.,
and Tang, Z. (2022). Bugpre: an intelligent software
version-to-version bug prediction system using graph
convolutional neural networks. Complex & Intelligent
Systems.

Yang, X., Lo, D., Xia, X., Bao, L., and Sun, J. (2016). Com-
bining word embedding with information retrieval to
recommend similar bug reports. In 2016 IEEE 27th
International Symposium on Software Reliability En-
gineering (ISSRE).

An Analysis of Improving Bug Fixing in Software Development

477


