
Monthes: A Compact Software Traceability Dataset

Adhatus S. Ahmadiyah, Siti Rochimah and Daniel Siahaan
Department of Informatics, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia

Keywords: Class Diagram, Code, Monthes Dataset, Requirements, Traceability

Abstract: Software artifact tracing from various software development phases has been utilized to maintain software
quality. It leads to the popularity of the development of traceability tools to substitute manual labor tracing,
which is prone to error. Along with the growth of software traceability tool development, traceability dataset
needs are rising. Exclusively a few realistic traceability datasets are available for public access, guiding a
practical degree of traceability tools for real projects. The scarcity is primarily due to the time and effort
required to create the dataset. This paper presents efforts in developing a new traceability dataset from the
education domain, namely Monthes. It involved artifact extraction and tracing activities from an established
thesis monitoring application that professionals developed. Apart from assembling three artifacts, i.e.,
requirements, class diagram, and source codes, it results in three sets of traceability ground truths:
requirement-to-code, requirement-to-design, and design-to-code. The software artifacts and ground truths
would help researchers test the performance of their traceability tools or enhanced methods involving three
phases of software development.

1 INTRODUCTION

Software traceability research covers the
development and maintenance of traceability on
software development artifacts. Since software
artifacts are significant in measuring software quality,
software quality can be determined and monitored by
tracing all development phases. Initially, the tracing
process was performed manually. Later, traceability
tools replace it to tackle manual tracing drawbacks.

Some efforts have been made to develop
traceability tools such as RETRO.NE (Hayes et al.,
2018), ADAMS Re-Trace (de Lucia et al., 2005),
TraceLab (Keenan et al., 2012), Poirot (Lin et al.,
2006), TraCter (Mahmoud & Niu, 2011), and The
SEOSS 33 (Rath, 2019). Despite its benefits, there are
challenges in requirement traceability research. The
challenges can be categorized into the following: time
and effort costs, trouble preserving traceability during
change, varying perspectives on traceability held by
diverse project stakeholders, organizational issues
and politics, and limited tool support (Saiedian,
2009).

For the advancement of automated software
traceability research, datasets are essential. Tool
evaluation requires realistic datasets to ensure these
tools can enhance industrial project tracing results.

The shortage of datasets for this type of research
becomes a crucial restraining element. Such datasets
are expensive to acquire and labor-intensive to gather
and validate manually. In general, one of the most
common challenges for academics in the software
engineering field has been acquiring such software
development datasets (Zogaan et al., 2017).

There are ranging of reasons why datasets are
limited. As observed by (Saiedian, 2009), the first is
that the effort of creating one is laborious, specifically
in determining the ground truth that specifies the
actual trace link between source and target artifacts.
Second, authentic project artifacts are rarely made
available. Third, businesses frequently need to find a
way to share software development artifacts with the
public since artifacts are considered proprietary.
Fourth, academic researchers receive little
acknowledgement for their work in establishing
datasets.

Even though several traceability datasets are
available (Zogaan et al., 2017), those were developed
a few years ago. Moreover, newer ones are limited,
and realistic traceability datasets from industrial
projects are still desired.

This paper introduces a traceability dataset, called
Monthes, from an actual project in the education
domain. The dataset contains a list of requirement

Ahmadiyah, A., Rochimah, S. and Siahaan, D.
Monthes: A Compact Software Traceability Dataset.
DOI: 10.5220/0012105700003680
In Proceedings of the 4th International Conference on Advanced Engineering and Technology (ICATECH 2023), pages 55-61
ISBN: 978-989-758-663-7; ISSN: 2975-948X
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

55

statements, design classes, source codes, and a
collection of trace links. Tracing was performed from
requirements statement to codes, requirements
statement to design classes, and design classes to
source codes. This research is a part of more
extensive research in developing a new traceability
approach using Property Listing Task (Ahmadiyah et
al., 2022).

The rest of the paper is constructed as follows: the
overview of the dataset is provided in Section II, its
creation procedure is explained in Section III,
potential research areas it may be used are presented
in Section IV, and threats to the validity of the dataset
are discussed in Section V. Finally, Section VI
concludes research findings.

2 DATASET OVERVIEW

Monthes is an industrial project developed by a
professional web development team. Specifically, it
is a web-based thesis monitoring system for
university students in Indonesia. The system covers
proposal submission, thesis meetings, evaluation,
grading, and reporting. The system involves multi-
users: students, lecturers, examiners, and staff
(administrator). Monthes was developed using the
MVC architecture style using the Laravel framework.

Monthes dataset comprises requirement
statements, source codes, and a class diagram
extracted directly from the Monthes application.
These artifacts were collected because each is the
most frequently traced software artifact at their
respective development phase: analysis, design, and
implementation (Charalampidou et al., 2021). The
dataset is also equipped with trace link ground truths
between requirements and design; requirements and
code; and design to code. The dataset is accessible to
the public at Figshare website via
https://doi.org/10.6084/m9.figshare.21582714.

2.1 Requirement Artifact

The requirement artifact contains a list of 17
functional requirements created by the Monthes
development team in 2022. Monthes is used by four
actors: administrator, student, advisor, and examiner.
The functional requirements and their associated key
terms are tabulated in Table 1. Key terms represent
part of a sentence: subject, action, and object. A key
term or combination of key terms is essential to help
navigate to corresponding design and implementation
artifacts in the tracing process.

Table 1: Monthes Functional Requirements.

Code Requirement Key Terms
FR01 Administrator adds

user
administrator, add,
user

FR02 Administrator
manages schedule

administrator,
manage, schedule

FR03 Administrator
manages proposal
upload

administrator,
manage, proposal,
upload

FR04 Administrator
manages proposal
meeting

administrator,
manage, proposal,
meeting

FR05 Administrator
manages RMK data

administrator,
manage, rmk, data

FR06 Administrator posts
news

administrator, post,
news

FR07 Student submits
proposal

student, submit,
proposal

FR08 Student revises
proposal

student, revise,
proposal

FR09 Student submits
reports

student, submit,
report

FR10 Advisor approves
reports

advisor, approve,
report

FR11 Lecturer adds
question banks

lecturer, add,
question, bank

FR12 Examiner approves
reports

examiner, approve,
report

FR13 Examiner grades
reports

examiner,grade,
report

FR14 Advisor grades
reports

advisor, grade, report

FR15 Advisor adds
question banks

advisor, add,
question, bank

FR16 Advisor assigns the
question to a student

Advisor, assign,
question, student

FR17 Lecturer manages
the lecture subject

Lecturer, manage,
lecture, subject

2.2 Design Artifact

Monthes design artifact representing object
abstraction, its structure, and its relationship to other
objects was collected as a class diagram. The class
diagram consists of 22 classes divided into three
stereotypes, i.e., model, view, and controller classes
following the Model-View-Controller architecture
style. All class relationships are association types. In
total, 63 methods and 125 attributes are distributed
into three concerns. The statistics for each concern are
tabulated in Table 2.

2.3 Implementation Artifact

Implementation artifact comes as source codes.
Based on the class diagram, source codes were

ICATECH 2023 - International Conference on Advanced Engineering and Technology

56

implemented using the Laravel framework. Each
implementation class was grouped under controller,
model, or view folder. There are 13 controllers under
the app/Http/Controllers folder to accommodate
application logic, nine models under the app/Models
folder to handle data, and 32 views under the
resources/views folder to accommodate the user
interface. The recap of the implemented classes,
methods, and attributes is displayed in Table 3.

Table 2: Class Diagram Statistics.

Concern # Methods # Attributes
Model 8 32
View 21 36
Controller 34 57

Table 3: Class Code Statistics.

Category # Classes # Methods # Attributes
Controller 13 73 -
Model 9 19 18
View 32 - -

2.4 Ground Truth

Trace link ground truth is provided in three files:
requirement-to-design, requirement-to-code, and
design-to-code. Each contains pairs of source and
target artifacts. Trace link pairs are displayed as
source artifact, target artifact, and link label.

Figure 1 shows trace link ground truth: (a) from the
requirement to code, (b) from the requirement to
design, and (c) from design class to code for
requirement statement FR02: Administrator manages
schedule. The reading for three ground truths is the
same; specifically, the left column represents source
artifact, the middle column represents target artifact,
and the right column represents a link between both
artifacts (1= link found, 0= no link). For example,
from Figure 1a we know that requirement FR02 is
implemented by five source code files. Meanwhile,
we also aware that FR02 is related to five design
classes (Figure 1b) and each design class is
implemented to which source code files (Figure 1c).

3 DATASET CONSTRUCTION

The overall process for generating the Monthes
dataset is illustrated in Figure 2. It involved four main
steps: preparation, artifact selection, initial tracing
process, and final tracing process. Each process is
discussed in the following subsections.

(a)

(b)

(c)

Figure 1: Monthes trace link ground truth for FR02. (a)
Requirement to code, (b) requirement to design class, and
(c) design class to code.

Figure 2: Monthes dataset creation process.

3.1 Preparation

First, we collected three artifacts (requirement
statement, class diagram, and source code) from the
Monthes development project. Requirement
statement was taken from the original project by
manually extracting functional requirements. Then,
we translated it from Indonesian into English. The
requirement statement was a simple statement

Monthes: A Compact Software Traceability Dataset

57

containing an actor, action, and object. A class
diagram was constructed using MVC architecture, in
which each identified object was drawn in three
stereotypes: boundary, control, and entity classes.
The boundary class handles interaction between the
system and users. The control class handles the
business logic of the system. The entity class handles
data. Code files were extracted from the development
folder of the Monthes application. Since Monthes was
developed using MVC, we consider source code files
coming from three folders: the 'Controllers' folder is
located under the app/Http folder, the 'Models' folder
falls under the app folder, and the 'views' folder
resides under the resources folder. The source code
under the 'Controllers' folder implements business
logic. Meanwhile, the 'Models' and 'views' folder
contains source code implementing data and user
interface.

Second, we invited experts consist of a system
analyst, a programmer, and documentation personnel.
The system analyst was previously involved in
developing the Monthes application. Experts were
involved in the tracing process (discussed in
subsection 3.3 and 3.4).

Then, we checked experts and artifacts quality by
employing seven traceability input factors from (Ali
et al., 2012): expert domain knowledge, expert
programming knowledge, ambiguous requirements,
vague requirements, conflicting requirements, the
granularity of source codes, and the identifier quality
of source codes. As for the design artifact (class
diagram), we checked different considerations about
Model-View-Controller (MVC) architecture style.
Figure 3 shows input (pink label), category of factors
(yellow label), and factors for respective input types
(blue label).

Ambiguity requirements resulted in different
interpretations from experts. When this problem
appears, a consensus is conducted to remove the
ambiguity. Vague requirements are difficult to be
interpreted correctly. This problem is also solved by
agreement among project teams. Conflicting
requirements resulted in incompatibility in or
between artifacts. Conflicting requirements are
avoided by finding possible requirement
dependencies and then using them to locate potential
conflicts.

Expert opinions contribute to the trustworthiness
of the trace link, especially domain knowledge and
programming language. Domain knowledge refers to
specialist comprehension of the field in which the
examined software system is being developed. In
creating this dataset, the project team background
with sufficient domain knowledge regarding student
monitoring business processes was selected. In the

meantime, programming knowledge characterizes
expert capability to solve programming problems and
code quality software in a specific programming
language. The project team dealing with traceability
has some experience in PHP language and Laravel
framework.

Figure 3: Traceability input factors.

Source code dictates the quality of traceability
results through granularity level and identifier
quality. In contrast, granularity demonstrates a
detailed level of traceability (coarse, middle, or fine-
grained). Coarse-grained traceability (tracing classes)
is relatively less effort. Nevertheless, fine-grained
traceability (tracing method) is more precise. The
traceability team agrees on developing coarse-
grained traceability to reduce the number of links
from the requirement to code and design to code. In
addition to the granularity level, identifier quality
refers to the token's name in the source code, such as
naming class, method, and attributes. Specific jargon
usage in identifier names may affect the traceability
result. We identified jargon usage in the class name,
i.e., 'rmk', which stands for 'rumpun mata kuliah', an
Indonesian term representing a group of university
department majors.

As for the class diagram, we checked whether the
class diagram design follows the MVC architecture
style. Each class has different stereotypes: boundary,
control, and entity. The Boundary class is concerned
about user interaction and can only relate to controller
classes. Meanwhile, a controller class handles the
system's business logic and may relate to any class
stereotypes. Lastly, the entity class handles data. An
entity class can have a relationship to the controller

ICATECH 2023 - International Conference on Advanced Engineering and Technology

58

class. In addition, we adopted class diagram elements
identification used by (Fauzan et al., 2021), i.e.,
property and relationship.

3.2 Artifact Selection

Trace links are represented as pairs between source
and target artifacts. In this step, we paired two out of
three collected artifacts, resulting in three pairs for
performing traceability. We performed forward
tracing, in which the source artifact was obtained
from the earlier development phase and target artifact
was obtained from the latter.

3.3 Initial Tracing Process

For each traceability, two experts worked
individually to create the initial traceability matrix
from source artifact (S) to target artifact (T). Each
expert listed each element of S and T, then they
manually checked the relation between each pair.
When lexical or semantic similarity is found, the pair
is a match.

3.3.1 Establishing Requirement-to-Code
Ground Truth

Initially, we created a coarse-grained traceability
matrix from the requirement statement and class
code. Two assigned experts worked individually to
produce the traceability matrix by reviewing each
requirement statement. Then experts found its match
with source code files under the 'views', the
'Controllers', and the 'Models' folders. When a match
is found, they put label 1, otherwise 0.

3.3.2 Establishing Requirement-to-Design
Ground Truth

An initial traceability matrix presented as pairs
between the requirement statement and design class
were developed. Two experts worked individually
and searched through each requirement statement in
the class diagram to locate a match. Annotation was
added to the trace link pairs—one to indicate a link,
while zero means no link found.

3.3.3 Establishing Design-to-Code Ground
Truth

At first, a traceability matrix was created to find the
match between the source code and the class diagram.
The granular level is considered coarse-grained since
tracing between design classes was matched at the

class level. We adopted tracing between two artifacts
from (Katayama et al., 2018) with adjustments to fit
MVC architecture styles. The experts explored each
class design and source code folder individually to
discover matches. When a link is discovered: it is
annotated as one, otherwise zero.

3.4 Final Tracing Process

A reconciliation determines the final traceability
results, mainly when different traceability matrix
results between two experts exist. One author and
existing experts collaborated to review the already
gathered traceability matrix and develop a consensus
on the final trace link. Finally, the traceability matrix
was transformed into trace link pairs.

At the initial tracing process, each expert
traceability matrix is displayed in Table 4 and Table
5. Since there is a difference regarding tracing to
'app\Models\Proposal.php', a reconciliation between
experts is needed. One reconciliation example came
from tracing FR11: Lecturer adds question banks to
source codes. The reconciliation result (Table 6)
shows no relation between FR 11: The lecturer adds
question banks to source codes and
'app\Models\Proposal.php'.

In the traceability matrix (Table 5, and Table 6),
S denotes the requirement statement, T denotes
implementation, S1 denotes FR 11: Lecturer add
question bank, while T1, T2, T3, T4, and T5 represent
‘app\Http\Controllers\QuestionController.php’,
‘app\Models\Question.php’,
‘app\Models\Proposal.php’,
‘app\Models\RMK.php’, and
‘resources\views\question\index.blade.php’ codes,
respectively.

Table 4: Initial tracing of FR11 by expert #1.

 T1 T2 T3 T4 T5
S1 1 1 1 1 1

Table 5: Initial Tracing of FR11 by Expert #2.

 T1 T2 T3 T4 T5
S1 1 1 0 1 1

Table 6: Final Tracing of FR11.

 T1 T2 T3 T4 T5
S1 1 1 0 1 1

Monthes: A Compact Software Traceability Dataset

59

4 POTENTIAL RESEARCH
TOPICS

Monthes dataset is a small dataset that depicts
instances in the software development lifecycle when
requirement artifacts have not kept up with software
updates. It can be applied to traceability research
areas, such as trace link establishment and
enhancement.

Trace link establishment is research in developing
trace links from software development artifacts. It is
mainly used to monitor software quality throughout
the development phases. For trace link establishment,
the Monthes dataset could be utilized to propose an
automated trace link method and derive performance
measurements such as precision and recall. In
addition, one might need to recover a missing artifact
from a specific development phase, Monthes could be
used to that extend.

Trace link enhancement focuses on updating
existing trace links when there are software updates.
In trace link enhancement, the Monthes dataset can be
involved in proposing an enhancement method to
show that the enhanced method outperforms the
existing ones.

Since the Monthes dataset contains requirement-
to-design, design-to-code, and requirement-to-code
ground truth, it can also recover missing artifacts. For
example, when the design artifact is not documented
and we only have requirement and source code, we
can reconstruct the missing class diagram and
confirm it using requirement-to-design and design-to-
code answer sets.

5 THREATS TO VALIDITY

Several threats potentially impact the validity of our
Monthes dataset. We discussed a list of threats to
validity associated with traceability dataset creation
as adopted from (Zogaan et al., 2017) and additional
internal threats to validity.

5.1 Data Acquisition

Selection bias comes from the non-representable
population or does not fit the problem domain. In our
case, this threat is avoided since we selected the
Monthes application from the industrial project to
develop a realistic traceability dataset.

Dataset equivalency threat concerns instances
where researchers employ existing datasets to
compare specific attributes of their datasets to

demonstrate the chosen datasets’ suitability. We
directly used the project artifact to maintain its
originality and ensure the granularity used for
traceability without comparing its characteristics to
other datasets.

Information bias threat reflects the accuracy of
auto-generated datasets, misclassification, and data
annotation. We minimized this threat by involving a
system analyst and Monthes development team
programmer to perform traceability.

Negative set bias is related to the rich and
unbiased selection of outliers in training data, mainly
in the classification problem. In developing the
Monthes dataset, a reconciliation was conducted after
the individual tracing process to escape negative set
bias threats.

5.2 Trustworthiness

Trustworthiness concerns threats about the ground
truth creation, student development, and peer-
reviewed process. Specifically, the Monthes dataset
trustworthiness threat was minimized by involving
original developers to create the ground truths. Next
is that our dataset was obtained from a thesis
monitoring application developed by professionals,
not a case study developed by students. The last one
is that the trustworthiness threat was mitigated by
conducting peer-reviewed reconciliation sessions in
creating the ground truths.

5.3 Internal Validity

Internal validity measures how well a study reduces
systematic bias or mistakes so that a causal
conclusion can be made. In this dataset, it can be the
learning bias threat of creating trace link pairs. To
mitigate this threat, we had individual project teams
create their initial traceability matrix. Then,
reconciliation was held to decide the final link
annotation.

5.4 External Validity

External validity relates to the extent to which the
result of the dataset is generalizable. Currently, the
dataset produced is the first generation. Therefore,
there are limitations regarding generalization. The
dataset could not generalize to all traceability tools
and different project domains. However, since
professionals developed it, dataset compactness could
still represent industrial software projects. The
dataset accommodates three artifacts that may not
represent datasets containing other artifacts.

ICATECH 2023 - International Conference on Advanced Engineering and Technology

60

Regarding programming language threat, the dataset
could generalize other datasets developed using
object-oriented PHP and MVC.

6 CONCLUSIONS

We introduced a new dataset for traceability and
discussed the method through which expert software
developers built it. Our dataset is intended to aid in
exploring various requirement-to-code, requirement-
to-design, and design-to-code traceability research
issues by the software engineering community.

In the future, the next generation of the Monthes
dataset will extend the traceability granularity of
requirement-to-code and design-to-code to fine-
grained. This extension would allow trace up to the
method level.

ACKNOWLEDGEMENTS

This work was supported by Institut Teknologi
Sepuluh Nopember, Indonesia through the
Department Research scheme (Skema Penelitian
Dana Departemen) under grant no.
1732/PKS/ITS/2022.

REFERENCES

Ahmadiyah, A. S., Rochimah, S., & Siahaan, D. (2022).
Semantic Software Traceability Using Property Listing
Task: Pilot Study. 387–392.
https://doi.org/10.1109/ies55876.2022.9888365

Ali, N., Guéhéneuc, Y. G., & Antoniol, G. (2012). Factors
impacting the inputs of traceability recovery
approaches. In Software and Systems Traceability (Vol.
9781447122395, pp. 99–127). Springer-Verlag London
Ltd. https://doi.org/10.1007/978-1-4471-2239-5_5

Charalampidou, S., Ampatzoglou, A., Karountzos, E., &
Avgeriou, P. (2021). Empirical studies on software
traceability: A mapping study. Journal of Software:
Evolution and Process, 33(2).
https://doi.org/10.1002/smr.2294

de Lucia, A., Fasano, F., Oliveto, R., & Tortora, G. (2005).
ADAMS re-trace: A traceability recovery tool.
Proceedings of the European Conference on Software
Maintenance and Reengineering, CSMR, 32–41.
https://doi.org/10.1109/CSMR.2005.7

Fauzan, R., Siahaan, D., Rochimah, S., & Triandini, E.
(2021). Automated Class Diagram Assessment using
Semantic and Structural Similarities. International
Journal of Intelligent Engineering and Systems, 14(2),
52–66. https://doi.org/10.22266/ijies2021.0430.06

Hayes, J. H., Payne, J., & Dekhtyar, A. (2018). The
REquirements TRacing On Target (RETRO).NET
Dataset; The REquirements TRacing On Target
(RETRO).NET Dataset.
https://doi.org/10.5281/zenodo.1223649

Katayama, T., Mori, K., Kita, Y., Yamaba, H., Aburada, K.,
& Okazaki, N. (2018). RETUSS: Ensuring Traceability
System between Class Diagram in UML and Java
Source Code in Real Time.

Keenan, E., Czauderna, A., Leach, G., Cleland-Huang, J.,
Shin, Y., Moritz, E., Gethers, M., Poshyvanyk, D.,
Maletic, J., Hayes, J. H., Dekhtyar, A., Manukian, D.,
Hossein, S., & Hearn, D. (2012). TraceLab: An
experimental workbench for equipping researchers to
innovate, synthesize, and comparatively evaluate
traceability solutions. Proceedings - International
Conference on Software Engineering, 1375–1378.
https://doi.org/10.1109/ICSE.2012.6227244

Lin, J., Lin, C. C., Cleland-Huang, J., Settimi, R., Amaya,
J., Bedford, G., Berenbach, B., Khadra, O. ben, Duan,
C., & Zou, X. (2006). Poirot: A Distributed Tool
Supporting Enterprise-Wide Automated Traceability.

Mahmoud, A., & Niu, N. (2011). TraCter: A tool for
candidate traceability link clustering. Proceedings of
the 2011 IEEE 19th International Requirements
Engineering Conference, RE 2011, 335–336.
https://doi.org/10.1109/RE.2011.6051663

Rath, M. (2019). The SEOSS 33 dataset - Requirements,
bug reports, code history, and trace links for entire
projects. https://doi.org/10.7910/DVN/PDDZ4Q

Saiedian, H. (2009). Why Software Requirements
Traceability Remains a Challenge.
www.stsc.hill.af.mil

Zogaan, W., Sharma, P., Mirahkorli, M., & Arnaoudova, V.
(2017). Datasets from Fifteen Years of Automated
Requirements Traceability Research: Current State,
Characteristics, and Quality. Proceedings - 2017 IEEE
25th International Requirements Engineering
Conference, RE 2017, 110–121.
https://doi.org/10.1109/RE.2017.80

Monthes: A Compact Software Traceability Dataset

61

