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Abstract: Robotic Mobile Fulfillment System Warehouse (RMFS) was purposefully created as a part-to-picker 
warehouse in response to the enormously good trend of e-commerce sales. There are numerous strategies to 
boost the warehouse's effectiveness. The SKU to the pod, or product assignment policy, will be the main topic 
of this study. Three situations are presented in this study: SKU to pod using random, mixed classes, and mixed 
classes with affinity. The second and third scenarios are designed utilizing the Weighted Support Count. The 
ideal policy to improve warehouse efficiency is then determined by comparing these scenarios using a 
simulation approach. By examining the quantity of pods transported under each policy, it may be determined. 
The SKU to pod approach generates a larger pile-on the fewer pods there are. Therefore, the final scenario 
produces the best pile-on, with an average of 6.59 pods being carried per order. In contrast, the outcomes of 
the first and second situations are 7.06 and 6.90, respectively. Even if just 8% of SKUs make up the 
association's rule, the figures indicate that the pile-on of the last scenario is 7% and 5% more than the other 
situations. The one-way ANOVA method is used to confirm this result. 

1 INTRODUCTION 

The global impact of the coronavirus has altered the 
nature of business. 52% of consumers, it has been 
found, steer clear of both in-person shopping and 
busy places. In addition, 36% postpone going 
shopping in person until they receive a coronavirus 
vaccination (Bhatti, et al., 2020). As a result, one of 
the most common internet activities in the world is 
shopping. E-commerce revenue is expected to 
increase to US$6.4 trillion by 2024 from its current 
level of US$4.28 trillion in 2020. (Chevalier, 2021). 

The efficiency of warehouse operations must keep 
up with the expansion of e-commerce sales. The 
warehouse for the Robotic Mobile Fulfillment 
System (RMFS) was created especially for online 
shopping. This warehouse system can use robots or 
RMFS, commonly referred to as AGV (Automated 
Guided Vehicles), to transport the shelves, known as 
pods, to the picking stations in place of human 
operators (Merschformann, Lamballais, de Koster, & 
Suhl, 2019). Because the parts or goods are 
transported to the picking stations before the operator 
gathers the goods, this kind of warehouse can also be 
referred to as a part-to-picker warehouse (Murray, 

2019). Order picking is typically the task that takes 
the longest in the entire warehouse compared to 
others (Frazelle E., 2016). As a result, improving 
order picking efficiency also improves warehouse 
efficiency. 

There are numerous strategies to boost the 
warehouse's effectiveness. There are three tiers of 
decision-making issues. These are the levels of 
strategy, tactics, and operations (Merschformann, 
Lamballais, de Koster, & Suhl, 2019). Product 
assignment is a tactical choice that influences the 
effectiveness of order-picking (Li, Hua, Huang, Sheu, 
& Cheng, 2020). To achieve order-picking efficiency, 
it is crucial to create a good policy for product 
assignment (Silva, Roodbergen, Coelho, & Darvish, 
2022). Product assignment by itself has three 
difficulty areas. These are the distribution of a 
product over several pods, pods to zones, and 
products (SKU) to pods (Mirzaei, Zaerpour, & de 
Koster, How to benefit from order data: correlated 
dispersed storage assignment in robotic warehouses, 
2021). The first decision problem—products to pod 
or product assignment policy—will be the main focus 
of this study. 
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Random, dedicated, and class-based storage 
assignment rules are the three most used product 
assignment policies (Gu, Goetschalckx, & McGinnis, 
2007).  

The SKU randomly assigns the pod according to 
the clear and simple random assignment policy 
(Mirzaei, Zaerpour, & de Koster, how to benefit from 
order data: correlated dispersed storage assignment in 
robotic warehouses, 2021). A dedicated assignment 
policy, on the other hand, limits the use of each 
storage place to a single product. This policy will 
produce the shortest picking distance possible 
(Muppani & Adil, 2008). Between devoted and 
random assignment policies, Chan and Chan (2011) 
conducted a simulation. The outcome demonstrated 
that these regulations, in turn, aid in maximizing both 
system throughput and storage space usage. A smaller 
warehouse may be needed when using a random 
policy as opposed to one that is devoted, although 
proper inventory tracking may take more work (Gu, 
Goetschalckx, & McGinnis, 2007). After the products 
are classified into classes based on the frequency of 
orders, the class-based storage assignment policy 
assigns the products (Silva, Roodbergen, Coelho, & 
Darvish, 2022). This approach can produce the 
highest benefits with two or three courses (Yuan, 
Cezik, & Graves, 2018). Significant cost reductions 
and space sharing are the next two benefits (Muppani 
& Adil, 2008). (Mirzaei, Zaerpour, & Koster, The 
impact of integrated cluster-based storage allocation 
on parts-to-picker warehouse performance, 2021). 

The cluster-based storage assignment policy is an 
additional product assignment policy in addition to 
those three well-liked ones. In order to reduce the cost 
of inventory and material handling, this policy groups 
correlated goods into clusters before assigning the 
products to the pods depending on the cluster (Kim 
K. H., 1993). 

By grouping frequently ordered products on the 
same pod, RMFS warehouses can benefit (Mirzaei, 
Zaerpour, & Koster, The impact of integrated cluster-
based storage allocation on parts-to-picker warehouse 
performance, 2021). This policy's implementation 
greatly cuts down on retrieval time and saves order-
picking labor (Frazelle & Sharp, 1989). (Mirzaei, 
Zaerpour, & Koster, The impact of integrated cluster-
based storage allocation on parts-to-picker warehouse 
performance, 2021). 

Nearly all cluster-based policy studies 
demonstrate that, given their goals, cluster-based 
policies are superior to other types of policies for 
storage assignment. None of them, however, are 
looking for the ideal product combination that might 
be used in other instances with a similar problem. The 

ideal combination of product classes on pods is called 
a product mixture, which reduces the amount of 
delivered pods. Higher pile-on is achieved when there 
are fewer pods to transfer, which may result in fewer 
AGVs being required (Merschformann, Lamballais, 
de Koster, & Suhl, 2019). Pile-on is when the pods 
provide the majority of the units required to complete 
the orders (Merschformann, Lamballais, de Koster, & 
Suhl, 2019). 

Order selection effectiveness is also increased 
with the right product classification (Chan & Chan, 
2011). According to how frequently orders are 
placed, ABC classification is typically the method 
used to classify products in warehouses. However, the 
second assignment decision problem—pod to 
zones—is typically resolved by this classification. 
Additionally, they all adhere to the "one class, one 
pod" principle and make no effort to determine the 
ideal Product Class Mix (Products to Pod) for each 
pod. As a result, the goal of this research is to 
optimize pile-on by identifying the ideal product 
combination. 

2 OBJECTIVE 

In light of the background information provided, the 
following objectives of this study might be stated: 
1. Choosing the optimal product mixture percentage 
for the warehouse. 
2. Using a simulation method, the optimum policy for 
the SKU to pod decision problem is identified. 

3 LITERATURE REVIEW 

This chapter will show the literature review of this 
research related to robotic mobile fulfilment system 
(RMFS), SKU to pod assignment, ABC 
classification, and association rule. 

3.1 Robotic Mobile Fulfillment System 
(RMFS) 

Because it accommodates several SKUs and 
necessitates numerous small-quantity purchases, a 
robotic mobile fulfillment system (RMFS) warehouse 
is an answer to the problem of increasing e-commerce 
sales (Azadeh, Koster, & Roy, 2019). Robots that 
carry pods on traditional warehouse shelves with 
things in the pods are the RMFS company's proposed 
solution (Enright & Wurman, 2011). The RMFS 
warehouse has a number of advantages. Depending 
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on the quantity of AGVs and SKUs, RMFS's 
throughput was discovered to be higher than AS/RS 
in 2016. (Beuters, Cock, Hollevoet, Dobbelaere, & 
Landeghem, 2016). When the inventory is divided 
over several pods, the warehouse has the right number 
of stations, and the pods are refilled before they run 
out, the throughput increases (Tessensohn, Roy, & De 
Koster, 2020). 

3.2 SKU to Pod Assignment 

Three common SKU-to-pod assignment policies are 
dedicated, random, and class-based storage 
assignments. In addition to these three well-liked 
policies, cluster-based storage assignment is another 
policy for product assignment. The efficiency of 
warehouse operations can be increased in a number 
of ways. 

In order to reduce the number of groups accessed, 
Kress et al. (2016) investigated implementing a 
cluster-based storage assignment mechanism in a 
vertical warehouse (Kress, Boysen, & Pesch, 2016). 
Chuang et al. in 2012, Bindi et al. in 2014, Wang et 
al. in 2019, Li et al. in 2020, and Foroughi et al. in 
2020 have all demonstrated that utilizing a cluster-
based storage assignment policy results in a reduction 
in journey distance. Additionally, those researchers 
implemented the policy in several kinds of 
warehouses. Only two of them are used in traditional 
warehouses, with the remaining ones being one-
block, one-aisle, RMFS, and movable racks 
warehouses (Chuang, Lee, & Lai, 2012) (Bindi, 
Manzini, Pareschi, & Regattieri, 2014) (Wang, 
Zhang, & Fan, 2019) (Li, Hua, Huang, Sheu, & 
Cheng, 2020) (Foroughi, Boysen, Emde, & 
Schneider, 2020). 

By analyzing the robot's energy usage, Li et al. in 
2020 sought to reduce energy consumption in 
addition to lowering trip distance in the RMFS 
warehouse. Along with Li et al., Mirzaei also studied 
the cluster-based implementation in RMFS and 
ASRS warehouses in 2021. According to the 
research, this policy is the fastest at picking orders 
than any other policy. 

3.3 ABC Classification 

Muppani & Adil and Yuan et al. conducted research 
in conventional and RMFS warehouses in 2007 and 
2021, respectively, to reduce trip distance for class 
rack allocation in a conventional warehouse and ABC 
pod assignment in an RMFS warehouse (Yuan, 
Cezik, & Graves, 2018). Along with Muppani and 
Adil, rack allocation was also studied by Chan & 

Chan in 2011 and Ang & Lim in 2019. Their goals 
differ in that unit-load warehouses aim to reduce 
travel expenses whereas conventional warehouses 
want to reduce journey time (Chan & Chan, 2011). 
(Ang & Lim, 2019). The most recent study, Silva et 
al., 2022, found that ABC zone sizing increased the 
efficiency of order picking in the traditional 
warehouse (Silva, Roodbergen, Coelho, & Darvish, 
2022). 

3.4 Association Rule 

In Yang 2022, Yang contrasts two approaches to an 
association rule. Jaccard Index and Weighted Support 
Count are these. The Jaccard Index evaluates 
similarities and differences between simple sets and 
was created by the Swiss mathematician Paul Jaccard. 

This technique is also used to measure the 
relationship between the objects in storage 
assignment study. WSC, on the other hand, integrates 
the ideas of support and lift created by Ming et al. and 
reflects the relationship between any pair of products 
(Chiang, Lin, & Chen, 2014). The study's findings 
demonstrate that the Weighted Support Count 
outperforms the Jaccard Index (Yang, 2022). 

4 METHODOLOGY 

The next chapter will cover the research procedures. 
The steps act as a guide for the study so that it can 
move forward with the goals in mind. 

4.1 Data Gathering 

On the basis of an investigation of 55000 past orders 
with the same number of total SKUs, 10000 data 
orders with 5000 SKU numbers are generated. The 
order data history is then examined using @RISK 
software, a Microsoft Excel add-in tool. The 
distribution of the generated data is guaranteed to 
match that of the historical data. 

4.2 Inventory Analysis 

The next phase of this research is inventory analysis, 
which comes after creating new data orders. The SKU 
classification procedure and the computation of the 
number of slots are both included in this second stage. 

4.2.1 SKU Classification 

In this step, the SKU is divided into three classes 
based on the order frequency. 10%, 30%, and 60% of 
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all SKUs are categorized according to classes A, B, 
and C using the ABC rule. However, A, B, and C each 
represent 60%, 25%, and 15% of the total order 
frequency, respectively.  

4.2.2 Number of Slots Calculation 

The SKU must be divided into three classes before 
determining how many slots are required for each 
SKU. The number of slots required will be the same 
for SKUs categorized into the same group. The 
number of slots is determined using the minimal level 
inventory formula in Equation (1) (Radasanu, 2016). 
The goal of determining the minimal stock is to keep 
track of inventories and lower operating expenses to 
prevent overstock. 

Minimum Level Inventory = 𝑥̅஽ +(𝜎஽√𝐿. 𝑍ௌ௅) (1) 

 
 Notation: 𝑥̅஽ = Demand Average 𝜎஽ = Demand Standard Deviation 𝑍ௌ௅ = Z score of Service Level 

L = Lead Time 
 

4.3 SKU to Pod Assignment Scenarios 

Three different possibilities make up the SKU to pod 
assignment. These possibilities include random, 
mixed-class, and mixed-class affinity. The specifics 
of each case are described below. 

4.3.1 Random Assignment Scenario 

Based on the data order and inventory analysis 
performed in the preceding stage, the SKUs in this 
scenario are assigned at random. Despite the 
unpredictability, there is a rule in this scenario: each 
SKU is distributed among numerous pods. 

4.3.2 Mixed-Class Assignment Scenario 

To complete a mixed-class assignment scenario, three 
actions must be taken. First, use Equation (2) and (3) 
of Independent Event Probability to determine the 
product mixture percentage. The ordering between 
classes are independent of one another, hence this 
formula helps calculate the number of pods for each 
class combination in each pod. Therefore, the chance 
of each product mixture is calculated using 
independent event probability. Next, use Equation (4) 
to calculate the SKU in pod ratio to ascertain the 
number of slots required for each class assigned to 

each pod. Finally, distribute the SKUs according to 
the class. 

 𝑃(𝑋 𝑎𝑛𝑑 𝑌 𝑎𝑛𝑑 𝑍) = 𝑃(𝑋 ∩ 𝑌 ∩ 𝑍)  (2) 𝑃(𝑋 𝑎𝑛𝑑 𝑌 𝑛𝑜𝑡 𝑍) = 𝑃(𝑋 ∩ 𝑌 ∩ 𝑍′) (3) %𝑋௑௒ = %𝑆𝑙𝑜𝑡௑%𝑆𝑙𝑜𝑡௑ + %𝑆𝑙𝑜𝑡௒ (4) 

4.3.3 Mixed-Class-Affinity Assignment 
Scenario 

The previous scenario has led to the final scenario. 
Calculating the product mixing percentage and the 
SKU in pod ratio are the first two phases in this 
scenario, which are the same as the first two steps of 
the mixed-class assignment. The method used to 
allocate the SKU to the pod differs. The SKUs are 
assigned based on the affinity between the items 
based on the order data history, as opposed to the 
previous case when the SKU is just assigned based on 
the class. 

 In this instance, the third step is using 
Weighted Support Count to assess the link between 
each SKU and the support, confidence, and lift that 
can be determined using Equations (5), (6), and (7), 
respectively. To assess the degree of link between 
things, support is utilized. Confidence is used to show 
how likely it is that a set of SKUs will be ordered 
together. Lift, on the other hand, describes the kinds 
of connections between the SKUs. 𝑃(𝐴 ∪ 𝐵) = 𝑎𝑁 (5) 

𝑃(𝐵|𝐴) = 𝑃(𝐴 ∪ 𝐵)𝑃(𝐴)  (6) 

𝐿𝑖𝑓𝑡஺஻ = 𝑃(𝐵|𝐴)𝑃(𝐵) = 𝑃(𝐴 ∪ 𝐵)𝑃(𝐴)𝑃(𝐵) (7) 

Notations and details: 
P = Probability 𝑎 = frequency of SKU A and B are ordered together 
Lift > 1, complementary 
Lift = 1, independent 
Lift < 1, substitutive 

4.4 Simulation 

The simulation will be run using the NetLogo 
program to identify which scenario has the greatest 
pile in comparison to the other two situations by 
counting the number of pods visited in each scenario. 
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4.4.1 Simulation Layout 

The NetLogo warehouse arrangement is depicted in 
Figure 1 below. A picking station, a storage area, and 
a replenishment station make up the layout of the 
RMFS. The picking station is where the picker waits 
to take items out of AGV-transported pods, the 
storage area is where the pods are kept, and the 
replenishment station is where the empty pods are 
refilled. 

 
Figure 1: Simulation Layout. 

There are various components on it in the storage 
section. Which are: 
1. The items are kept in the pod. 
2. The picked pod is the pod that matches the products 
to the given orders. 
3. The AGV robot is responsible for transporting pods 
to the station for picking and refilling. 
4. The aisle provides room for AGV movement. 
5. The pod can be positioned in an open storage spot. 

4.4.2 Simulation Parameter 

This simulation makes use of a number of 
assumptions, which are represented as parameters in 
Table 1 below. 

Table 1: Simulation Parameter. 

Parameter Value 
Run Length 24 Hours 
Replication 10 Replications 
Inventory Area 1050 Locations 
Inventory Capacity 935 Pods 
Empty Storage 115 Locations 

Pod Batch 2 x 5 Blocks 
Picking Station 6 Stations 
Replenishment Station 2 Replenishment 

Stations 
Charging Station 7 Charging Stations
Pod Capacity 100 Slots 
Number of AGV 50 AGVs 
AGV Speed Without 
Load

2 m/s 

AGV Speed With Load 1,5 m/s 
Acceleration 1 m/s 
Time for 90˚ turning 2,5 second 
Time for 180˚ turning 3 second 
Time for pod lifting 4 second 
AGV to pod policy Shortest Pod 

4.5 Statistical Test 

To verify that the simulation is accurate, a statistical 
test must be run. Replication adequacy testing is done 
initially to make sure there are enough replications. 
The second test uses Analysis of Variance to validate 
substantial changes across scenarios (ANOVA). 

4.5.1 Replication Adequacy Test 

Equations (8) and (9) are the formulas for the 
replication adequacy test (Harrel, Ghosh, & Bowden, 
2012). 𝑒 = ቀ𝑡௡ିଵ,ఈ ଶൗ ቁ 𝑠√𝑛  (8) 

𝑛ᇱ = ቆ(𝑍ఈ ଶൗ )𝑠𝑒 ቇଶ
 (9) 𝑒 = hw (halfwidth) 𝑡 = t value from student's t distribution table 

α = confidence level 𝑠 = standard deviation 𝑛 = number of replication 𝑛′= estimate the number of replication 𝑛 ൐ 𝑛ᇱ number of replication is sufficient 

4.5.2 Hypothesis Test 

The next step is to do a hypothesis test using One-
Way ANOVA after verifying that the number of 
replications is adequate. This kind of ANOVA takes 
into account simulations with a solitary factor. The 
SKU to pod assignment policy is one element in this 
study. By comparing the means of three alternative 
situations and demonstrating that the results are 
significantly different, an ANOVA can validate the 
simulation's output. 𝐻଴: 𝜇ଵ = 𝜇ଶ = 𝜇ଷ  𝐻஺: At least two means are different 
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5 RESULT AND DISCUSSION 

This chapter will show the result and discussion of 
this research starting from the data gathered to the 
statistical test. 

5.1 Data Gathering 

From the 55000 actual data order, this phase creates a 
10000 data order. To make the simulation as realistic 
as feasible, the new data order must correspond to the 
actual data order. Both generated and real data are 
classified as having a lognormal distribution after 
being checked using @RISK. 

5.2 Inventory Analysis 

The 5000 SKUs can be divided into ABC classes 
based on the overall frequency of orders. Class A has 
500 SKUs, or 10% of all SKUs, which account for 
60% of all order frequency. Class B accounts for 1500 
SKUs, or 30% of all SKUs, and 30% of all order 
frequencies. Additionally, SKUs that make up a small 
portion of the total order frequency are put into class 
C. 

Table 2: ABC Classification. 

Class Number of SKU 

A (10%) 500 
B (30%) 1500 
C (60%) 3000 

 5000 
 

The number of slots each SKU is based on the 
quantity of orders, not the frequency, unlike how 
ABC classification is determined. As a result of the 
variable order quantity, each class has a varying 
number of slots. Equation (1) is then applied to 
specify the total number of slots. Given that the 
confidence level is 95%, the Z score can be found in 
Appendix 1, and the slot capacity is ten units, the 
calculation below demonstrates how to estimate how 
many slots there should be. 

The computation reveals that even though class A 
has the fewest SKUs (500 SKUs), it has the most slots 
(106 slots/SKU). The majority of the overall order's 
SKUs are in class A. In addition, classes B and C, 
each having 1500 and 3000 SKUs, respectively, call  
for 17 and 5 spaces per SKU. 

 

Table 3: Slots Required. 

Class Number of 
SKU Slots/SKU Total Number 

of Slots 
A (10%) 500 106 53000 
B (30%) 1500 17 25500 
C (60%) 3000 5 15000 

5000  93500 

According to Table 3, each class needs 53000 
seats for A, 25500 positions for B, and 15000 slots for 
C. This means that there are 935000 spaces in all in 
the warehouse. With each pod having a capacity of 
100 slots, it can be calculated that 935 pods are 
required in total. 

5.3 SKU to Pod Assignment Scenario 

A data set must be satisfied in all three cases. The 
objects kept on the pods will be one column that 
varies between scenarios. 

5.3.1 Random Assignment Scenario 

5000 SKUs, of which the first 500 are grouped into 
class A, the following 1500 into class B, and the final 
3000 into class C and distributed at random into 935 
pods. 

5.3.2 Mixed-Class Assignment Scenario 

With a total of 10,000 orders, 9304 orders have SKUs 
from class A, whereas 7548 orders have SKUs from 
class B, and 4627 orders have SKUs from class C. 
The likelihood of orders including each class can be 
calculated by dividing the total orders of each class 
by the total number of orders. Equation (2) can be 
used to define the mixed-class order probability 
following the determination of the probability orders 
for each class. The product mixture percentage in the 
warehouse can then be calculated using this 
likelihood. The likelihood of mixed-class orders and 
the number of pods needed for each mixture are 
shown in Table 4. 

Table 4: Product Mixture. 

Product Mixture Percentage Pods 
P(ABC) = ABC 32,5% 306
P(ABC') = AB 37,7% 352
P(ACB') = AC 10,6% 100
P(BCA') = BC 2,4% 24 
P(AB'C') = A 12,3% 116
P(BA'C') = B 2,8% 27 
P(CA'B') = C 0,8% 10 
Total 100,0% 935
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By a margin of 37.7%, the combination of class A 
and class B orders had the highest chance. From that 
percentage, 352 pods are required for the AB pod. By 
32.5% or more pods, the combination of all three 
classes has the second-highest probability. Then, just 
A pod and AC pod were required, with 116 and 100 
pods, respectively. Finally, with less than 3% in each, 
just B pod, BC mixed pod, and only C pod are the 
three lowest. 

The number of slots for each class on each pod 
must be computed using Equation (4) once the 
number of pods for each mixture has been 
determined. It is clear that class A, which includes the 
ABC, AB, and AC pods, will always account for 
more than 50% of the product combination in each 
pod. A third of the ABC and AB pods and two thirds 
of the BC pod are dominated by Class B. Class C, on 
the other hand, makes up the least amount of each 
pod's product mixture, amounting to 16%, 22%, and 
37% for the ABC, AC, and BC pods, respectively. 
With a capacity of 100 slots per pod, it will be simple 
to determine how many slots belong to each class on 
each product mixture pod. Table 5 illustrates this. The 
SKUs are then allocated at random using the number 
of slot rules. 

Table 5: Product Combination of Pod. 

Class ABC AB AC BC 
A 57 68 78 0 
B 27 32 0 63 
C 16 0 22 37 

 100 100 100 100 

5.3.3 Mixed-Class Affinity Assignment 
Scenario 

The first two steps of this scenario—determining the 
product combination and the slots percentage—are 
the same as they are in the second scenario. The 
method used to allocate the SKU to the pod differs. In 
this case, association analysis with the GoogleColab 
tool must be used to discover the rules. As a result, 
only 400 SKUs, or 8% of all SKUs, make up the rules. 
The majority of the SKUs in Classes B and C, 
however, do not have any rules because they are not 
ordered together frequently enough. The 400 SKUs 
must therefore be assigned close together, while the 
remaining SKUs are assigned at random.  
 
 
 

5.4 Simulation 

The number of pods transported for the entire order 
may be determined from the simulation output. The 
average number of pods transported for 10,000 orders 
can therefore be determined as the performance 
indicator for the simulation outcome. Higher pile-on 
are achieved when the average is lower. 

5.4.1 Simulation Result Analysis 

Each scenario, from replications one to ten, is 
contrasted in Table 6 below. It is clear that the final 
scenario, which had the lowest average number of 
pods moved, produced the best results. The baseline 
scenario is increased by 6.4% in the mixed affinity 
scenario but only by 3.49% in the mixed scenario. 

Table 6: Simulation Result. 

Sim 
Number of Pods/Order 

Scen 1 Scen 2 Scen 3 

Rep 1 7,14 6,99 6,54 

Rep 2 7,06 6,76 6,46 

Rep 3 7,13 6,89 6,45 

Rep 4 6,92 6,90 6,72 

Rep 5 7,03 7,07 6,89 

Rep 6 7,20 6,94 6,54 

Rep 7 6,93 6,76 6,51 

Rep 8 7,03 6,78 6,74 

Rep 9 7,21 6,6 6,76 

Re 10 7,18 6,67 6,69 

Average 7,08 6,84 6,63 

The outcome indicates that SKU to pod 
assignment policy's ABC classification also 
influences the quantity of pods transported. Because 
SKUs are too widely scattered in numerous pods 
without any restrictions, Scenario 1, or the baseline 
scenario, with random policy, has the highest average 
number of pods transported. As a result, the necessary 
pods are increased relative to other SKU to pod 
assignment policies. The simulation results show that 
using ABC categorization to the second and third 
scenario improves warehouse performance. 

It would seem hard for the third scenario to 
produce the best simulation outcome, especially when 
compared to the second scenario, with only 8% or 
equal to 400 SKUs forming the association rules. 
Because the third situation just uses association rules, 
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the second and third scenarios are comparable. But 
after examining the order data, it was discovered that 
those 400 SKUs made up the majority of the total 
order—55%. Therefore, even though just a small 
portion of all SKUs are related to one another, it still 
has a big impact on the pile-on if those SKUs 
predominate in the overall order. 

According to the simulation findings and the 
research above, choose the proper SKU to pod 
assignment strategy can have an impact on the 
efficiency of the warehouse. The greatest strategy for 
maximizing pile-on is mixed class affinity policy 
when compared to random and mixed class policies. 
It can also be used in real e-commerce warehouses, 
where a high pile-on is necessary to increase 
warehouse productivity due to the volume of orders 
and the variety of SKUs in each order. SKUs and 
notes have relationships, and those SKUs dominate 
the overall orders.  

5.5 Statistical Test 

The next step is to determine whether the number of 
replications is adequate after receiving the simulation 
results. If it is still insufficient, more replications of 
the simulation are required. On the other hand, if it is 
already adequate, One-Way ANOVA is used to 
confirm the outcome. 

5.5.1 Replication Adequacy Test 

Only ten replications have been performed due to 
time constraints. Therefore, the replications adequacy 
test using Equation (8) and (9) must be performed to 
demonstrate that the 10 replications are sufficient. 
Given that the confidence level is 95%,. The number 
of replications required is at least eight times greater 
when compared to the mean and standard deviation 
of the simulation result. As a result, the 10 
replications completed are adequate for this study. 

5.5.2 ANOVA 

One-way factor ANOVA must be used to validate the 
simulation result after confirming that the number of 
replications is adequate. The result of the hypothesis 
test is shown in Figure 2 below. As can be seen, the 
null hypothesis is rejected and the three scenarios are 
statistically different because the p-value, 
0.000000182, is less than 0.05. 

 

 
Figure 2: ANOVA Test Result 

6 CONCLUSION 

The RMFS warehouse can be made more effective in 
a number of ways. The SKU to pod assignment policy 
is one of the decision-related issues. The policy with 
the fewest transported pods is the best to accomplish 
the greatest pile-on in the warehouse, despite the fact 
that different policies result in varying warehouse 
performances. In this study, three policies—
Random—baseline, Mixed Class, and Mixed Class 
Affinity policy—are tested as a scenario. For each 
product composition, each policy has a different set 
of rules. 

According to the simulation results, the final 
scenario produces the best pile-on, with an average of 
6.63 pods being transported per order. In contrast, the 
outcomes of the first and second situations are 7.08 
and 6.84, respectively. Even though just 8% of SKUs 
conform to the association's criterion, the figures 
indicate that the pile-on of the final scenario is 6.4% 
and 3.02% larger than that of the other two situations. 
However, it should be noted that 55% of the order 
data is dominated by the 8% SKUs. 

The one-way ANOVA is used to validate the 
outcome. The three scenarios are significantly 
different because their p-values are less than 0.05. 
Therefore, it can be said that the SKU-to-pod 
scenarios have had an impact on the effectiveness of 
the RMFS warehouse. When compared to random 
and mixed-class policies, the mixed-class affinity 
policy is shown to be the most effective. 
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