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Abstract: In this research work, we present a novel multicriteria auto-scaling strategy aiming at reducing the opera-
tional costs of microservice-based e-business systems in the cloud. Our proposed solution, TERA-Scaler for
instance, is designed to be aware of dependencies and to minimize resource consumption while maximizing
system performance. To achieve these objectives, we adopt a proactive formal approach that leverages predic-
tive techniques to anticipate the future state of the system components, enabling earlier scaling of the system
to handle future loads. We implement the proposed auto-scaling process for e-business microservices using
Kubernetes, and conduct experiments to evaluate the performance of our approach. The results show that
TERA-Scaler outperforms the Kubernetes horizontal pod autoscaler, achieving a 39.5% reduction in response
time and demonstrating the effectiveness of our proposed strategy.

1 INTRODUCTION

The microservice-based architecture is widely uti-
lized in the design of online applications due to
its ability to divide the system into small, loosely-
coupled components, which can be developed and
updated independently of one another, resulting in a
faster development cycle. Additionally, the pay-per-
use model of cloud resources has led companies to
deploy their systems on the cloud. However, a sup-
plementary effort is required to orchestrate these mi-
croservices to ensure proper functioning and optimal
resource usage.

Microservices architecture has shown promise
in several e-business domains, such as e-commerce
and e-learning, as it provides flexibility, reliability,
reusability, and scalability. Large e-business com-
panies, including Netflix, eBay, and Amazon, have
migrated their monolithic architecture to microser-
vices. The e-learning industry has also considered
several scenarios to adopt this architecture, includ-
ing improving existing e-learning platform architec-
tures(Bauer et al., 2018), migrating custom Learning
Management System (LMS) to microservices archi-
tectures(Niemelä and Hyyrö, 2019), and developing
their own platform(Segura-Torres and Forero-Garcı́a,
2019). Nonetheless, it is crucial to define orchestra-
tion policies dedicated to this domain to ensure the
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expected quality of each microservice.
Microservices orchestration is a crucial task, as it

handles the deployment, auto-scaling, and scheduling
of various instances. A proper orchestration guaran-
tees a higher performance of the system with a lower
cost. Therefore, orchestration tools development is
capturing growing interest, resulting in tools such
as Kubernetes(Carrión, 2022), OpenShift(Palumbo,
2022), and Docker Swarm(Marathe et al., 2019). Or-
chestration tools are not only dedicated to adapt the
system to the current workloads but also to predict fu-
ture workloads and adjust the system accordingly.

Efficient orchestration of e-business applications
requires the definition of adequate deployment,
scheduling, and auto-scaling policies that preserve
their quality of service (QoS). In this work, we pro-
pose a dependency-based orchestration strategy based
on a proactive approach to ensure service availability
for these systems but still maintaining optimal costs.

We present TERA-Scaler, a multicriteria auto-
scaling strategy based on the weak and strong depen-
dencies concept introduced in (Bravetti et al., 2019),
which allows for proactive auto-scaling without re-
quiring any expert systems or prior knowledge, as
it is the case for existing solutions (Rossi et al.,
2020)(Niemelä and Hyyrö, 2019) and what actually
limits their adoption. We adopt a formal approach
due to the fact that auto-scaling is a fault-sensitive
process. Inappropriate auto-scaling causes the QoS
decrease or extra costs.
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The rest of the paper is organized as follows: In
section 2, we explain the TERA-Solution philosophy
and how it influences the quality in e-business appli-
cations. Section 3 discusses existing auto-scaling ap-
proaches and recalls the main concepts adopted in our
approach. In section 4, we present our auto-scaling
approach and the proposed strategy, and we also dis-
cuss the Horizontal Pod Autoscaler (HPA) of Kuber-
netes. In section 5, we implement TERA-Scaler, ap-
ply it to the e-commerce application, evaluate its per-
formance and efficiency compared to HPA policy of
Kubernetes. Finally, we round up the paper with some
perspectives of the actual work.

2 TERA-Solution AND e-BUSINESS

Orchestrating a microservice-based application on the
cloud follows the process depicted in Figure 1. Ini-
tially, microservice instances are allocated to pods
that are responsible of equipping them with the re-
quired resources. Subsequently, the monitoring task
tracks changes in the workload and adjusts the num-
ber of microservice instances or the amount of re-
sources allocated accordingly, depending on whether
horizontal or vertical auto-scaling is being performed.
Consequently, new instances are planned, deployed,
and monitored to ensure optimal system performance.

Figure 1: The orchestration process.

Auto-scaling is a critical operation that depends
heavily on the nature and requirements of the un-
derlying application, various solutions have been
proposed for automating this process. Some solu-
tions focus on latency-sensitive applications (Rossi
et al., 2020)(Crankshaw et al., 2020), while oth-
ers aim to optimize costs(Yang et al., 2014), main-
tain SLAs(Souza and Netto, 2015), or optimize
QoS(Goswami(Mukherjee) et al., 2019). TERA-
Solution is a dependency-aware orchestration strat-
egy that includes TERA-Scheduler (Merkouche and
Bouanaka, 2022b) and TERA-Scaler. TERA-
Scheduler is responsible for the deployment and
scheduling phase, while TERA-Scaler is the auto-

scaling component. In a previous work, we presented
and evaluated the efficiency of TERA-Scheduler by
applying it to an e-learning system. In this paper, we
introduce TERA-Scaler and evaluate its efficiency by
applying it to an e-commerce microservice-based ap-
plication.

Our proposed solution adopts the auto-scaling
approach presented in (Merkouche and Boua-
naka, 2022a), which enables proactive auto-scaling
based on dependencies between application compo-
nents, thereby avoiding resource-intensive and time-
consuming solutions. The main idea behind our ap-
proach is that a microservice future state is predicted
from updates on the dependent one state. Whenever a
microservice is scaled up/down, its dependencies are
also scaled up/down. However, the number of replicas
to be added/removed is computed independently for
each microservice according to its actual workload.

This approach is well-suited for pipeline or multi-
pipeline systems, such as e-mail processing sys-
tems. E-business applications may also be considered
as multi-pipeline systems, including e-commerce, e-
learning, e-search and other systems where a cus-
tomer firstly visits the items list page, then passes
through the order page and the payment one, with
each page defined in a separate microservice. In an
e-learning example, if a student wants to download
a course chapter, he passes through several pages,
each with different microservices. We believe that
the dependency-based approach is ideal for e-business
systems and significantly improves their performance.
In the following section, we provide an overview of
existing approaches and recall basic concepts neces-
sary to understand the adopted approach and the as-
sociated auto-scaling policy.

3 BACKGROUND

Numerous studies have been conducted to automate
the auto-scaling process, resulting in various solu-
tions that focus on different aspects of the system
and follow different approaches. Existing solutions
primarily use reactive approaches (Alexander et al.,
2020)(Tsagkaropoulos et al., 2021)(Souza and Netto,
2015), where the amount of allocated resources is in-
creased or decreased based on system metrics moni-
toring such as CPU and memory usage or input data
rate, depending on the current workload. However,
this approach remains time-consuming despite its ef-
fectiveness. In contrast, proactive approaches(Rossi
et al., 2020)(Bauer et al., 2019)(Imdoukh et al., 2020)
utilize machine learning to predict the future work-
load of the system and adapt the amount of al-
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located resources accordingly. However, machine
learning techniques are costly and time consuming,
and the predictions may not always be entirely ac-
curate, resulting in lower performance or additional
costs. Hence, we adopt a dependency-based approach
to predict the future workload and thus scaling the un-
derlying microservices.

Specifically, we consider the workload of the mi-
croservice at the entry point of the pipeline, as the key
element of the rest of the pipeline. Some concepts
need to be recalled before detailing our approach.

3.1 Identifying Microservice
Dependencies

A microservice dependencies are identified based on
the definitions provided in (Bravetti et al., 2019).
Strong dependencies are the microservices that are
mandatory for the proper functioning of the consid-
ered microservice, while weak dependencies are the
ones that must be deployed before the end of its de-
ployment. These dependencies are defined in the de-
ployment file of each microservice.

Technically, strong dependencies represent mi-
croservices that the given microservice will certainly
call to accomplish its task, while weak dependencies
are optional. As an example, the order microservice in
an e-commerce application is optional and only called
by the items list microservice if the user decides
to view and order a specific item, while the items
database microservice is mandatory to show the items
list and related information. Therefore, the workload
scaling up/down of a microservice directly influences
its strong/weak dependencies and implies proactively
adapting the microservice’s strong dependencies, and
computing auto-scaling plans for its weak dependen-
cies.

3.2 Auto-Scaling Policy

The auto-scaling policy implemented in our solution
is based on the multicriteria policy described and for-
mally defined in (Merkouche and Bouanaka, 2022a).
The approach considers the input data rate, CPU, and
memory usage of each microservice as supervised
metrics. For each supervised metric, a MAPE loop
(Lemos et al., 2013) is defined to determine the corre-
sponding adaptation plans. The set of MAPE loops
shares a centralized monitor that supervises all the
metrics. When a metric is violated, an adaptation is
triggered in the corresponding loop. An extended plan
is also shared between the loops to compute compro-
mise plans when several metrics are violated. The

auto-scaling policy can be summarized in the follow-
ing steps:

• The Shared Monitor collects metrics of each mi-
croservice from the environment layer and verifies
if an adaptation is needed.

• When an adaptation is needed for a given mi-
croservice, i.e., when one of the microservice’s
metrics is violated (not within the thresholds inter-
val), the Analyze and Plan components of the cor-
responding loop define the adaptation plan from
the violated metric viewpoint.

• The Extended Plan computes a compromise adap-
tation plan if several metrics were violated. It also
proactively computes proactive adaptation plans
for the strong dependencies and recommended
adaptation plans for the weak dependencies.

• The Execute element applies the adaptation plan
on the microservice and the proactive adaptation
plans on the strong dependencies, then it noti-
fies the weak dependencies by their recommended
adaptation plans. Figure 2 illustrates this process.

Figure 2: The proactive auto-scaling process.

4 TERA-Scaler

Auto-scaling is a critical task when deploying a sys-
tem in the cloud, as it has a significant impact on
system performance and cost. It is essential to adopt
an efficient and suitable auto-scaling approach for the
considered system to ensure that it meets the desired
system qualities, enhances performance, and reduces
costs. However, considering a single metric during
auto-scaling is insufficient to guarantee that the mi-
croservice is provided with the necessary resources to
meet the current workload. Therefore, a multi-criteria
policy that includes CPU and memory usage, as well
as input data rate, needs to be considered. The solu-
tion is not limited to these three metrics, other metrics
can be easily introduced since each metric is adapted
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independently. Kubernetes and several other tools en-
able the monitoring of a broad set of metrics, and cus-
tom metrics can even be defined.

The auto-scaler is responsible for adjusting the
amount of resources according to the workload vari-
ations, it monitors each microservice metrics, detects
metric violations, and computes the required amount
of replicas to add or remove to adapt to the violated
metrics. When a certain metric is violated, the auto-
scaler triggers an adaptation computing process that
takes a processing time, which affects the system’s
performance; the faster this process is, the less waste
of performance (in the case of scale up) and costs
(in the case of a scale down). Therefore, a proac-
tive method is needed to allow workload prediction.
However, these methods involve learning techniques
that are costly.

To address the issues mentioned above, we pro-
pose TERA-Scaler, an efficient microservice auto-
scaling strategy based on a proactive approach that
relies on the dependencies between microservices to
predict future workload. The efficiency of the TERA-
Scaler autoscaling strategy is evaluated compared to
Kubertenes and it horizontal Pod Autoscaler(HPA).

4.1 TERA-Scaler Strategy

In order to achieve a proactive auto-scaling, TERA-
Scaler computes 03 types of adaptation plans: a com-
promise adaptation plan, a proactive adaptation plan
and a recommended adaptation plan.

4.1.1 The Adaptation Plans

An adaptation plan represents the required amount of
replicas to ensure a well functioning of the microser-
vice. This step consists in computing the amount
of replicas needed to adapt the system, with regard
to each metric by increasing/decreasing the replicas
number and computing the new value of the metric.
If the new value ranges within the desired thresholds
the corresponding replicas number is returned, other-
wise the process is repeated(see algorithm 1).

4.1.2 The Compromise Adaptation Plan

Each of the adaptation plans already identified is pon-
dered to define a compromise plan that fulfills all the
violated metrics. Adaptation plan weighting depends
on the which is a percentage that defines the priority
of each metric over the other metrics for the microser-
vice. In our case, we considered 03 metrics, namely
the CPU usage, Memory usage and the input data rate,
other metrics can be considered according to the sys-
tem’s nature.

Algorithm 1: Adaptation plan computing.
Input: metric, minthreshold , maxthreshold, Rold

Output: Rnew

Rnew⇐ Rold
Rnew⇐ Rold
while metric > maxthreshold do

metric ⇐ ( metric × Rold)/(Rnew + 1)
Rnew ⇐ Rnew+1

end while
while metric < minthreshold do

metric ⇐ ( metric × Rold)/(Rnew - 1)
Rnew ⇐ Rnew-1

end while
return Rnew

4.1.3 The Proactive Adaptation Plans

The proactive adaptation plans are used to adapt
strong dependencies of the microservice. To do so,
for each microservice in the strong dependencies list
a plan is computed by multiplying the replicas num-
ber obtained by the compromise adaptation plan by a
factor Rms where Rms is the number of replicas needed
from a strong dependency to deal with a replica of the
microservice. For example, considering msi a strong
dependency of ms j, where a replica of ms j needs 02
replicas of msi to run, if the compromise plan of ms j
is 04 then the proactive plan of msi is 08.

4.1.4 The Recommended Adaptation Plans

It is computed as the proactive adaptation plan, expect
that it is dedicated to the microservice weak depen-
dencies, and instead of being applied, it is only com-
puted and suggested to those microservices so that
when the workload changes it is applied instantly. Al-
gorithm 2 illustrates the computing of these 03 plans.

Algorithm 2: Final plans computing.
Input: PCPU, cpupriority, PMem, mempriority, Pidr,
idrpriority, depstrong, depweak

Output: Pcompromise, Psproactive, Psrecommended

Pcompromise ⇐ ((PCPU × cpupriority) + (PMem ×
mempriority) + (Pidr × idrpriority))/3
for (ms, Rms ∈ depstrong do

Psproactive ⇐ Psproactive+(Pcompromise× Rms)
end for
for (ms, Rms) ∈ depweak do

Psrecommended⇐ Psrecommended + (Pcompromise ×
Rms)
end for

return Pcompromise, Psproactive, Psrecommended
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Following this strategy, TERA-Scaler anticipates
adaptations according to workload variations for a
given microservice. TERA-Scaler not only ensures
adapting the considered microservice but also its de-
pendencies and hence proactively prepares other mi-
croservices for the upcoming workload.

4.2 Kubernetes and the Horizontal Pod
Autoscaler

K8s1 is an open-source orchestration tool introduced
by Google in 2014, designed to simplify the pack-
aging and execution of containerized applications,
workloads, and services. It provides a platform to de-
ploy application services across multiple containers
in a cluster, enabling their scaling and ensuring their
integrity over time. K8s supports various container
runtime engines, including Docker2 containerd, CRI-
O, and other K8s Container Runtime Interface (CRI)
implementations. Pods are the basic units for running
containers in a K8s cluster, representing an instance
of a microservice and always belonging to a names-
pace.Figure 3 shows a simple K8s cluster composed
of five nodes using Docker as the container runtime.
In a K8s cluster, containers are run on elementary

Figure 3: Google K8s Engine Architecture.

units called pods, each one representing an instance
of a microservice and always belongs to a namespace
(Nguyen et al., 2020). Pods representing instances of
the same microservice are identified by similar speci-
fications.

A K8s cluster comprises worker nodes for deploy-
ing pods and a master node for orchestrating them.
The master node consists of an API server, a con-
troller manager, etcd, and kube-scheduler, which is

1https://K8s.io/docs/
2https://hub.docker.com

K8s’s default scheduler.Figure 4 illustrates the archi-
tecture of K8s.

Figure 4: Google K8s Engine Architecture.

Horizontal scaling in K8s involves deploying
more pods in response to increased load, while verti-
cal scaling involves assigning more resources, such as
memory or CPU, to the pods already running for the
workload. The Horizontal Pod Autoscaler (HPA) is
a Kubernetes API resource and controller that scales
the number of replicas of a target (e.g., a Deployment)
based on observed metrics such as average CPU and
memory utilization. The HPA periodically adjusts the
desired number of replicas to match the workload’s
needs and ensures that the number of pods is above
the minimal threshold. Figure 5 depicts the HPA con-
cept. Additional details about K8s’s functionalities
and components can be found in the official documen-
tation.

Figure 5: The Horizontal Pod Autoscaler concept.

5 IMPLEMENTATION AND
EXPERIMENTAL RESULTS

In this section, we aim to evaluate the efficiency of
the proposed approach in auto-scaling microservice-
based systems and its impact on their performance.
Therefore, we implement TERA-Scaler and test it on
a simple e-commerce application as shown in figure 6,
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Figure 7: The response time using the Kubernetes HPA policy.

Figure 8: The response time when using TERA-Scaler.

Figure 6: The e-commerce application’s architecture.

the considered example is composed of the following
microservices:

• Catalog microservice: to show and handle avail-
able items in the catalog.

• Customer microservice: to handle the customers
data.

• Order microservice: to order items.

The microservices communicate through a REST API
and Apache is used as a Load Balancer to forward http
requests to the microservices (Load Balancer). The
considered example was deployed in a k8s cluster and
tested twice, the first time using a set of HPA each
applied to a microservice deployment, and the second
one using TERA-Scaler.

5.1 Implementing TERA-Scaler

Implementing the HPA is an easy task, we create a
deployment file specifying the deployment to scale,
the resource to monitor and the target average of this
resource. For our test, we deployed 03 HPAs, each
targeting one of the application’s microservices. We
considered the Memory usage as a supervised metric
with 30% as a maximal threshold for all of them.

To implement our auto-scaler, we used the
custom-pod-autoscaler framework3(CPA) to define
our auto-scaler strategy and implement the presented
algorithms. We define the same thresholds as in the
case of HPA and use k64 to apply a workload on the
application in both cases with the same test and dura-
tion. Dependencies between microservices were de-
fined as follows:

• Catalog: having Customer as a weak dependency
and Order as a strong dependency.

• Order: having Customer as a strong dependency.

To scale them, we deploy 02 CPAs, where:

3https://custom-pod-autoscaler
4https://k6.io/docs/
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• The first CPA scales the Catalog microservice ,
proactively scales the Order microservice and de-
fine scaling plan for the Customer microservice.

• The second CPA scales the Order microservice
and proactively scales the Customer microservice.
According to the evaluation tests, the response

time reduction rate is up to 39%. Figure 7 shows the
application’s response time when using the HPA and
figure 8 illustrates it when using TERA-Scaler.

6 CONCLUSION

The purpose of our contribution is to propose an auto-
scaling solution for e-business applications, with the
aim of optimizing performance and reducing costs in
the cloud environment. Although our proposed solu-
tion, TERA-Scaler, is suitable for a range of applica-
tions, it is particularly well-suited for pipelines and
component-interactive systems.

Our custom auto-scaler employs a dependency-
based approach to proactively adjust resource allo-
cation to microservices in the cloud, while consider-
ing the dependencies and quality requirements of each
microservice through a multicriteria approach.

To implement this strategy, we use the CPA frame-
work to define the TERA-Scaler policy and related
functions, which are then executed on the application.
However, by leveraging the TERA-Scheduler in the
deployment environment, to ensure the deployment of
each microservice together with its dependencies on
the same node, our policy can be defined with HPA
commands and implemented without any intermedi-
ary, resulting in faster and more efficient auto-scaling.

As a future direction, we aim to integrate the ele-
ments of TERA-Solution into an orchestration tool for
microservice-based applications, taking into account
dependencies between microservices and the mainte-
nance of quality requirements for each microservice.
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