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Abstract: Sentiment analysis for software engineering has undergone numerous research to efficiently develop tools and
approaches for Software Engineering (SE) artifacts. State-of-the-art tools achieved better performance using
transformer-based models like BERT, and RoBERTa to classify sentiment polarity. However, existing tools
overlooked the data imbalance problem and did not consider the efficiency of ensembling multiple pre-trained
models on SE-specific datasets. To overcome those limitations, we used context-specific data augmentation
using SE-specific vocabularies and ensembled multiple models to classify sentiment polarity. Using four gold-
standard SE-specific datasets, we trained our ensembled models and evaluated their performances. Our ap-
proach achieved an improvement ranging from 1% to 26% on weighted average F1 scores and macro-average
F1 scores. Our findings demonstrate that the ensemble models outperform the pre-trained models on the orig-
inal datasets and that data augmentation further improves the performance of all the previous approaches.

1 INTRODUCTION

Sentiment analysis is a computational analysis of
people’s attitudes, emotions, and views regarding an
entity, which might be a person, an event, or perhaps
a topic (Medhat et al., 2014). It can be used to
determine the emotional tone of a body of writing.
For a given text unit, it can determine whether the text
expresses a positive, negative, or neutral sentiment.

In recent years, the software engineering
community devotes a substantial amount of effort
to conducting research on sentiment analysis. Since
software development relies heavily on human
efforts and interactions, it is more vulnerable to the
practitioners’ emotions. Accurate sentiment analysis
can help to improve various aspects of the software
engineering domain that are affected by sentiment
and emotion. It has been used to investigate the role
of emotions in IT projects and software development
(Wrobel, 2016)(Islam and Zibran, 2016), finding
relations between developers’ sentiment and software
bugs (Huq et al., 2020), etc.
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Numerous techniques and tools available for
sentiment analysis that are being used in software
engineering. These techniques mainly employ
unsupervised, supervised, and Transformer-based
approaches. Firstly, the unsupervised approach
is used by tools like SentiStrength-SE (Islam and
Zibran, 2018b) and DEVA (Islam and Zibran,
2018a). The authors leveraged domain-specific
keyword dictionaries to achieve good performance
in SE-specific texts, as these contain differences
in meaning which are valuable for determining
sentiment. For example, words like bug, patch,
etc. can provide one kind of sentiment when used
in SE-specific texts and another kind of sentiment
when used in a general context, and having such
domain-specific keywords in their dictionary made
these tools perform better in SE-specific texts.
Secondly, the supervised learning approach is used by
tools like SentiCR (Ahmed et al., 2017) and Senti4SD
(Calefato et al., 2018) which achieved improvement
over the previous unsupervised approaches as these
learned from the training dataset instead of relying
on manually defined word-wise sentiment polarities.
Despite the improvements, the proliferation of
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transformer-based approaches achieved better results
in other natural language domains attracts many
researchers to utilize pre-trained transformer-based
models in the software engineering domain. Among
these models, fine-tuned BERT, RoBERTa, and
XLNet outperformed existing unsupervised and
supervised tools (Zhang et al., 2020) on SE-specific
artifacts. The pre-trained models achieved 6.5%
to 35.6% improvement in terms of macro and
micro-averaged F1-scores (Zhang et al., 2020).

Although the pre-trained transformer models
performed better than the previous approaches, small
dataset size, and class imbalance problems incur
threats to those models’ performances. Moreover,
existing research did not consider the ensembling
of multiple models over individual models to know
whether they have any impact on performance or not.
To solve the class imbalance and small dataset size
problems, we conducted a study on the effectiveness
of data augmentation. We further conducted
ensembling of the pre-trained transformer-based
models to determine the impact on performance.

We evaluated the proposed approach using
four publicly available datasets with annotated
sentiment polarities. We chose three pre-trained
transformer-based models: BERT, RoBERTa, and
XLNet. We applied data augmentation with
SE-specific Word2Vec (Mishra and Sharma, 2021)
and EDA (Easy Data Augmentation) (Wei and Zou,
2019). Along with the original dataset, we used
two versions of augmented datasets. In the first
version, we did not consider the class imbalance
issue and augmented the datasets equally for all the
classes. In the second version, which we referred
to as controlled augmentation, we considered the
class imbalance issue and applied augmentation in
a way to balance the classes along with increasing
the size of the datasets. Finally, for all datasets,
we performed sentiment analysis by ensembling
the chosen transformer-based models and analyzed
the obtained results over contemporary approaches.
Specifically, we investigated the following research
questions.

• RQ1: Do the ensemble models outperform the
pre-trained models on the original datasets?

• RQ2: Does data augmentation have any impact
on the performances of the models?

The experimental results demonstrate that the
ensemble models outperform all the pre-trained
transformer models in three out of the four original
datasets, i.e., datasets without any augmentation, in
terms of weighted- and macro-average F1 scores.
The results further demonstrate that the augmentation
approaches aid the performance of all the pre-trained

transformer model approaches as well as the
ensemble models in two out of the three datasets in
terms of weighted and macro average F1 scores.

The main contributions of this paper are:

• Use of stacking ensemble on pre-trained
transformer-based models to improve SE-specific
sentiment analysis.

• Comparative study of the effect of controlled
augmentation and inclusion of SE-based data
augmentation on existing small datasets

Structure of the Paper: Section 2 discusses
the related works. Section 3 describes datasets in
detail. The methodology adopted for our research is
elaborated in section 4. In section 5, we evaluate,
analyze, and discuss the results of our experiments
and present the main findings. Limitations are
mentioned in section 6. Finally, we conclude by
outlining the future work in section 7.

2 RELATED WORKS

We discussed the approaches of SE-based sentiment
analysis from four perspectives: unsupervised
approaches, Supervised approaches for SE-based
sentiment analysis, pre-trained models of NLP for
sentiment analysis, and data augmentation and the
ensembling of pre-trained models.

2.1 Unsupervised Approaches

Unsupervised approaches are used in Senti Strength
and Senti Strength SE.
Senti Strength: It is a lexicon-based sentiment
analysis technique, which uses dictionaries of both
formal terms and informal texts ( like - slang, and
emoticons)(Thelwall et al., 2010). In the dictionary,
every word was assigned a specific sentiment
strength. Then, the tool categorized sentences into
positive and negative emotions and determined the
strength of the emotions based on dictionaries and
linguistic analysis. However, sentistrength could not
perform well on SE-specific data as the dictionary did
not contain words specific to software engineering.
Senti Strength SE: To evaluate the performance
of SentiStrength on software artifacts, 151 Jira
issue comments were analyzed(Islam and Zibran,
2017), which achieved less accuracy. Investigating
the less accuracy of Sentistrength, they found 12
reasons, for which domain-specific meanings of
words were most prevalent. So they built a modified
version of SentiStrength by adding a domain-specific
dictionary(Islam and Zibran, 2017). New sentiment

Effectiveness of Data Augmentation and Ensembling Using Transformer-Based Models for Sentiment Analysis: Software Engineering
Perspective

439



words and negations were added to the dictionary. It
was the first sentiment analysis tool where SE-specific
context was considered. The dictionary, however, had
very limited domain-specific words.

2.2 Supervised Approaches

Supervised approaches are discussed using Stanford
CoreNLP, SentiCR, and Senti4SD tools. Each of
these tools used supervision to classify sentiment
and/or polarity.
Stanford CoreNLP: Stanford CoreNLP(Socher
et al., 2013) was introduced for single-sentence
sentiment classification; polarity along with the
sentiment value of a sentence was returned by the
tool. It was trained with the Recursive Neural Tensor
Network on the Stanford Sentiment Treebank.
SentiCR: It was developed specifically for code
review comments (Ahmed et al., 2017). It classified
code review comments into two classes - negative
and non-negative. The supervised classifier
used in sentiCR was GBT(Gradient Boosting
Tree)(Pennacchiotti and Popescu, 2011), as it gave
the highest precision, recall, and accuracy among the
eight evaluated classifiers.
Senti4SD: It was the first supervised learning-based
tool to generate feature vectors. Senti4SD(Calefato
et al., 2018) used three features - SentiStrength
lexicons, n-gram extracted keywords from the dataset,
and word representations in a distributional semantic
model(DSM) exclusively trained on StackOverflow
data. Four prototype vectors namely positive polarity
word vectors, negative polarity word vectors, neutral
polarity word vectors, and the sum of positive, and
negative word vectors were calculated to extract
semantic features. Finally, a Support Vector Machine
(SVM) was used to identify sentiment polarities.

Although supervised approaches performed
superiorly to unsupervised approaches, they were
under par to properly predict sentiment in cases
where sentiment-heavy words were not included in
their training dataset.

2.3 Pre-Trained Models

There are some popular transformer-based pre-trained
models that are described here for sentiment analysis.
BERT: A deep learning model designed to learn
contextual word representations from unlabeled
texts(Devlin et al., 2018). It is based on the
transformer architecture but doesn’t have the decoder,
rather contains only a multi-layer bidirectional
transformer encoder. The pre-training of the
model is accomplished by optimizing two tasks

- masked language modeling (MLM) and next
sentence prediction(NSP). Originally there were two
implementations of BERT: BERTBase with 12 layers,
12 self-attention heads, 110M parameters, and a
hidden layer size of 768 and BERTLarge with 24
layers, 16 self-attention heads, 340M parameters, and
1024 hidden layer size. Our work uses BERTBase.
RoBERTa: A robustly optimized BERT that changed
pre-training steps by using larger mini-batch sizes
to train over more data for a huge time, train
on longer sequences to remove Next Sentence
Prediction loss, and train with dynamic masking.
When Liu et al(Liu et al., 2019) released it,
it had achieved state-of-the-art results on several
benchmarks surpassing BERT.
XLNet: Based on Transformer-XL, it used segment
recurrence mechanism and relative encoding. To
address the individual weakness of autoregressive
language modeling and autoencoding, it combined
their strengths (Yang et al., 2019). XLNet performed
better than BERT, including sentiment analysis,
especially for long texts.

Although the size of the training dataset plays
a crucial role in fine-tuning these large models, we
observed less than one thousand samples even in the
gold-standard datasets used in the community.

2.4 Data Augmentation and Ensembling
of Pre-Trained Models

Data augmentation(Batra et al., 2021) was used
through lexical-based substitution and back
translation as a pre-processing step to help train
and fine-tune BERT variants - BERT, RoBERTa,
and ALBERT. Then, a weighted voted scheme was
applied to the final Softmax layer output of the BERT
variants to ensemble the models and achieve the final
weighted prediction. However, the class imbalance
was evident in the datasets used in these approaches.
Sample size for different sentiment polarities, i.e.,
positive, negative, and neutral, differed by a large
margin. As a result, this issue caused supervised
approaches to perform poorly.

There are several strategies to tackle this issue in
the community. One line of work is the Easy Data
Augmentation (EDA) approach proposed by Wei et
al.(Wei and Zou, 2019). The authors evaluated this
technique and found that the improvement rate of this
technique increases inversely proportional to the size
of the dataset.
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Table 1: Distribution of the datasets over the classes.

Dataset Total Positive Neutral Negative
App Review 341 186 25 130
Stack Overflow 1,500 131 1,191 178
Jira 926 290 0 636
Github 7,122 2,013 3,022 2,087

Table 2: Data samples from the Datasets under study.
Dataset Samples from dataset Usage in natural lang.

Github Seems like something
is leaking memory :(

The plumber fixed the
leaking pipe.

Stack
Overflow

I am attempting to get
my JUnit tests for an
Android application
running using Ant.

Ants are all over my
food

Jira safety and scope beans
to current thread.

White thread should
have been used here

App
Reviews

android 4.2jelly bean
can’t install error 909. .
i’ll give you five stars if
u fix it

Jelly bean is one my
favorite pastime food
while watching movies

3 DATASET

In our study, we used four gold-standard publicly
available datasets with annotated sentiment polarity.
The distribution of the datasets over the classes
(positive, neutral, and negative) is shown in Table 1.
Some samples from these datasets are highlighted in
Table 2 that demonstrate how software engineering
context can influence the meaning of different words.
Jira Issues. The original dataset (Ortu et al., 2015)
had four labels of emotions: love, joy, anger, and
sadness which Lin et al.(Lin et al., 2018) brought
down to two labels by annotating sentences with love
and joy with positive polarity and sentences with
anger and sadness with negative polarity.
App Reviews. 3000 reviews were presented
(Villarroel et al., 2016) from which 341 reviews were
randomly selected by Lin et al.(Lin et al., 2018).
The dataset has a 5% confidence interval and a 95%
confidence level making it statistically significant.
Stack Overflow Posts. There are 1500 sentences in
total. This dataset was gathered by Lin et al. (Lin
et al., 2018) from a July 2017 Stack Overflow dump.
They choose threads that are (i) labeled with Java and
(ii) include one of the terms library, libraries, or API
(s). After that, they chose 1,500 words at random and
classified their sentiment polarities manually.
GitHub Data. The dataset has 7,122 sentences
extracted from GitHub commit comments and
pull-requests. An iterative extraction was performed
on the dataset of Pletea et al.(Pletea et al., 2014)
by Novielli et al. (Novielli et al., 2020) to obtain
annotated text units.

4 METHODOLOGY

In this section, we describe the proposed
methodology to detect the sentiment polarities.
It consists of three components. At first, the
implementation details of the adopted augmentation
approaches are discussed (4.1). Secondly, we
elaborate on the fine-tuning step (4.2). Finally,
we describe the implementation of the ensemble
approach (4.3). An overview of our methodology
is shown in Figure 1. The following subsections
describe these three components with further details.

4.1 Augmentation

Motivated by the work of (Wei and Zou, 2019), we
adopted the augmentation technique to mitigate the
problem of small dataset size and class imbalance
over the samples. The technique used three ways to
introduce new samples from the given samples.

• Random Synonym Replacement: It was used
to replace random words in a given sample
(sentence) with their synonyms. We applied
two different techniques. One was to replace
randomly selected words with the synonyms
found in Natural Language Toolkit (NLTK)
wordnet library(Miller, 1995). Another one
is to replace SE-specific words using most
similar words in SE context provided by a
word2vec model trained specifically on software
engineering text from the study conducted by Siba
m et al. (Mishra and Sharma, 2021). Some of the
augmented results are shown in Table 4.

• Random Deletion: We randomly deleted a word
from the given sentence. In addition, if the given
sample contained duplicated words, those words
were also discarded.

• Random Insertion: Like the other two ways, we
randomly insert random words in a given sample.
To do this, at first, we randomly pick a word from
the given sentence and then, find the synonym of
that word. Finally, we inserted this synonym into
a random position.

We performed two types of augmentation only on the
training dataset to generate a new dataset from the
given raw dataset.
Basic Augmentation: It was used to tackle the issue
of the dataset being small in size. We randomly
picked a sample from the dataset and used either
of the aforementioned three techniques to generate a
new sample. However, this did not solve the class
imbalance issues of the datasets.
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Figure 1: Overview of the proposed methodology.

(a) Dataset: App Reviews. (b) Dataset: Github.

(c) Dataset: Stack Overflow. (d) Dataset: Jira.

Figure 2: Class frequency distributions for all datasets.

Controlled Augmentation: Class imbalance in many
cases can cause bias problem in machine learning
models. So, in this Controlled Augmentation,
we applied augmentation techniques to balance the
class-wise frequency distribution. For each dataset,
we augmented text to ensure equal distribution in
every class.

The distribution of samples over the classes after
applying the three techniques and two types of
augmentation is shown in Figure 2.

Table 3: Pre-trained transformer models and configurations.
Architecture Used Model Parameters Layers Hidden Heads
BERT bert-base-uncased 110M 12 768 12
RoBERTa roberta-base 120M 12 768 12
XLNet xlnet-base-cased 110M 12 768 12

4.2 Fine-Tuning Transformer-Based
Models

The second step in our research methodology was
to fine-tune the pre-trained transformer-based models
for the downstream tasks. To do this, we split
each dataset under our study into 70% for the
train-set and 30% for the test-set. We fine-tuned
three transformer-based models separately with the
train sets split from the raw datasets as well
as augmented datasets (generated using basic and
controlled augmentation approaches). The models
are BERT, RoBERTa, and XLNet. We refer to
these models collectively as pre-trained transformers
(PTT). The information related to train these models
is shown in Table 3.

4.3 Ensemble

We proposed a stacking-based ensemble technique
to aggregate the performance of the different
transformer-based models. Because each of the
models (that are part of the ensemble) has a
distinct basic functioning, the range of predictions
is substantially broader in the case of the ensemble.
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Table 4: Data augmentation: SE-Specific Synonym Re-
placement utilizing word2vec (Mishra and Sharma, 2021).

Original Augmented
A perfect timing. Just a
second before my commit
:)”

A perfect timing. Just the
third during my rollback
:)”

don’t pull. master is bro-
ken! will fix soon.”

don’t pull. slave is broken!
will fix soon.”

Each model was pre-trained on a particular language
modeling task, such as BERT’s next sentence
prediction, XLNet’s auto-regressive approach, and
RoBERTa’s dynamic masking. At first, we considered
every sample as a bag of words and encoded by the
positional encoding that were represented in eq.1.

samplei = [w1,w2,w3,w4...,wn] (1)

Then, we fed these n number of samples into m
number of transformer based pre-trained models and
took the softmax outputs of the last layer of these
models, showed in Eq. 2 and 3. These outputs were
concatenated and treated as feature vector (FV) which
contained the contextual representation of the given
input samples.

FV =⊕m
i=1 ⊕n

j=1 so f tmax(modelsi(sample j));

models = {BERT,XLNet,RoBERTa}
(2)

softmax(xi) =
exp(xi)

∑ j exp(x j)
(3)

Finally, we detected the sentiment polarities using
two well known classifiers: Random Forest (RF) and
Logistic Regression (LR) using Eq. 4.

Ŷi = classi f iersi(FV );classi f iers = {RF,LR} (4)

However, as three of the datasets (Stack Overflow,
App review, and Github) under our study have three
classes and LR is designed for binary classification,
we adopted the one-vs-rest (OvR) method for
multi-class classification.

5 EVALUATION AND
DISCUSSION

In this section, we reported, compared and analyzed
the performance of the pre-trained transformer-based
models and the ensemble models on the four datasets
described in Section 3. It was evident from Fig-
ure 2 that three of the four datasets (App reviews,
Stack Overflow, and Jira) had a small number of
samples and a significant class imbalance issue. Thus,
we conducted augmentation on these three datasets
except for the Github (GH) dataset. For each dataset,

we reported the performance of the approaches we
used on the original version, the basic augmented
version, and the controlled augmented version. For
comparison, we also showed the performance of
SentiStrength-SE as a representative of the lexicon
approach-based sentiment analysis tool and SentiCR
as a representative of the supervised approach-based
sentiment analysis tool only on the original version of
the datasets. We highlighted the best performance in
terms of the two main metrics (i.e., weighted-average
F1 scores and macro-average F1 scores) in bold.
We answered the research questions based on the
experimental results as follows.

5.1 RQ1: Do the Ensemble Models
Outperform the Pre-trained Models
on the Original Datasets?

We answer RQ1 by analyzing the performance of
ensemble models and PTTs only on the original
version of the four datasets.

5.1.1 App-Review Dataset

The ensemble models outperform the PTT
approaches in both weighted and macro-average
F1 scores. The best-performing PTT approach is
BERT for both the F1 scores. BERT can achieve
weighted and macro-averaged F1 scores of 63%
and 44%, respectively (5). The RF-based ensemble
model can achieve weighted- and macro-average
F1 scores of 71% and 51%, respectively, while
the LR-based ensemble model can achieve
weighted- and macro-averaged F1 scores of
69% and 49%, respectively. Our results show
that the RF-based ensemble model outperforms the
best-performing PTT approach by 8%-50% in terms
of weighted-average F1 score by 7%-33% in terms
of macro-average F1 score. This range is determined
based on the improvement of the best and worst
scores of the PTT approaches. Even though the
dataset is small and the class distribution is highly
imbalanced, the ensemble models still perform better
compared to the other approaches.

5.1.2 Stack Overflow Dataset

The best-performing PTT approach is
RoBERTa considering both weighted(89%) and
macro-average(75%) F1 scores for this dataset,
which is better than the performance achieved by
the ensemble models. The LR-based ensemble
model performs better than the RF-based and can
achieve weighted and macro-average F1 scores of
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Table 5: Results for the Appreview dataset.

Dataset Class Negative Neutral Positive Weighted-average Macro-average
Model P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%)

App Review

Sentistrength-SE 86 28 42 10 38 15 72 79 75 73 57 58 56 48 44
SentiCR 77 79 78 14 12 13 84 84 84 76 77 77 58 58 58
BERT 62 49 55 0 0 0 68 87 77 61 66 63 43 45 44
RoBERTa 38 100 55 0 0 0 0 0 0 14 38 21 13 33 18
XLNet 50 56 53 0 0 0 65 68 66 54 58 56 38 41 40
Ensemble (RF) 64 86 73 0 0 0 84 74 79 70 73 71 49 53 51
Ensemble (LR) 65 70 67 0 0 0 76 82 79 67 72 69 47 51 49

App Review
Basic

Augmentation

BERT 85 91 88 50 12 20 91 95 93 86 88 86 75 66 67
RoBERTa 77 100 87 0 0 0 98 89 93 83 87 84 58 63 60
XLNet 80 95 87 0 0 0 93 89 91 82 85 83 58 61 59
Ensemble (RF) 87 95 91 40 25 31 95 94 94 88 89 89 74 71 72
Ensemble (LR) 85 95 90 0 0 0 94 94 94 84 88 86 60 63 61

App Review
Controlled

Augmentation

BERT 86 88 87 43 38 40 92 92 92 86 87 87 74 73 73
RoBERTa 83 91 87 33 12 18 94 95 94 85 88 86 70 66 66
XLNet 95 86 90 33 25 29 87 95 91 86 87 86 72 69 70
Ensemble (RF) 86 88 87 60 38 46 92 95 94 88 88 88 80 74 76
Ensemble (LR) 84 88 86 80 50 62 94 95 94 89 89 89 86 78 81

Table 6: Results for the Stack Overflow dataset.

Dataset Class Negative Neutral Positive Weighted-average Macro-average
Model P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%)

Stack Overflow

Sentistrength-SE 38 14 20 82 92 87 29 23 26 72 77 74 50 43 44
SentiCR 42 58 49 90 85 87 46 44 45 80 78 79 59 62 60
BERT 69 42 53 86 97 91 80 28 41 83 84 82 78 56 62
RoBERTa 82 71 76 91 97 94 86 42 56 89 89 89 86 70 75
XLNet 80 20 32 81 99 89 0 0 0 74 81 75 54 40 41
Ensemble (RF) 74 58 65 88 96 92 77 40 52 86 86 85 80 64 70
Ensemble (LR) 77 63 69 89 97 93 81 40 53 87 88 87 82 66 72

Stack Overflow
Basic

Augmentation

BERT 67 54 60 90 95 93 73 56 63 86 87 86 77 68 72
RoBERTa 67 69 68 92 92 92 59 56 57 86 86 86 73 73 73
XLNet 75 68 71 91 95 93 73 56 63 88 88 88 80 73 76
Ensemble (RF) 69 58 63 90 94 92 66 58 62 86 86 86 75 70 72
Ensemble (LR) 70 64 67 91 94 93 69 56 62 87 87 87 77 72 74

Stack Overflow
Controlled

Augmentation

BERT 70 68 69 91 92 91 58 51 54 85 86 85 73 70 72
RoBERTa 74 63 68 90 96 93 86 56 68 88 88 88 83 71 76
XLNet 75 46 57 88 97 92 83 47 60 86 86 85 82 63 70
Ensemble (RF) 71 57 65 89 96 91 78 48 61 86 85 86 80 68 73
Ensemble (LR) 77 63 69 90 96 93 81 51 63 88 88 88 83 70 75

89% and 72%, respectively. Although RoBERTa
outperforms the ensemble models, the ensemble
models outperform the other two PTT approaches.
More specifically, as illustrated in Table 6 the
LR-based ensemble model outperforms the other
two PTT approaches by 5%-12% in terms of
weighted-average F1 score and by 10%-31% in terms
of macro-average F1 score. This dataset also has a
high imbalance in class distribution.

5.1.3 Jira Dataset

The ensemble models outperform the PTT
approaches in both weighted- and macro-average
F1 scores here as well. The best-performing PTT
approach is RoBERTa which can achieve an F1
score of 95% for both weighted and macro-average.
Both the RF and LR-based ensemble models can
achieve an F1 score of 96% for the weighted-average.
But the macro-average F1 score of the RF-based
ensemble model is 96%, which is better than the
95% macro-average F1 score of the LR-based
ensemble model. Table 7 clearly portrays that
the RF-based ensemble model outperforms the
best-performing PTT approach by 1%-6% in terms of

weighted-average F1 score and by 1%-8% in terms
of macro-average F1 score.

5.1.4 GitHub Dataset

This dataset is the largest in size and also has the
most balanced class distribution, which reflects in our
results as well. All the approaches perform relatively
well on this dataset. The ensemble models bring
minor improvements to the already well-performing
PTT approaches. Here, the best-performing PTT
approach is BERT, which can achieve an F1 score of
91% for both weighted and macro-average (Table 8).
The LR-based ensemble model also can achieve an F1
score of 91% for both weighted- and macro-average.
But the RF-based ensemble model outperforms them
slightly. It can achieve an F1 score of 92% for
both weighted and macro-average. So the RF-based
ensemble model outperforms the best performing
PTT approach by 1%-2% for both weighted- and
macro-average F1 scores.
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Table 7: Results for the Jira dataset.

Dataset Class Negative Positive Weighted-average Macro-average
Model P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%)

Jira

Sentistrength-SE 99 72 84 62 99 76 88 81 81 81 86 80
SentiCR 95 98 97 96 90 92 95 95 95 95 94 95
BERT 94 97 95 93 85 89 93 93 93 93 91 92
RoBERTa 98 96 97 91 95 93 96 95 95 94 95 95
XLNet 89 100 94 99 72 83 92 91 90 94 86 88
Ensemble (RF) 96 99 97 97 92 94 96 96 96 96 95 96
Ensemble (LR) 96 98 97 96 91 93 96 96 96 96 94 95

Jira
Basic

Augmentation

BERT 98 99 98 97 96 96 98 98 98 97 97 97
RoBERTa 97 99 98 98 94 96 97 97 97 98 96 97
XLNet 99 99 99 97 97 97 98 98 98 98 98 98
Ensemble (RF) 98 99 99 98 96 97 98 98 98 98 97 97
Ensemble (LR) 98 100 99 99 96 97 98 98 98 99 98 98

Jira
Controlled

Augmentation

BERT 96 100 98 100 92 96 97 97 97 98 96 97
RoBERTa 98 99 98 98 95 96 98 98 98 98 97 97
XLNet 98 95 96 89 96 92 95 95 95 94 95 94
Ensemble (RF) 99 99 99 97 98 97 98 98 98 98 98 98
Ensemble (LR) 98 99 99 98 96 97 98 98 98 98 97 98

Table 8: Results for the Github dataset.

Dataset Class Negative Neutral Positive Weighted-average Macro-average
Model P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%)

Github

Sentistrength-SE 78 73 76 77 85 81 86 77 81 80 79 79 80 79 79
SentiCR 89 67 76 78 92 84 87 85 86 83 83 82 84 81 82
BERT 90 89 89 91 91 91 93 93 93 91 91 91 91 91 91
RoBERTa 89 87 88 91 90 90 90 94 92 90 90 90 90 90 90
XLNet 87 88 88 93 88 90 89 95 92 90 90 90 89 90 90
Ensemble (RF) 91 90 90 92 91 91 92 94 93 92 92 92 92 92 92
Ensemble (LR) 91 89 90 91 91 91 92 94 93 91 91 91 91 91 91

RQ1 Findings:
The ensemble models outperform the
pre-trained transformer-based models by a
significant margin for three out of the four
datasets showing that ensemble models can
perform better than individual transformer
models despite having class imbalance.
In the Stack Overflow dataset, RoBERTa,
which is a PTT approach, performs better
than the ensemble models.

5.2 RQ2: Does Data Augmentation
Have any Impact on the
Performances of the Models?

We answer RQ2 by comparing and analyzing the
performance of PTT and the ensemble models on the
augmented versions of the datasets.

5.2.1 App-Review Dataset

In the basic augmentation approach, all the PTT
and the ensemble approaches outperform the results
achieved by training the models using the original
train-sets in terms of both weighted-average and
macro-average F1 scores. The best performance
improvement is achieved for the BERT-based
PTT approach with a 23% improvement on
weighted-average and macro-average F1 scores.

RF ensemble approaches, however, achieve the best
results when compared to PTT approaches, with
weighted-average and macro-average F1 scores of
89% and 72%, respectively, as shown in Table 5.
We observe the improvement for the LR ensemble
model compared to when trained on the original
train-set but do not achieve the best results. The
noticeable improvement is for the neutral class. All
the approaches fail to predict any neutral samples on
the original dataset. Augmentation helped improve
in this case, and we observed BERT, and the RF
ensemble approach improved in the case of neutral
sample detection. Overall, the results depict that
data augmentation enhanced the performances of the
models for this dataset.

We observe the best results for the controlled
augmentation approach, especially for the classes
with the least number of samples. In the
controlled augmentation approach, all the PTT
approaches achieve an improved weighted-average
and macro-average F1 score. We observe that the
LR ensemble approach achieves the best result with
weighted-average and macro-average scores of 89%
and 81%, respectively. The number of samples for
the neutral class was significantly lower than for the
other classes in the original train-set. For which,
we can clearly observe the poor performance for
that class using all the approaches in the table 5.
This controlled augmentation approach enables all the
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models to improve the neutral class’s performances.

5.2.2 Stack Overflow Dataset

In this dataset, we observe a different trend from
the app review dataset when the basic as well as
the controlled augmentation approaches, are applied.
We do not observe any improvement in the basic
and controlled augmentation approaches. This is
because the imbalance percentage is higher than
the Jira and the App reviews datasets. So, when
data augmentation is applied multiple times on the
dataset to oversample the undersampled classes, the
quality of the samples degrades. The best-performing
approach remains XLNet-based PTT in terms of
macro-average F1 score. However, we do see a slight
1% improvement when basic augmentation is applied
for the XLNet-based PTT approach. The ensemble
approaches do not improve the results of the PTT
approaches as well.

5.2.3 Jira Dataset

Compared to when trained on the original train-set,
we observe that augmentation helped improve
the results for all the PTT as well as ensemble
approaches. We see the best improvement of 8% in
weighted-average F1 score and 10% in macro-average
F1 score is achieved by the xlnet-base-cased PTT
model. We get the best results for the LR ensemble
approach, which achieved a weighted-average and
macro-average F1 score of 98%. Similar to the
App review dataset, we can observe significant
improvement through augmentation for this dataset
as well. Unlike the App review dataset, when the
controlled augmentation approach is taken for the
Jira dataset, we do not observe improvement across
all PTT and ensemble approaches. The reason
behind this, according to our observation, can be
that after applying basic augmentation to the original
dataset, the dataset size was increased. Still, the class
imbalance was not significant compared to the app
review dataset. For this reason, we observe better
performance on the basic augmentation approach.

RQ2 Findings:
The augmentation approaches aid the
performances of all the PTT approaches
as well as the ensemble approaches in two
out of three datasets in terms of weighted-
and macro-average F1 scores with the
most significant improvements for the
undersampled classes.

6 LIMITATIONS

One of the limitations was that we only used datasets
that were publicly available from previous works. As
a result, we were not able to ensure the quality of the
manual annotations. This limitation also extended
to our data augmentation technique. As an example,
the text “Can’t compile X64 under vs2010, returnng
this error : 5>d:\mangos\mangos\src\game
\spellmgr.cpp(1226): error C4716:
‘DoSpellProcEvent::AddEntry’ : must return a
value” from the datasets under study may incline
more towards a negative sentiment but was annotated
as neutral. As mentioned in Section 4, we augmented
existing data by adopting various approaches. So the
quality of the augmented data relied on the quality of
the original dataset.

Another potential limitation of our work is related
to the random splitting of data in our experimental
setup. We split the dataset randomly into a 70-30
ratio, where 70% of the dataset was used to train and
the rest 30% was used to test. As the data is random
in each split, in each run the results might vary. This
can be addressed by using more rigorous techniques
like k-fold which we plan on doing in the future.

7 CONCLUSION AND FUTURE
WORKS

We provide a comparative study on the
performance of ensembled models and pre-trained
transformer-based models in terms of weighted and
macro-average F1 scores. We also investigated the
requirement and performance of data augmentation in
fine-tuning ensembled and pre-trained models. The
pre-training was done on four datasets. Experimental
results revealed that ensemble models perform better
than individual pre-trained models in three out of
the four original datasets, i.e., datasets without any
augmentation. Our results also demonstrated that the
augmentation approaches aid the performances of all
the pre-trained transformer models along with the
ensemble ones in two out of three datasets.

Ensemble models have more potential to give
better performance from a software engineering
perspective. Thus, more ensemble techniques can be
explored in the future. Besides, the existing datasets
under recent study have noticeable class imbalance
issues. So, we also aim to explore other approaches
of handling imbalance of dataset. The quality and size
of the dataset is also an important factor that can be
furthered experimented on generating a larger dataset
with quality data annotation.
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