
An Empirical Study on the Possible Positive Effect of Imperative
Constructs in Declarative Languages: The Case with SQL

Seyfullah Davulcu, Stefan Hanenberg a, Ole Werger b and Volker Gruhn c

University of Duisburg–Essen, Essen, Germany

Keywords: SQL, Imperative, Declarative, Empirical Study.

Abstract: Today, imperative programming languages are often equipped with declarative constructs (such as lambda
expressions in Java or C++). The underlying assumption (which is partly confirmed by experiments) is that
imperative languages benefit from such constructs. This gives the impression that declarative programming
languages are better suited for programming than imperative languages. However, the question is whether
this statement holds vice versa as well, i.e., whether declarative languages benefit from imperative constructs.
The present paper introduces a crossover trial where 24 students were equipped with an SQL extension that
gives the illusion of imperative assignments. It turned out with high confidence (p<.001) that this construct --
although in principle already contained in a declarative fashion in SQL -- lets students solve a given task in
only 52% of the time in comparison to the time required in standard SQL.

1 INTRODUCTION

Programming languages follow design principles and
one of the fundamental principles is whether a lan-
guage should rather be imperative or declarative. The
traditional distinction between both is that code writ-
ten in an imperative language describes step by step
how an algorithm is executed. Code written in a
declarative language rather specifies how the result
looks like. Today’s examples of declarative lan-
guages are functional programming languages such
as Haskell, F#, Scala, etc., while today’s examples of
imperative languages are C, C++, or Java.

While imperative languages dominated the soft-
ware market, the situation changed over the years:
The functional construct “lambda expression” be-
came integrated in different imperative languages.
Moreover, tools such as IDEs also seem to see a
benefit in lambda expressions. For example, already
in 2009 the IDE IntelliJ visualized anonymous in-
ner classes as lambda expressions. Hence, it looks
like there is some common agreement that impera-
tive languages benefit from the integration of declar-
ative constructs – besides the fact, that there are only
few studies that measured the effect of declarative fea-

a https://orcid.org/0000-0001-5936-2143
b https://orcid.org/0009-0007-3226-1271
c https://orcid.org/0000-0003-3841-2548

tures in imperative languages (see for example (Ues-
beck et al., 2016; Lucas et al., 2019; Hanenberg and
Mehlhorn, 2021; Mehlhorn and Hanenberg, 2022)).
However, one could also ask whether declarative lan-
guages benefit from imperative language constructs.
And among the set of declarative languages, there is
one language that plays a major role in software de-
velopment: the database language SQL.

The present paper introduces an experiment where
SQL is equipped with a quasi–extension which gives
the illusion to assign queries to variables – an exten-
sion that is not necessary, because it already exists in
SQL to a certain extent. But by giving 24 subjects
a task where a query consists of a number of sub-
queries, it turned out that the subjects required only
52% of the time they needed using standard SQL.

2 SQL, WITH AND SQLAssign

SQL is an ISO standardized language for relational
database systems1 that is widely taught and applied
today. In relational databases, the fundamental data
structures are (named) tables having named (and
typed) attributes where the actual data is represented
by rows. The result of a SQL query is again a table.

The selection of data from tables is done via SE-

1See iso.org/standard/63555.html

428
Davulcu, S., Hanenberg, S., Werger, O. and Gruhn, V.
An Empirical Study on the Possible Positive Effect of Imperative Constructs in Declarative Languages: The Case with SQL.
DOI: 10.5220/0012092300003538
In Proceedings of the 18th International Conference on Software Technologies (ICSOFT 2023), pages 428-437
ISBN: 978-989-758-665-1; ISSN: 2184-2833
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

LECT statements where within a FROM statement ta-
bles are combined by a number of different JOIN op-
erators. From the table that is the result of such oper-
ations certain rows can be selected via the WHERE
clause and finally, the SELECT statement defines
the resulting columns. Additional constructs are the
GROUP BY and HAVING clauses that permit to de-
fine subtable. Moreover, SQL contains aggregate
functions, i.e., functions that are applied on all ele-
ments of (sub-) tables.

SQL is a declarative language in the sense that de-
velopers specify the conditions that hold on the result-
ing table without specifying how the underlying data
is iterated. An SQL query is one single expression.
Queries can be quite difficult and it is possible that
parts of queries need to be used multiple times within
one SQL statement. This can be done, for example,
using the WITH clause. The WITH clause is one ex-
pression consisting of a header where a name is given
to one expression that later on can be used in the ex-
pression’s body.

WITH Amounts AS (SELECT CustomerId , SUM(Amount) Res
FROM Payment
WHERE Cus tomer Id != 42
GROUP BY Cus tomer Id)

SELECT CustomerID
FROM Amounts
WHERE Res > 12345

Figure 1: The result of one SELECT statement is given the
name Amounts that is used in the body of the WITH expres-
sion to refer to that statement.

An example for the WITH clause is given in Fig-
ure 1. One characteristic of the WITH clause is, that it
is still one single expression. I.e., one reads the whole
expression as one single execution step.

We are involved in SQL teaching and have the
impression that students have problems with WITH.
Our impression is, that WITH hinders students to
think about the clause as a step-by-step introduction
of names for expressions. As a consequence, we think
that students do not use WITH and rather formulate
SQL statements with subqueries – and we think this
makes students less efficient.

An alternative way to formulate the above SQL
statement is to use subqueries. Figure 2 describes
the previous statement with a subquery. While the
statement is shorter, the potential problem is that it
no longer gives a clear description of the subquery:
just finding the name of the subquery (Amounts) is
not trivial, because it requires to identify the start and
the end of the subquery. On the other hand, due to its
shorter representation, it might seem attractive to stu-
dents to use this presentation instead of using WITH.

SELECT CustomerID
FROM (SELECT CustomerId , SUM(Amount) R e s u l t

FROM Payment
WHERE Cus tomer Id != 42
GROUP BY Cus tomer Id) Amounts

WHERE R e s u l t > 12345

Figure 2: Previous example using an inner statement.

Our idea was to give students a different construct
that comes (syntactically) closer to the idea of imper-
ative languages. Instead of writing a WITH clause,
we give them the illusion of a variable assignment in
a style known from languages such as Java, etc.: a
variable name on the left-hand side to which an ex-
pression is assigned. Additionally, in order to give an
impression of a sequence, we used (similar to Java)
the semicolon to separate different statements.

Amounts = (SELECT CustomerId , SUM(Amount) R e s u l t
FROM Payment
WHERE Cus tomer Id != 42
GROUP BY Cus tomer Id) ;

SELECT CustomerID
FROM Amounts
WHERE R e s u l t > 12345 ;

Figure 3: Previous example using SQLAssign.

Figure 3 illustrates the previous example using the
syntax of SQLAssign. Obviously, it is possible to trans-
late SQLAssign into SQL, where in front of an assign-
ment only the keyword WITH has to be introduced,
the equal operator has to be replaced by the keyword
AS and the semicolon has to be deleted. Again, it is
obvious that SQLAssign is only a different syntactical
representation of SQL that actually does not add any-
thing new. The only difference is, that it gives the
impression that different statements are sequentially
executed and it gives developers the illusion that the
complete SQL statement can be read line by line.

The obvious research question is:

RQ: Do Developers Benefit From The Intro-
duction of SQLAssign in Comparison to Standard
SQL?

To answer this question, much more details are
required in order to understand under what circum-
stances such difference might appear, etc.

3 RELATED WORK

We are not aware of experiments that focus on im-
perative features in declarative languages. But some
studies analyze the effect of introducing declarative

An Empirical Study on the Possible Positive Effect of Imperative Constructs in Declarative Languages: The Case with SQL

429

features in imperative languages (despite the fact
that empirical studies in programming languages are
rather rare in general, see for example (Kaijanaho,
2015)). Additionally, we consider studies that focus
on the usability of SQL.

3.1 Studies on Imperative versus
Declarative Language Constructs

Uesbeck et al. (Uesbeck et al., 2016) tested on 58
participants whether there are differences in develop-
ment times for iterating collections using lambda ex-
pressions in C++ in comparison to traditional itera-
tors. It turned out that lambda expressions required
on average significantly more time. The study also
took a look into error fixing times and the number of
compiler errors. The results with respect to these de-
pendent variables again favored traditional iterators.

Mehlhorn et al. studied the effect of Java’s Stream
API in comparison to the imperative loops on read-
ability (Mehlhorn and Hanenberg, 2022) by measur-
ing the time until the correct result for some code was
detected. The study on 20 participants revealed the
opposite effect of Uesbeck’s study: the Stream API
code required less time than the imperative loops.

Another study on lambda expressions in Java was
performed by Lucas et al. (Lucas et al., 2019). The
authors evaluated code snippets before and after the
introduction of lambdas and compared it to some
source code complexity measures. Additionally, they
asked 28 developers to evaluate code snippets. The
main results of the study was that about 50% of the
developers considered the introduction of lambda ex-
pressions as an improvement. While the applica-
tion of readability and understandability metrics did
not find significant differences, developers perceived
some code migrations towards lambda expressions
negatively, especially when for-loops were replaced.

Pichler et al. (Pichler et al., 2011) studied dif-
ferences between declarative and imperative business
model languages. 28 students were given two types of
tasks and four questions per task2. The models were
formulated either using a declarative or an imperative
business process language. The language had an ef-
fect on the response times as well as on the correct-
ness of the answers (p<.001).

Although not explicitly meant to test whether a
declarative or imperative specification is better (in
terms of development time, answer time, or correct-
ness), Kokuryo et al. studied how often imperative
code was written using the configuration management

2From the paper, it cannot be derived what questions
were asked or to what extent the questions were related to
the declarative or imperative nature of the given model.

tool Ansible (Kokuryo et al., 2020), a tool that is in-
tended to define configurations in a declarative man-
ner but that still provides imperative modules. The
study revealed, that about 50% of the studied codes
still used imperative modules.

3.2 Usability Studies on SQL

A study by Ahdi et al. tested common mistakes done
by more than 2000 students across eight years on a
data set consisting of more than 160 thousand snap-
shots of SQL queries. It turned out that a large per-
centage of errors was caused by syntactical errors –
approximately 54% of faulty queries even on trivial
statements contained syntax errors. The authors con-
clude from the study that “a syntactic error and not a
semantic error is what in most cases causes a student
to abandon answering a question. Syntax errors [...]
are the most common mistakes that novices make in
writing their SQL statements” (Ahadi et al., 2016).

A comparable study by Poulsen et al. (Poulsen
et al., 2020) followed the approach of Ahdi et al.
and studied a data set consisting of homework sub-
missions from 286 students. Again, the SQL state-
ments were classified according to their nature (joins,
outer joins, etc.), but additionally, slightly more com-
plex constructs (such as triggers or stored procedures)
were considered as well. Again, it turned out that in
almost all categories the number of syntax errors was
higher than the number of semantic errors.3 And even
in the final submissions (where students had the abil-
ity to double check their statements), still 27% of the
statements had syntax errors.

4 EXPERIMENT DESCRIPTION

4.1 Initial Considerations

SQLAssign was built upon the assumption that devel-
opers have the tendency to use inner statements in
SQL instead of applying the WITH clause. We be-
lieve that this happens in situations where develop-
ers write rather complicated queries that are based on
each other. For example, when it is clear from a task
description that a statements such as S1 needs to be
formulated whose results are required by a statement
S2, we think that developers have the tendency to start
with S1, but then, instead of giving it an explicit name,
just use the whole statement S1 within the body of S2.

3There was one exception to this rule: in the group “Join
and Where” 39% of statements were syntactically incorrect,
while 43% of these statements had a semantic errors.

ICSOFT 2023 - 18th International Conference on Software Technologies

430

−− STEP1 : S t a r t i n g w i t h some c o m p l i c a t e d query
SELECT a , b , c
FROM A JOIN B USING (x)
WHERE d=42
GROUP BY a , b , c
HAVING sum (e) >666

−− STEP 2: Using f i r s t S t a t e m e n t as I n n e r S t a t e m e n t
SELECT a , sum (b)
FROM (SELECT a , b , c

FROM A JOIN B USING (x)
WHERE d=42
GROUP BY a , b , c
HAVING sum (e) >666) complexQuery

GROUP BY a
HAVING sum (b) >999

Figure 4: Stepwise formulation of SQL queries using inner
statements.

Figure 4 illustrates the described situation. If the
task consists of multiple steps, we think that a number
of people start with the first step and start with step 2
when they think they have finished step 1. But in-
stead of just using the WITH clause, we think people
rather continue writing the query by adding the addi-
tional code to the statement – as a consequence, the
first statement becomes an inner statement. We think
that this approach becomes more problematic if the
inner statement requires some changes later on. From
that we conclude that for the comparison of standard
SQL and SQLAssign non-trivial queries are necessary
that should be formulated in a step-wise manner.

Having the previous considerations in mind, we
took two different approaches into account. First, our
idea was to give people code to read that consists of
inner queries, WITH clauses or the assignment ex-
pressions using SQLAssign. Actually, we do believe
that SQLAssign has already some (small) positive ef-
fect on readability, but we still think that such an ex-
periment is not trivial, because one has to define under
what circumstances a developers has actually under-
stood the semantics of the query. Additionally, we
do not think that the measured effect is large, because
we think a larger, positive effect predominantly shows
up when developers need to interact with the code
(rewriting a query, replacing parts of a query, etc.).

We have chosen a different alternative. Instead
of reading code, we let developers formulate a query.
While one approach could be to give developers a fi-
nite amount of time and check how many developers
have finished the task, it could also be an alternative
to give developers multiple tasks in order to test, how
many tasks each developer has fulfilled (an approach
that has been used for example in (Uesbeck et al.,
2016)), and finally, one could in principle check, what
percentage of the task was fulfilled (an approach that

was for example chosen in (Müller, 2005; Hanenberg,
2010)). Having the assumed benefit of SQLAssign in
mind, we followed the approach to give developers
one (or more) programming tasks and to measure how
much time was required to fulfill the task.4

Next, the question is, what experiment setup is
required. Although we had the impression that the
differences between SQL and SQLAssign are not tiny,
we were afraid that the deviation between develop-
ers could possibly hide this effect. However, so-
called crossover trials (see for example (Senn, 2002;
Kitchenham et al., 2003)) – experiments where devel-
opers are tested under different treatments – are an
often applied technique to reduce this problem.

4.2 Task Description

As noted, we are not convinced that a variable assign-
ment has a positive effect in all situations. We think
the benefit shows up if queries are formulated step by
step and if SQL tempts developers (for unknown rea-
sons) to use inner statements. Hence, the task should
be a query where its parts are defined step by step.
Next, the query should be easily testable and the prob-
ability to achieve a correct query by luck should be
low. Because of that we decided to ask for a state-
ment that heavily relies on aggregate functions.

Figure 5 contains a corresponding task.5 It is de-
scribed in terms of subtasks – each one can be de-
scribed by a corresponding query. The different ele-
ments of the query are articulated as distinct subtasks,
each defined with a clear name (such as Quotient,
Debt, etc.). Furthermore, the query is not trivial and
it is plausible that even experienced SQL developers
spend 20-30 minutes on the solution. And ultimately,
the final query is based on aggregate functions (sums
and averages). The underlying banking schema con-
sists of five tables with rather trivial fields.

Figure 6 illustrates a possible solution using
WITH. Although the task description consists of three
steps, we think it is plausible to add some more steps
to the solution, because, for example, the actual pay-
ment of customers can be more easily understood if
defined in a separate variable. Figure 7 describes a
different, possible solution using SQLAssign. Actually,
there are no major differences between both solutions:
in the end, it is just a question where the variable

4Such approach was already applied in the first steps
of experimentation in programming such as the experiment
described by Lucas and Kaplan from 1976 (Jr. and Kaplan,
1976) and is up to today often applied.

5The original task description was in German – we
translated the text to English in order to ease the readability
of the present paper.

An Empirical Study on the Possible Positive Effect of Imperative Constructs in Declarative Languages: The Case with SQL

431

Return all customers who are uneconomical from the point
of view of a particular insurance agency.
Output: CustomerID, DegreeOfUneconomicalness.

Consider three variables:

Quotient: The fee defined for a contract added to the
surcharge received by a customer divided by the fee of the
contract. In this case, the quotient of a customer must be
greater than the average quotient of all customers,
otherwise the customer is economical.

Debt: The sum of the not yet paid requested money of a
customer. In this case, the debt of a customer must be
greater than his quotient multiplied by the sum of his paid
requested money, otherwise the customer is economical.

Loss: The sum of the costs for all incidents of a customer.
In this case, the loss of a customer must be greater than his
debt added to the sum of the values of his securities,
otherwise the customer is economical.

This insurance agency wants to terminate a customer, if his
DegreeOfUneconomicalness fulfills (quotient * debt +
loss) > 150,000.
Figure 5: Task description of Task 1. The actual task de-
scription used in the experiment was not in English but in
the language of the university where the experiment was
performed.

names appear and how the end of an assignment looks
like (semicolon versus brackets).

The experiment was defined as a crossover trial
that potentially suffer from carry–over effects (see
(Kitchenham et al., 2003; Hanenberg and Mehlhorn,
2021)). As a consequence, our goal was to define a
second task that is quite close to the first task in terms
of required steps, but where the computations of the
different steps are different. We came up with a task
from the field of formula one, where drivers should
be selected. For reasons of completeness, Figure 8
illustrates the task description.

4.3 Measurement

We implemented a (small) tool for entering SQL
statements. The tool used a Postgres database server
version 11. Additionally, the tool showed the textual
task description as well as the available tables in a
tree view. We started the measurement once a par-
ticipant articulated that he was willing to start with
the task. The time measurement stopped once the re-
sult of a query matched the expected outcome. The
measurement was done in seconds. Part of the mea-
surement was all time spent on the task including po-
tential searches on the Internet. After 80 minutes, the
tool showed that the participant was permitted to go
to the next task (respectively to stop the experiment).

We gave a short description of SQLAssign before
the experiment and gave a simple task that should re-
quire 10 to 15 minutes. Finally, we screen recorded
the sessions to have later on the opportunity to view
again solution steps. Additionally, we observed the
participants during the sessions.

4.4 Experiment Layout

The experiment had the following dependent and in-
dependent variables:

Dependent Variable: Time to completion (the time
required by developers to define a requested query).
Independent Variable: Language (with the treat-
ments SQL and SQLAssign), where language is a
within-subject variable.
Random Variable: Group Assignment, where sub-
jects were either assigned to the group standard SQL
first or SQLAssign first.

We defined a time limit (see (Feitelson, 2021)) for
each task of 80 minutes assuming that 80 minutes are
enough to solve the task. In case a participant did not
finish within 80 minutes, we entered 80 minutes as
his result. Since we assumed that this would happen
only in SQL and not in SQLAssign this is a penalty for
SQLAssign, because the subject would have probably
required more time using standard SQL.

4.5 Experiment Execution

We executed the experiment on 24 volunteers (stu-
dents) based on purposive sampling (Patton, 2014)..
The requirements for the volunteers was that they
passed a database course at our institute. Hence,
we assumed that they were familiar with SQL and
the WITH clause. Each volunteer was tested in an
individual session starting with an introduction into
SQLAssign and software used in the experiment. We
explicitly articulated that Internet search was per-
mitted (and recommended) in case a participant had
questions concerning SQL. We explicitly articulated
that the used SQL dialect was Postgres. We did not
define a time limit for the introduction and answered
there all questions a student possibly had.

5 RESULTS

Table 1 contains for each participant the measured
times. One participant (No 4) ran into the time limit.
As explained before, we accepted that the time limit
was reached and still included him in the data set.

ICSOFT 2023 - 18th International Conference on Software Technologies

432

WITH Q u o t i e n t AS (SELECT CustomerId , (C o n t r a c t . Amount + Surchange . Amount) / C o n t r a c t . Amount AS Q u o t i e n t
FROM Customer NATURAL JOIN C o n t r a c t JOIN Surchange USING (Cus tomer Id)) ,

Demand AS (SELECT CustomerId , SUM(DemandedAmout) AS Demand FROM Claim GROUP BY CustomerId ,
Pa id AS (SELECT CustomerId , SUM(Payment) AS Pa id FROM Payment GROUP BY Cus tomer Id) ,
Loss AS (SELECT CustomerId , SUM(Cos t) AS Loss FROM I n c i d e n t GROUP BY Cus tomer Id) ,
Value AS (SELECT CustomerId , SUM(Value) as Value FROM A s s e t GROUP BY Cus tomer Id)

SELECT CustomerID , Q u o t i e n t * (Demand − Payment) + Loss AS DegreeOfUneconomica lness
FROM Q u o t i e n t

NATURAL JOIN Demand NATURAL JOIN Pa id NATURAL JOIN Loss NATURAL JOIN Value
WHERE Q u o t i e n t > (SELECT AVG(Q u o t i e n t) FROM Q u o t i e n t

AND Demand − Pa id > Q u o t i e n t * Pa id
AND Loss > (Demand − Pa id) + Value
AND Q u o t i e n t * (Demand − Pa id) + Value > 150000;

Figure 6: Possible solution for Task 1 using standard SQL using WITH.

A l l C u s t o m e r s = SELECT CustomerId , (C o n t r a c t . Amount + Surchange . Amount) / C o n t r a c t . Amount AS Q u o t i e n t
FROM Customer NATURAL JOIN C o n t r a c t JOIN Surchange USING (Cus tomer Id)) ;

Average = SELECT AVG(Q u o t i e n t) FROM A l l C u s t o m e r s ;
Q u o t i e n t T = SELECT CustomerId , Q u o t i e n t FROM A l l C u s t o m e r s WHERE Q u o t i e n t > Average ;
Demand = SELECT CustomerId , SUM(DemandedAmount) AS Demanded FROM Claim GROUP BY Cus tomer Id ;
Pa id = SELECT CustomerId , Sum(PayedAmount) AS Pa id FROM Payment GROUP BY CustomerID ;
DebtT = SELECT CustomerId , Demanded − Pa id AS Debt FROM Demand NATURAL JOINT Pa id NATURAL JOIN Q u o t i e n t T

WHERE Demanded − Pa id > Q u o t i e n t * Pa id ;
Cus tomerLoss = SELECT CustomerId , SUM(Value) as Loss FROM I n c i d e n t GROUP BY Cus tomer Id ;
CustomerValue = SELECT CustomerId , SUM(Value) as Value FROM A s s e t GROUP BY Cus tomer Id ;
LossT = SELECT CustomerId , Loss , FROM CustomerLoss NATURAL JOIN CustomerValue NATURAL JOIN DebtsT

WHERE Loss > Debts + Value ;

SELECT CustomerID , Q u o t i e n t * Debt + Loss AS DegreeOfUneconomica lness
FROM Q u o t i e n t T NATURAL JOIN DebtT NATURAL JOIN LossT
WHERE Q u o t i e n t * Debt + Loss > 150000;

Figure 7: Possible Solution for Task 1 using SQLAssign.

Table 1: Measurements: Times for Task1 and Task2 in sec-
onds. Group SQL started with standard SQL and solved the
second task with SQLAssign, group SQLAssign vice versa.

Group No Training Task1 Task2 Sum
(Task1+Task2)

SQL 2 656 3905 1778 5683
SQL 4 918 4800 2634 7434
SQL 6 1330 3546 2425 5971
SQL 8 590 3324 2102 5426
SQL 10 655 2164 1298 3462
SQL 12 943 2702 1305 4007
SQL 14 827 3612 1757 5369
SQL 16 860 4052 1785 5837
SQL 18 502 3502 1333 4835
SQL 20 757 4239 1748 5987
SQL 22 1138 4613 2077 6690
SQL 24 1314 3036 1442 4478

SQLAssign 1 873 2314 4183 6497
SQLAssign 3 671 1498 3465 4963
SQLAssign 5 730 2259 3143 5402
SQLAssign 7 812 2058 4269 6327
SQLAssign 9 645 1652 4273 5925
SQLAssign 11 508 1959 2916 4875
SQLAssign 13 748 1822 3593 5415
SQLAssign 15 604 1567 2081 3648
SQLAssign 17 648 1866 3674 5540
SQLAssign 19 653 1657 3316 4973
SQLAssign 21 777 1585 3014 4599
SQLAssign 23 653 1752 1633 3385

The first impression of the data is that times below

2000 seconds appear most often in task 2 for group
SQL (where task 2 was solved with SQLAssign) while
the same phenomenon appeared mainly in task 1 for
group SQLAssign. One participant (No. 23) solved the
task faster with SQL than with SQLAssign.

5.1 Informal Observations

Since each participant was tested in an individual ses-
sion, we were able to observe how they solved the
tasks. This observation was informally done.

All participants except participant 4 were able to
solve the tasks in time. The experimenter had the im-
pression that participant 4 (who was not able to finish
the task using standard SQL) was overwhelmed by
the difficulty of the task (which was not the case for
the task solved in SQLAssign). Actually, one require-
ment of the different steps got lost in the participant’s
query and the participant was subsequently not able
to detect this missing requirement in time.

No single participant used the WITH clause – nei-
ther in the group starting with standard SQL nor in
the group starting with SQLAssign. For almost all sub-

An Empirical Study on the Possible Positive Effect of Imperative Constructs in Declarative Languages: The Case with SQL

433

Return all racers who, from the point of view of a
particular F1 team, are considered worthy to be recruited
as drivers.
Output: DriverID, LevelOfAttractiveness.

Consider three variables:

Significance: The points of a driver’s team added to the
points of the driver divided by the points of his team. In
this case, the significance of a driver must be greater than
the average significance of all drivers, otherwise the driver
is unattractive.

Difference: The difference between the sum of the expected
positions by analysts and the sum of the actual positions
won by a driver. In this case, the driver’s difference must
be greater than the sum of his expected positions divided
by his significance, otherwise the driver is unattractive.

PodiumPoints: The accumulated points by podium
positions of a driver. In this case, the driver’s podium
points added with his difference must be more than the sum
of the costs of the driver due to racing incidents /
1,000,000, otherwise the driver is unattractive.

This team is interested in a driver, if his
LevelOfAttractiveness fulfills (significance * difference +
podiumPoints) > 500.
Figure 8: Task description of Task 2. The actual task de-
scription used in the experiment was not in English but in
the language of the university where the experiment was
performed.

jects using standard SQL the results were compara-
ble: the different steps were formulated as individual
queries and then either the resulting query was com-
pletely copied into a subquery or the conditions for
each step were copied into the WHERE clause (and
the tables were then joined).

Another observation was that some participants
had problems when defining subqueries where either
the time consuming problem was to give subqueries
names or participants where confused what parts of a
subquery should end up in the FROM or the WHERE
clause, leading to problems in fixing errors caused by
copying a query as a subquery (subject 1, 2, 3, 5, 7,
9, 16, 17, 19, 21, 22, 24). However, we also observed
that for a number of subjects (subject 6, 10, 11, 12, 14,
15) the pure observation of the way how they solved
the tasks did not reveal anything noticeable. However,
for all these subjects, it still turned out that the use of
SQLAssign required less time.

5.2 Quantitative Results

Before analyzing the results we check whether a
carry-over effect could be detected. Thereto, we run

a one-way ANOVA on the sum of times (dependent
variable)6 with the independent variable group (with
treatments group 1 and group 2, see Table 2). For
the sum of times for both tasks, the resulting ANOVA
does not indicate a carry-over effect (F(1, 22)=.514,
p=.481, η2

p=.023), i.e. it is possible to consider the
times in a combined analysis.

In order to study the effect of the language, we run
a repeated measures ANOVA (see Table 2) with the
within-subject variable language (with the treatments
SQL and SQLAssign) and the between subject variable
group (with the treatments group 1 and group 2).7 The
difference between both groups is significant and the
difference is almost factor 2 (M(SQL)

M(SQLAssign)
= 3,460.25

1,819.71 =

1.90): Solving the task using SQLAssign required only
52% of the time required for standard SQL.

However, one subject (who started with
SQLAssign) required less time using SQL. We
cannot exclude that this is the result of an individual
learning effect. Or it could just mean that there are
still single subjects to whom the introduction of the
assignment operation is counterproductive. Or it
could be just the result of luck.

It is noteworthy that the differences between stan-
dard SQL and SQLAssign are quite large. As a con-
sequence, it is questionable, whether our rather cau-
tious design using a crossover experiment was already
larger than necessary. Consequently, we ask our-
selves, whether the effect would have already shown
up when the second round (i.e. where the crossover
appeared) would not be considered.

In order to test this, we run a simple, un-
paired t-test on the first round and get a simi-
lar result as the previously reported one. Again,
the variable language is significant (t(13.676)=7.655;
p < .001; MSQL=3,624.58; MSQLAssign =1,832.42;
MSQLAssign

MSQL
=50,56%)8 and again SQLAssign required

only approximately 50% of the time required by stan-
dard SQL.

6 THREATS TO VALIDITY

We see a obvious threats with respect to the generaliz-
ability of the results. First, we explicitly assume that a
language construct as the proposed one has probably
only a positive effect if the requested query is defined

6The analysis was performed using SPSS v27.
7Taking the result of the previous test into account, there

is no need to use group as an independent variable any
longer – we still do it here for reasons of completeness.

8The degrees of freedom were adapted, because the
Levene test turned out significant (p<.001):

ICSOFT 2023 - 18th International Conference on Software Technologies

434

Table 2: Repeated measures ANOVA on the within-subject variable Language (L) and the between-subject variable Group
(G). Confidence intervals (CI), means (M), and standard deviation (SD) are given in seconds.

Variable df F p η2
p Treatment N CI95% M SD

Language (L) 1 141.416 <.001 .865 SQL 24 [3,124.41; 3,796,84] 3,460.625 794.61
SQLAssign 24 [1,666.08; 1973.34] 1,819.71 355.17

Group (G) 1 .514 .481 .023 SQL Start 24 [2,461.78; 2,969.80] 2,715.79 1111.85
SQLAssign Start 24 [2,310.53; 2818.55] 2,564.54 948.57

L * G 1 .982 .327 .022

SQL | SQL Start 12 [3,265.36; 3,983.81] 3,624.58 765.15
SQL | SQLAssign Start 12 [2,937.44; 3,655.89] 3,296.67 822.26
SQLAssign | SQL Start 12 [1,447.78; 2,166.22] 1,807.00 437.15

SQLAssign | SQLAssign Start 12 [1,473,19; 2,191.64] 1,832.42 268.89

in a rather step by step manner. In other words, if a
more imperative definition of a problem is given, we
think a more imperative way to solve such problem is
more appropriate. However, to what extent common
SQL problems are rather formulated in an imperative
or rather in terms of a declarative problem description
is unclear to us. Second, we are aware that the query
used in the experiment is rather difficult – at least, it
is not a trivial SELECT–FROM–WHERE statement.
However, to what extent this query is actually difficult
and to what extent queries of such difficulty can be
found in the real world is unclear to us. Our personal
perception (having some background in writing SQL
queries) is that real world queries easily have the dif-
ficulty of the given tasks. Third, it is unclear whether
the more general claim – adding an imperative con-
struct to a declarative language – actually holds to
other languages as well. The here chosen language
SQL is just one example of a declarative language and
we do not know whether the effect is special to SQL.

In addition to the external threats, we see inter-
nal threats with respect to the chosen participants and
their background. As discussed, it turned out that no
single participant used SQL’s WITH clause. We can-
not exclude that this is just the results of the partic-
ipants’ background (since each participant was from
the same institute): we cannot exclude that it is an
institute-dependent characteristic of students that the
construct WITH is rather not appreciated.

We see a more serious internal threat. It is com-
monly accepted to introduce a new language construct
to participants in order to test the language construct
in an experimental way. But actually, just the in-
troduction of the construct could already introduce a
bias: subjects could feel the need to use this language
feature. Consequently, it is possible that the urge to
use the assignments in the queries (when the experi-
ment gives the opportunity to do so) is not the result
of the language feature itself. And it is possible that
the absence of the WITH clause in solutions delivered
by subjects is no indicator for the inferiority of the
WITH clause. Actually, we think that this is a serious
threat that exists in general in experiments where new
language features are tested (and introduced through-

out the experiment). However, one also has to take
into account that the test only on the first round (the
last test in Section 5.2) also revealed a positive effect
of the variable language. This reduces the potential
threat that the experiment result was mainly driven by
the additional teaching of the construct, because in the
first round this is not relevant for the control group.

7 SUMMARY AND DISCUSSION

In the present study, we tested whether the introduc-
tion of the imperative language construct variable as-
signments (in addition to sequences) would provide a
benefit to SQL developers. With this extension (that
we called SQLAssign) we designed a crossover experi-
ment where 24 students had to solve two queries. The
task descriptions of both queries were given in mul-
tiple steps. The experiment revealed that the time to
solve a task using SQLAssign just required 52% of the
time in comparison to standard SQL. And while 23
participants solved a task faster with SQLAssign, one
participant experienced the opposit.

What makes the results of the experiment from our
point of view surprising is, that in principle no such
language construct is required. First, there is already
a language construct such as WITH available in SQL
that permits to define a named term as the result of
an SQL expression – which is actually exactly what
the proposed language construct does. Second, such
terms and term replacements are not really required
in SQL, because subqueries already provide some-
thing similar. However, while all participants used
subqueries in standard SQL, not a single participant
felt the need (or saw any reason) to use WITH.

Actually, we see two interpretations from the ex-
periment in the context of SQL. First, it is possible
that participants underestimate the difficulty of SQL
while defining difficult queries. Once one query is
done, participants think that just adding an additional
query on top of it does not do any harm. While the
proposed language construct is quite similar to the
WITH clause, we think that it still gave participants
the impression that it is easier to use than a WITH

An Empirical Study on the Possible Positive Effect of Imperative Constructs in Declarative Languages: The Case with SQL

435

clause – probably, because the proposed syntax gave
participants more the impression that the solution is
executed statement by statement.

Of course, it could also be the case that the value
of the WITH clause is just underestimated by students
– and it could rather be interpreted as a critique of the
students’ education in SQL, where they are used to
write difficult queries, but where they are maybe not
well–trained in the reduction of a query’s difficulty.

However, this leads to an even more general ques-
tion. Actually, inner queries provide similar to the
WITH clause an additional abstraction, because both
permit to give a name to a query. It is possible that just
the position of this name in a query is the result why
it is not considered as a relief but rather as a burden –
and it could be the case that the syntactical representa-
tion of the proposed assignments (where the variable
names appear in the beginning of each line) is consid-
ered as a better and more explicit representation for
such named queries.

Actually, the last argument seems to match to
some extent the mentioned related work that indicates
that SQL’s syntax seems to be hard to understand (see
(Ahadi et al., 2016; Poulsen et al., 2020)) which leads
to the situation that most errors in SQL are syntax er-
rors. On a more abstract level, this could be a hint
that language designers should spend more effort into
the design of syntax structures or even into the de-
sign keywords – which is in line with studies such as
the one by Stefik and Siebert that revealed that even
the choice of keywords in languages can make a large
difference (Stefik and Siebert, 2013).

And on an even more abstract level, the designed
experiment raises the question, whether declarative
languages could benefit from the introduction of im-
perative language constructs. While today mainly
the tendency in programming language design can be
found that declarative language features appear in im-
perative language (such as the introduction of lambda
expressions in main stream imperative languages), it
is not often the case that people ask whether declara-
tive languages could benefit from imperative features
as well. However, we mentioned already in the related
work section the study by Pichler et al. that showed
that students have some tendency toward imperative
language constructs (Pichler et al., 2011).

Our general conclusion with regard to this discus-
sion is rather that the whole discussion about whether
a language should be declarative or imperative is
slightly misleading: there are works that have given
evidence that the introduction of declarative features
in imperative languages causes some benefit (see for
example (Mehlhorn and Hanenberg, 2022)) while
the present paper also gives evidence that a declara-

tive language could benefit from imperative features.
Probably, it is worth to think about whether the dis-
cussion should rather go into the direction of declar-
ative versus imperative task descriptions – and the
resulting question, what the effect of language con-
structs on the solution of such tasks actually is.

Altogether, we think that the present paper gives
some food for thought for the design of languages.
While language designers have the tendency to think
a lot about language semantics, it might be the situ-
ation that rather simple syntactical differences in the
representation of a language make a huge difference.
And maybe the present study motives language de-
signers to put additional effort into studying language
features using empirical methods.

8 CONCLUSION

The here presented study gives evidence that the in-
troduction of a quasi-imperative language construct
in terms of a variable assignment reduces the time re-
quired to define a difficult query that was given to the
experiment’s participants in terms of a step by step
description: the introduction of that language feature
reduced the time effort for the definition of a query by
about 48%.

While we see in the given experiment an indica-
tor that SQL – which is today still the leading lan-
guage for accessing databases – can be improved by
relatively simple syntactical elements, we also see in
the study a contribution to the discussion whether lan-
guages should be declarative or imperative: while in
the literatures more and more evidence is gathered
that imperative languages could benefit from declar-
ative features, the present study gives first indicators
that it is possible also the other way around.

Altogether, we think that the present study should
motivate language designers to test their languages
not only in terms of functionality, but also in terms of
usability. Because it might turn out that even small
syntactic differences have larger effects. And the
study could also motivate language designers to think
about improving existing languages. Again, not only
in terms of functionality, but also in terms of usability
– which could be just simple syntactical changes. And
the evidence for the usability of a language constructs
should not be based on plausibility but on measure-
ments – and from our perspective the use of random-
ized control trials should be the first choice.

ICSOFT 2023 - 18th International Conference on Software Technologies

436

REFERENCES

Ahadi, A., Behbood, V., Vihavainen, A., Prior, J., and Lis-
ter, R. (2016). Students’ syntactic mistakes in writing
seven different types of sql queries and its application
to predicting students’ success. In Proceedings of the
47th ACM Technical Symposium on Computing Sci-
ence Education, SIGCSE ’16, pages 401–406, New
York, NY, USA. Association for Computing Machin-
ery.

Feitelson, D. G. (2021). Considerations and pitfalls in
controlled experiments on code comprehension. In
29th IEEE/ACM International Conference on Pro-
gram Comprehension, ICPC 2021, Madrid, Spain,
May 20-21, 2021, pages 106–117. IEEE.

Hanenberg, S. (2010). An experiment about static and dy-
namic type systems: Doubts about the positive impact
of static type systems on development time. In Pro-
ceedings of the ACM International Conference on Ob-
ject Oriented Programming Systems Languages and
Applications, OOPSLA ’10, pages 22–35, New York,
NY, USA. Association for Computing Machinery.

Hanenberg, S. and Mehlhorn, N. (2021). Two n-of-1 self-
trials on readability differences between anonymous
inner classes (aics) and lambda expressions (les) on
java code snippets. Empirical Software Engineering,
27(2):33.

Jr., H. C. L. and Kaplan, R. B. (1976). A structured pro-
gramming experiment. Comput. J., 19(2):136–138.

Kaijanaho, A.-J. (2015). Evidence-based programming lan-
guage design: a philosophical and methodological ex-
ploration. University of Jyväskylä, Finnland.

Kitchenham, B., Fry, J., and Linkman, S. (2003). The case
against cross-over designs in software engineering. In
Eleventh Annual International Workshop on Software
Technology and Engineering Practice, pages 65–67.

Kokuryo, S., Kondo, M., and Mizuno, O. (2020). An em-
pirical study of utilization of imperative modules in
ansible. In 2020 IEEE 20th International Conference
on Software Quality, Reliability and Security (QRS),
pages 442–449.

Lucas, W., Bonifácio, R., Canedo, E. D., Marcílio, D., and
Lima, F. (2019). Does the introduction of lambda
expressions improve the comprehension of java pro-
grams? In Proceedings of the XXXIII Brazilian Sym-
posium on Software Engineering, SBES 2019, pages
187–196, New York, NY, USA. Association for Com-
puting Machinery.

Mehlhorn, N. and Hanenberg, S. (2022). Imperative versus
declarative collection processing: An rct on the under-
standability of traditional loops versus the stream api
in java. In Proceedings of the 44th International Con-
ference on Software Engineering, ICSE 2022, Pitts-
burgh, PA, USA, May 22–27, 2022, to appear.

Müller, M. (2005). Two controlled experiments concerning
the comparison of pair programming to peer review.
Journal of Systems and Software, 78:166–179.

Patton, M. (2014). Qualitative Research & Evaluation
Methods: Integrating Theory and Practice. SAGE
Publications.

Pichler, P., Weber, B., Zugal, S., Pinggera, J., Mendling,
J., and Reijers, H. A. (2011). Imperative versus
declarative process modeling languages: An empir-
ical investigation. In Daniel, F., Barkaoui, K., and
Dustdar, S., editors, Business Process Management
Workshops - BPM 2011 International Workshops,
Clermont-Ferrand, France, August 29, 2011, Revised
Selected Papers, Part I, volume 99 of Lecture Notes
in Business Information Processing, pages 383–394.
Springer.

Poulsen, S., Butler, L., Alawini, A., and Herman, G. L.
(2020). Insights from student solutions to sql home-
work problems. In Proceedings of the 2020 ACM Con-
ference on Innovation and Technology in Computer
Science Education, ITiCSE ’20, pages 404–410, New
York, NY, USA. Association for Computing Machin-
ery.

Senn, S. (2002). Cross-over Trials in Clinical Research.
Statistics in Practice. Wiley.

Stefik, A. and Siebert, S. (2013). An empirical investiga-
tion into programming language syntax. ACM Trans.
Comput. Educ., 13(4).

Uesbeck, P. M., Stefik, A., Hanenberg, S., Pedersen, J., and
Daleiden, P. (2016). An empirical study on the im-
pact of c++ lambdas and programmer experience. In
Proceedings of the 38th International Conference on
Software Engineering, ICSE 2016, Austin, TX, USA,
May 14-22, 2016, pages 760–771.

An Empirical Study on the Possible Positive Effect of Imperative Constructs in Declarative Languages: The Case with SQL

437

