
AIM-RL: A New Framework Supporting Reinforcement Learning
Experiments

Ionuţ-Cristian Pistol a and Andrei Arusoaie b

Department of Computer Science, Alexandru Ioan Cuza University, Iaşi, Romania

Keywords: Reinforcement Learning, Machine Learning Framework, State-Based Models.

Abstract: This paper describes a new framework developed to facilitate implementing new problems and associated mod-
els and use reinforcement learning (RL) to perform experiments by employing these models to find solutions
for those problems. This framework is designed as being as transparent and flexible as possible, optimising
and streamlining the RL core implementation and allowing users to describe problems, provide models and
customise the execution. In order to show how AIM-RL can help with the implementation and testing of new
models we selected three classic problems: 8-puzzle, Frozen Lake and Mountain Car. The objective results of
these experiments, as well as some subjective observations, are included in the latter part of this paper. Con-
siderations are made with regards to using these frameworks both as didactic support as well as tools adding
RL support to new systems.

1 INTRODUCTION

A very popular open-source framework built to de-
velop, test and showcase Reinforcement Learning
(RL) capabilities is Gym/Gymnasium (Brockman
et al., 2016). Studies have shown that RL within
Gym/Gymnasium can be very helpful in both solv-
ing and testing solutions for various AI problems (He
et al., 2021) and (Yu et al., 2020), as well as bench-
marking RL based solutions such as continuous con-
trol games (Duan et al., 2016) or new policy control
methods (Schulman et al., 2017).

The potential of RL is enhanced by the ability
to work both as model-free (Chen et al., 2019) and
(Yarats et al., 2021) as well as allowing users to em-
ploy and test various models to boost problem-solving
tasks (Moerland et al., 2023) and (Kaiser et al., 2019).
Due to its flexibility and power, RL has been proven
useful also in education (Nelson and Hoover, 2020),
(Lai et al., 2020) and (Paduraru. et al., 2022).

As part of a larger system being built to describe,
test and employ various model based solutions for AI
problems, a need was identified for an alternative RL
framework adapted to a more flexible and involved
approach as opposed to the most prominent solution
available, Gym/Gymnasium. This approach should
offer our framework advantages in streamlining ap-

a https://orcid.org/0000-0002-3744-8656
b https://orcid.org/0000-0002-2789-6009

plying RL to new problems and varied models as well
as being a platform to support students building and
testing RL solutions.

Contributions. The main contribution of this pa-
per is the introduction of a novel framework that
simplifies the implementation of new AI problems
and associated models, using reinforcement learning
to find solutions for those problems through experi-
ments. The framework is designed to be as transpar-
ent and flexible as possible, streamlining the core im-
plementation of RL. We demonstrate the usefulness of
this framework by modeling several classic problems,
highlighting its ease of use and potential applications.

Paper Organisation. Section 2 briefly describes
the challenges to adding Reinforcement Learning
support to solving AI problems. Section 3 presents
our framework and three example toy problems and
corresponding models within our framework. Sec-
tion 4 includes some experimental results, and we
conclude in Section 5.

2 RL AND GYMNASIUM

2.1 Reinforcement Learning

Reinforcement Learning (RL) is a generalisation of
Q-Learning (Watkins, 1989) introduced as a method
of combining the older “trial-and-error” learning as

412
Pistol, I. and Arusoaie, A.
AIM-RL: A New Framework Supporting Reinforcement Learning Experiments.
DOI: 10.5220/0012091100003538
In Proceedings of the 18th International Conference on Software Technologies (ICSOFT 2023), pages 412-419
ISBN: 978-989-758-665-1; ISSN: 2184-2833
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

well as delayed and probabilistic learning with the
training data independence provided by Monte Carlo
algorithms. The basic idea is that an agent explores
a state-based problem space initially at random then
guided by rewards provided according to a model
(usually a heuristic). The reward associated with each
step adjusts the score associated with the original state
and the step required to reach the current state in a ma-
trix of associations called a Q-table. This exploration,
repeated in enough epochs (from the initial state up to
a goal/fail state) should produce a Q-table which will
guide the agent so that it chooses the better rewarded
action, to a shorter path to the goal.

2.2 Gymnasium Approach

According to its authors (Brockman et al., 2016), the
Gym/Gymnasium framework was developed follow-
ing the principles:

• Environments, not agents: Separation of the prob-
lem environment, defined as everything particular
to a specific problem, from the agent itself.

• Emphasise sample complexity, not just final per-
formance: Metrics provided to measure both final
performance as well as performance at each epoch
and even each decision.

• Encourage peer review, not competition: Allow-
ing users to easily contribute their own ”agents”
(models) to the framework and compare them
with similar contributions.

• Strict versioning for environments: Each environ-
ment is associated with a version which would al-
low only compatible agents to be used in it.

• Monitoring by default: keeping a record of all ac-
tions taken while running an agent in an environ-
ment. Since it’s initial release, Gym/Gymnasium
has emerged as the most prominent open source
environment used by RL researchers and students,
with over 5000 references in scientific papers.

3 USING AIM-RL TO
IMPLEMENT EXPERIMENTS

In this section, we describe in more detail the AIM-
RL framework, and we illustrate its flexibility by
modelling several problems within this framework.
We aim to show that our approach allows users to eas-
ily customise and run their RL experiments.

3.1 The AIM-RL Design Principles

Developing AIM-RL we considered the main bene-
fits of RL as being its flexibility provided both by
training data independence and the ability to employ a
great variety of models to solve a wide range of prob-
lems. Our goal is to provide a framework suitable for
both students to learn and test, and for researchers to
quickly experiment with new problems and models.

Considering this, we viewed transparency as the
main objective, by allowing users full visibility and
control over all aspects of a RL environment, and flex-
ibility with regards to what types of models can be
employed to solve AI problems. Both complex mod-
els and policy functions as well as model-free solu-
tions can be implemented, minimising code redun-
dancy for various experiments. We also aimed to im-
prove reproductibility and analysis of the results by
making persistent profiles available for input parame-
ters, trained Q-tables and experimental results.

3.2 The AIM-RL Framework

AIM-RL was implemented as a Python package1

which can be compiled and installed via pip. The
main objective of our package was to provide a para-
metric implementation for RL that can be easily in-
stantiated on various problems and models.

The main component is the qlearning module
which includes the following function:
def qlearning(instance,

no_of_epochs,
epsilon,
alpha,
discount,
decay,
limit,
verbose=False,
discount_optimisation=True):

qlearning algorithm ...
return Q, results, solutions, rate

This method takes as input the description of a prob-
lem (i.e., a concrete implementation of the abstract
Model class described below in Section 3.2) and the
usual parameters for RL. When set, the verbose flag
prints the current epoch and the number of steps until
a solution is reached. The discount_optimisation
flag enables a linear decrease adjustment for the
discount parameter, and it is active by default. The
function returns a tuple (Q, results, solutions,
percentage). Q is the Q table as associations be-
tween a state, an action and a value. The solutions

1The source code, together with the experiments and
a README.md file which contains installation and running
instructions is available here: https://tinyurl.com/4mhx83yd

AIM-RL: A New Framework Supporting Reinforcement Learning Experiments

413

dictionary assigns to each epoch the number of steps
until a solution is found or the epoch is ended oth-
erwise, while the results dictionary stores all the
transitions made in every epoch. The rate value rep-
resents the ratio between the number of successful
epochs (when a solution has been reached) over the
total number of epochs.
The user can either call the above method directly
with the required parameters or he can define them
in a JSON file. In that configuration json file the user
can provide the following parameters:

• epsilon: the ε value(s) used to determine initial
random choice chance for the epsilon-greedy ap-
proach. If not needed, ε can be set to 0.

• decay: the decay factor value(s) for ε after each
epoch. Set the value to 1 if no decay is needed.

• alpha: the learning rate α value(s) used to weight
impact of new rewards on q-table updates.

• discount: the γ value(s) used to weight impact of
older updates of q-table values.

• epochs: the number of epochs tried for each run.

• limit: the maximum number of states visited in
each epoch. If reached, the current epoch ends.

• runs: the number of repeated runs for each con-
figuration of parameters.

• model: a list of references to models used in the
experiments. For each model the user has to im-
plement at least a reward function which will be
used to update the Q-table.

• generate graph: either true or false depending
whether the user wants the framework to generate
the graphical representations of each experiment.

• instances: a list of instances for the problem. For
every item in the list, every configuration is exe-
cuted. The format of an instance is up to the user
to establish and parse.
In the same configuration file multiple values can

be provided, as a list, for the epsilon, decay, alpha,
discount, model and instances parameters. In this case
the framework will perform a run for all possible com-
bination of these values. This can facilitate easy ex-
perimentation, the results can then be compared using
the outputted graphs and csv file (cf. Section 4).

The qlearning module also provides a function
for generating graphs using the matplotlib library.
The graphical representation includes for each epoch
the length of the solution found or the number of steps
made up to the end of the current epoch. It also in-
cludes the ratio of successful epochs.

A brief description of the steps required by the
user in order to employ this framework for a new

problem and new models is given below. In order to
run a new RL experiment two abstract classes have to
be implemented: State and Model.

The State abstract class has four abstract
methods: get_possible_actions() which returns
the next possible actions from the current state;
is_final() which returns true if the current state is
final; get_next(action) which, given an action, re-
turns the next state; and get_id(), which returns an
unique identifier for the current state.

The Model abstract class has three abstract
methods: get_no_of_actions() which returns
the total number of actions for the current problem
instance; get_initial_state() which returns
the initial state for the current problem instance;
and get_reward(state, next_state, action)
which returns the reward for the transition state to
next_state via action.

As explained above, our framework provides the
entire machinery for Reinforcement Learning at an
abstract level. Users are expected to plug in some
concrete implementations for the State and Model
abstract classes. Then, the only thing left is to write a
main.py program that uses these concrete implemen-
tation according to users’ needs. Here is a template
that we suggest for main.py:
from qlearning import aimrl as QL
from puzzleModel import PuzzleModel
from puzzleState import PuzzleState

def run(folder, fname, instance, no_of_epochs,
epsilon, alpha, discount, decay, limit):
Q, results, solutions, percentage =
QL.qlearning(instance, no_of_epochs,

epsilon, alpha, discount, decay,
limit, True, True)

QL.save_as_graph(results, solutions,
percentage, no_of_epochs, folder, fname)

return Q, results, solutions, percentage

Steps:
1) create instances of PuzzleState
and PuzzleModel
2) initialise parameters or read them
from the configuration file
3) describe at least one problem
instance or read them
from the configuration file
4) call run on the desired inputs

The QL.qlearning(...) call inside the run
function calls our Reinforcement Learning implemen-
tation. We use the same template for all the prob-
lems that we approach in this paper. While our pri-
mary goal was to develop a user-friendly framework
for experiments, we also considered performance. To
improve the efficiency, we utilised various Python
tricks such as substituting for loops for while loops
and using dictionaries instead of matrices, which was

ICSOFT 2023 - 18th International Conference on Software Technologies

414

also applied to the Q table. Additionally, we metic-
ulously streamlined the number of methods required
for users to implement, further optimising the frame-
work’s overall performance.

The components of the tuple returned by
QL.qlearning(...) can be used to generate a graph
using the QL.save_as_graph(...) function. An-
other output provided for all experiments ran using
AIM-RL is a csv file including values for2:

• graph: the random and unique generated name for
the graph representation of this run;

• model: the model used in this run;

• instance: the input used in this run;

• epsilon, decay, alpha and discount: RL parame-
ters used in this run;

• run: the run number identifier;

• time: the run duration, in milliseconds;

• percentage: the fraction of epochs ending in a goal
state versus the total number of epochs;

• Q size: the size of the final Q table (the total num-
ber of states explored in all epochs).

3.3 Implementation of 8-Puzzle

The 8-puzzle problem (Ratner and Warmuth, 1986)
and (Piltaver et al., 2012) is one of the classical
AI puzzles used to experiment new technologies and
methods developed. It consists of a 3× 3 grid with
eight numbered tiles and one blank space. The ob-
jective is to rearrange the tiles from their initial state
into a target state by sliding them one at a time into
the blank space. A more general formulation of this
problem consists in working with an m×n grid.

Implementing this problem using our Reinforce-
ment Learning package presented in Section 3.2 is
straightforward. First, we create a PuzzleState
class which inherits the State abstract class. In
PuzzleState we use the fields m and n as dimensions
of our grid, and a m×n-sized list A of values from 0
to m · n− 1, where 0 stands for the blank space. The
abstract methods of the State class are implemented
as explained below:

• get_possible_actions() returns the next pos-
sible actions from the current state, that is, a list of
values in the set {up, down, left, right}, where
each action is encoded as an integer. Note that the
returned list does not always include all the ac-
tions, because certain boundary conditions need
to be fulfilled.
2Examples for both graphs and csv files generated are

provided in Section 4.1.

• is_final() returns true if the list A is ordered,
no matter what is the position of the blank space.

• get_next(action) returns an instance of
PuzzleState which is the next state obtained
when sliding a tile as specified by action.

• the get_id() function returns a number which
uniquely identifies each state.

The abstract methods of the Model class are imple-
mented inside the PuzzleInstance class as follows:

• get_initial_state() returns the initial state as
an instance of PuzzleState, where m, n, and A
are provided by the user.

• get_no_of_actions() returns 4 because there is
a total of | {up,down,left,right} | actions.

• get_reward(state, next_state, action)

determines the rewards to be used to update the Q ta-
ble for the action applied to state which produces
next_state. Two different versions were tried here,
without changing any other details about the imple-
mentation. One implemented a basic model version
(no reward except for the goal state which rewards
100). The second uses the manhattan distance as re-
ward, except for the goal state which rewards 100.
Some details about the results are given in Section 4.

3.4 Implementation of Frozen Lake

The Frozen Lake problem (Brockman et al., 2016) is
a simple grid-world game where the agent has to nav-
igate a frozen lake represented as a two-dimensional
grid starting from an initial tile with the goal of reach-
ing a destination tile. Some tiles are thin ice (holes in
the overall ice cover) and when stepped one casues the
failure of the search. The player can only move one
tile at a time with no diagonal movement allowed.

The Frozen Lake state is an implementation of the
State abstract class. We use m and n as grid dimen-
sions, and we represent the grid itself as a m×n-sized
list A of labels in the set { ’S’, ’F’, ’H’, ’G’ }, where:

• ’S’ - stands for the start position;

• ’G’ - stands for the goal position;

• ’F’ - represents a frozen tile; and

• ’H’ - represents a hole (thin ice).

In addition, we also keep a poz field which holds the
current position of the player in A. The abstract meth-
ods of the State class are implemented as below:

• get_possible_actions() returns the next pos-
sible actions of the player, that is, a list of values
in the set {up, down, left, right}, where each
action is encoded as an integer. The returned list

AIM-RL: A New Framework Supporting Reinforcement Learning Experiments

415

does not always include all the actions, because
certain boundary conditions need to be true.

• is_final() checks if the current state deter-
mines the end of the epoch and returns an integer
value. The possible values returned are 0 for fail
(the current state is not final), 1 for success (a goal
has been reached) or greater than 1 for additional
end states. An additional end state is determined
when stepping on a hole in the ice (H tile).

• get_next(action) returns an instance of
FLState which is the next state obtained when
player moves on a tile specified by action.

• the get_id() function returns poz which
uniquely identifies each state.
The abstract methods of the Model class are

implemented inside the FrozenLakeModel class.
The get_initial_state() returns the initial state
as an instance of FrozenLakeState, where m, n,
A are user provided. The get_no_of_actions()
returns 4 because there are only four actions. The
get_reward(state, next_state, action) was
tried in two versions, one model-free (maxReward for
goal, 0 otherwise), and one a model using the reward
heuristic get reward(state, next state, action):

mR, if isFinal(next state) = 1
−100, if isFinal(next state) >1
poz(state)−goal, otherwise.

(1)

The results are discussed in Section 4.

3.5 Implementation of Mountain Car

Mountain Car (Sutton, 1995) and (Heidrich-Meisner
and Igel, 2008) is yet another classic problem often
used in reinforcement learning experiments. The ob-
jective is to train an agent to move a car from the
bottom of a valley up a steep hill to a specific goal
position located at the top of another hill. The car
is subject to gravity and friction, so it cannot simply
drive up the hill. Instead, it must first gain momentum
by moving back and forth in the valley, building up
enough speed to eventually make it up the hill to the
goal position. The agent must learn how to balance
the need to move back and forth to build up momen-
tum with the need to move up the hill towards the goal
position. This problem is challenging for RL agents
because of the sparse rewards and the long-term de-
pendencies between actions and rewards.

Unlike 8-Puzzle and Frozen Lake, this problem
has a completely different notion of state, and it is a
good example for illustrating how versatile our frame-
work is. A state in MountainState includes:

• spot- represents the position of the car on a curved
(sinusoidal) line, the initial spot value being -0.5;

• velocity - represents the velocity of the car (posi-
tive for movement to the right, negative for left),
the initial velocity being 0;

• force - the force with which the car accelerates;

• gravity - the gravitational acceleration;

• current step - the step in the current epoch.

The MountainState class implements the following:

• get_possible_actions() returns the next pos-
sible actions of the player, that is, a list of values
in the set {push_left, push_right, dont_push;

• get_next(action) returns an instance of
MountainState where the velocity is updated
according to the formula

v = v+(a−1)∗ f − cos(3∗ spot)∗g (2)

and the spot is updated as spot = spot+ v;

• the get_id() function returns a pair (spot,v)
which uniquely identifies each state.

In MountainCarInstance two different rewards
were implemented: (1) a basic model version which
assigns -1 reward for each step if not reaching the goal
spot which rewards maxReward; and (2) a more com-
plicated reward heuristic get rewards(s, s’, a):

−(spot−0.5+ v), if a = left
spot+ v if a = dont push,
(spot− v−1) otherwise.

(3)

The results are included in Section 4.

4 EXPERIMENTAL RESULTS

We performed a series of experiments for the three
implemented problems described previously. For
simplicity of explanation we used similar parameters
configuration files for all three, which were:
{

"epsilon" : [1.0],
"decay": [0.9],
"alpha" : [0.1, 0.5, 0.9],
"discount" : [0.1, 0.5, 0.9],
"no_of_epochs" : 200,
"limit": 100000,
"runs" : 2,
"generate-graph" : true,

}

The model and instances parameters were specific
for each problem and are indicated below. Multiple
values were tested for both alpha and discount since

ICSOFT 2023 - 18th International Conference on Software Technologies

416

Table 1: Sample of the csv file for the 8-puzzle experiments.

graph model instance epsilon decay alpha discount run time percentage Qsize
fxttgdplljwpodu 0 [2, 5, 3, 1, 0, 6, 4, 7, 8] 1 0.9 0.5 0.9 1 60534.84 88.5 181431
vapbgsvfikmmcny 1 [2, 5, 3, 1, 0, 6, 4, 7, 8] 1 0.9 0.1 0.1 0 2363.86 100 63999
oglcuwowsaxikcg 0 [2, 7, 5, 0, 8, 4, 3, 1, 6] 1 0.9 0.5 0.5 1 72751.35 84 181431
wbqtvnpdmuezgur 1 [2, 7, 5, 0, 8, 4, 3, 1, 6] 1 0.9 0.1 0.1 1 180027.93 28 124819
njodxxsxttnwfae 0 [8, 6, 7, 2, 5, 4, 0, 3, 1] 1 0.9 0.5 0.9 1 73698.61 84.5 181431
eklikltolpownxu 1 [8, 6, 7, 2, 5, 4, 0, 3, 1] 1 0.9 0.1 0.5 1 166346.21 35 136110

these are the two most frequently adjusted parameters
in RL experiments. The results for each of the three
problems are briefly discussed below. The examples
provided are not the extreme cases. Since the pur-
pose of this paper in not to evaluate certain models
or reward functions, they are provided just to indicate
potential benefits to evaluating and adjusting the ex-
periment’s parameters and associated models.

4.1 8-Puzzle

For the classic 8-puzzle problem we ran a series of ex-
periments using the configurations described in Sec-
tion 3.3 with a limit of 100 000 steps for each epoch.
A sample of the generated csv file including the re-
sults for three instances (with short, medium and long
optimal solutions) are shown in Table 1. The com-
plete file is included in the archive provided3.

Even in the sample results you can easily make
some relevant observations: the first model (model 0)
works reasonably well for all instances and is virtu-
ally unaffected by the length of the solution with re-
gards to the number of epochs required to reach a rea-
sonable performance, while also being the most con-
sistent over different runs with the same parameters.
Also, this model generates the largest Q-table, explor-
ing close to all 181 440 states which can reach a solu-
tion for the 8-puzzle problem (Johnson et al., 1879).

Figure 1: Sample representation of a run for 8-puzzle.

3https://tinyurl.com/4mhx83yd

The second model, using the manhattan distance,
performs the best overall for the shortest-solution in-
stance, but would probably require more epochs to
reach the same performance for the other instances.
The number of explored states is significantly less
than for the previous model. This indicates that the
reason for the poorer performance for the more dif-
ficult instances is a tendency to reward too greatly
approaching the goal state which impedes the explo-
ration of possible paths to the goal. A sample of a
graphical representation of the second run in Table1
is shown in Figure 1.

Various data could be extracted from these results
with regards to the impact of the epsilon, decay, al-
pha and discount parameters. For example, using the
data provided by the AIM-RL output, we can observe
a correlation between the training rate, the discount
rate and the average size of the Q-tables built in vari-
ous runs. In Table 2 we can see that a higher training
rate seems to contribute to a significant reduction in
the number of explored states. Similar statistics can
be produced for particular models or instances, which
could lead to potential adjustments of these parame-
ters or of the reward function.

4.2 Frozen Lake

The experiments used the same instance as exempli-
fied in Gym/Gymnasium in the discrete (8) example4,
which is a 8x8 size square matrix with 7 hidden areas.
The run in Figure 2 was generated for the first model
with the parameters epsilon = 1, decay = 0.9, alpha =
0.9 and discount = 0.5. The association between the
other details of a run, included in the csv file, and the
generated graphical representation is made by using
the name of the generated file, as indicated in Sec-

Table 2: The impact of α and γ over the average number of
explored states.

α = 0.1 α = 0.5 α = 0.9
γ = 0.1 151029.75 130502.5 125424.75
γ = 0.5 145733.1667 139352.1667 126577.4167
γ = 0.9 151429.0833 137933.75 128731.5833

4https://gymnasium.farama.org/environments/toy text/
frozen lake/

AIM-RL: A New Framework Supporting Reinforcement Learning Experiments

417

Figure 2: Sample representation of a run for FrozenLake.

tion 3.2. Using just this graph we can make various
observations about this experiment:

• Very good performance after the initial 35 epochs:
a solution (generally the shortest path) is found in
96.5% of epochs.

• This model with these parameters requires about
30 epochs from reaching a solution to stabilising
to the shortest one. An anomalous epoch is still
apparent after the stabilisation, probably due to
a catastrophic decision made early on by random
chance given by the always non-zero epsilon.

Looking at the entire set of generated graphs can also
provide significant insights into the way various mod-
els and parameters influence the training outcome.

4.3 Mountain Car

The mountain car experiments have made apparent
the difficulty in handling control problems where the
association between actions and reaching the goal
state is less significant. The instance parameters
were selected to be identical to those used in the
Gym/Gymnasium discrete(3) example5. Due to the
fact that an epoch can end if the car exists the limits
of the (−1,1) range, and the car starts at −0.5, the
initial epoch tend to fail by the agent passing the left
side limit as seen in Figure 3. After it learns that the
goal is to the right (after about 50 epochs), it always
finds a solution even if it is of varied length.

From the csv file (included in the mentioned
archive) the user can also make a series of interest-
ing observations. One observation is that the second
more complex model explores significantly less states
(which is of especially significance for this problem

5https://gymnasium.farama.org/environments/
classic control/mountain car/

Figure 3: Sample representation of a run for MountainCar.

with an extreme amount of states), even if it success-
fully completes just slightly more epochs than the ba-
sic model. Another interesting observation is that the
training rate has a more prominent influence over the
average Q-table size than the discount rate, for both
models, with the better value from the three tried be-
ing 0.9 with an approximate of 86% reduction of the
Q-table size as opposed to the next best value of 0.5.

5 CONCLUSIONS

Gym/Gymnasium is the most feature rich framework
for implementing and executing RL tasks, with a wide
range of implemented problems and models (envi-
ronments). As an alternative to it, AIM-RL aims to
cover particular use cases when the requirements are
focused on transparency and flexibility, allowing the
user to both implement RL experiments for any prob-
lem and any model with minimum code overhead,
as well as observing the results and applying correc-
tions to the experiments parameters. In section 3.2
we have shown the steps required within AIM-RL in
order to implement a new problem and a new model
from scratch. For the three problems described the
effort is similar and proportional to the complexity of
the problem and the model employed. Efforts have
been made to optimise the speed of execution of the
actual RL, while also providing to the user metrics
to evaluate the performance of his experiments. The
results are presented in both numerical and graphical
representations, as shown in 4.1.

5.1 Future Work

Our framework is already available as a Python pack-
age, with immediate plans to be used in several di-

ICSOFT 2023 - 18th International Conference on Software Technologies

418

dactic and research RL applications. The very near
future development plans for AIM-RL include the
extension to allow as an option Deep Q-Learning
(François-Lavet et al., 2018) as well as alternatives
to the ε-greedy selection such as Randomised Proba-
bility Matching (Scott, 2010). As a later development
we plan to facilitate the usage of AIM-RL as a sup-
port framework for e-learning by adding a graphical
UI and a validator for implemented models.

REFERENCES

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. (2016). Ope-
nai gym. arXiv preprint arXiv:1606.01540.

Chen, J., Yuan, B., and Tomizuka, M. (2019). Model-free
deep reinforcement learning for urban autonomous
driving. In IEEE intelligent transportation systems
conference (ITSC), pages 2765–2771. IEEE.

Duan, Y., Chen, X., Houthooft, R., Schulman, J., and
Abbeel, P. (2016). Benchmarking deep reinforce-
ment learning for continuous control. In International
conference on machine learning, pages 1329–1338.
PMLR.

François-Lavet, V., Henderson, P., Islam, R., Bellemare,
M. G., Pineau, J., et al. (2018). An introduction
to deep reinforcement learning. Foundations and
Trends® in Machine Learning, 11(3-4):219–354.

He, X., Zhao, K., and Chu, X. (2021). Automl: A sur-
vey of the state-of-the-art. Knowledge-Based Systems,
212:106622.

Heidrich-Meisner, V. and Igel, C. (2008). Variable metric
reinforcement learning methods applied to the noisy
mountain car problem. In Recent Advances in Rein-
forcement Learning: 8th European Workshop, EWRL
2008, Villeneuve d’Ascq, France, June 30-July 3,
2008, Revised and Selected Papers 8, pages 136–150.
Springer.

Johnson, W. W., Story, W. E., et al. (1879). Notes on
the “15” puzzle. American Journal of Mathematics,
2(4):397–404.

Kaiser, L., Babaeizadeh, M., Milos, P., Osinski, B., Camp-
bell, R. H., Czechowski, K., Erhan, D., Finn, C.,
Kozakowski, P., Levine, S., et al. (2019). Model-
based reinforcement learning for atari. arXiv preprint
arXiv:1903.00374.

Lai, K.-H., Zha, D., Li, Y., and Hu, X. (2020). Dual policy
distillation. arXiv preprint arXiv:2006.04061.

Moerland, T. M., Broekens, J., Plaat, A., Jonker, C. M.,
et al. (2023). Model-based reinforcement learning: A
survey. Foundations and Trends® in Machine Learn-
ing, 16(1):1–118.

Nelson, M. J. and Hoover, A. K. (2020). Notes on using
google colaboratory in ai education. In Proceedings
of the ACM conference on innovation and Technology
in Computer Science Education, pages 533–534.

Paduraru., C., Paduraru., M., and Iordache., S. (2022). Us-
ing deep reinforcement learning to build intelligent

tutoring systems. In Proceedings of the 17th Inter-
national Conference on Software Technologies, pages
288–298. INSTICC, SciTePress.

Piltaver, R., Luštrek, M., and Gams, M. (2012). The
pathology of heuristic search in the 8-puzzle. Journal
of Experimental & Theoretical Artificial Intelligence,
24(1):65–94.

Ratner, D. and Warmuth, M. K. (1986). Finding a short-
est solution for the n× n extension of the 15-puzzle is
intractable. In AAAI, volume 86, pages 168–172.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. (2017). Proximal policy optimization al-
gorithms. arXiv preprint arXiv:1707.06347.

Scott, S. L. (2010). A modern bayesian look at the multi-
armed bandit. Applied Stochastic Models in Business
and Industry, 26(6):639–658.

Sutton, R. S. (1995). Generalization in reinforcement learn-
ing: Successful examples using sparse coarse coding.
Advances in neural information processing systems, 8.

Watkins, C. J. C. H. (1989). Learning from delayed rewards.
PhD thesis, King’s College, Cambridge United King-
dom.

Yarats, D., Zhang, A., Kostrikov, I., Amos, B., Pineau, J.,
and Fergus, R. (2021). Improving sample efficiency
in model-free reinforcement learning from images. In
Proceedings of the AAAI Conference on Artificial In-
telligence, volume 35, no 12, pages 10674–10681.

Yu, T., Quillen, D., He, Z., Julian, R., Hausman, K., Finn,
C., and Levine, S. (2020). Meta-world: A benchmark
and evaluation for multi-task and meta reinforcement
learning. In Conference on robot learning, pages
1094–1100. PMLR.

AIM-RL: A New Framework Supporting Reinforcement Learning Experiments

419

