
XACML Extension for Graphs: Flexible Authorization Policy
Specification and Datastore-Independent Enforcement

Aya Mohamed1,2 a, Dagmar Auer1,2 b, Daniel Hofer1,2 c and Josef Küng1,2 d

1Institute of Application-oriented Knowledge Processing, Johannes Kepler University Linz, Linz, Austria
2LIT Secure and Correct Systems Lab, Johannes Kepler University Linz, Linz, Austria

Keywords: Access Control, Authorization Policy, Graph-Structured Data, Graph Database, Cypher, Neo4j, XACML.

Abstract: The increasing use of graph-structured data for business- and privacy-critical applications requires sophisti-
cated, flexible and fine-grained authorization and access control. Currently, role-based access control is sup-
ported in graph databases, where access to objects is restricted via roles. This does not take special properties
of graphs into account, such as vertices and edges along the path between a given subject and resource. In our
previous research iterations, we started to design an authorization policy language and access control model,
which considers the specification of graph paths and enforces them in the multi-model database ArangoDB.
Since this approach is promising to consider graph characteristics in data protection, we improve the language
in this work to provide flexible path definitions and specifying edges as protected resources. Furthermore, we
introduce a method for a datastore-independent policy enforcement. Besides discussing the latest work in our
XACML4G model, which is an extension to the Extensible Access Control Markup Language (XACML), we
demonstrate our prototypical implementation with a real case giving an outlook on performance.

1 INTRODUCTION

With the increasing use of graph databases for
business- and privacy-critical applications, not only
the continuous growth of data and its complexity must
be considered but also advanced, flexible, and fine-
grained authorization and access control. Access con-
trol protects assets and private information against
unauthorized access by potentially malicious parties.
Authorization is the process and result of specifying
access rights in terms of who (subject) can perform
what (action) on which resource (Jøsang, 2017). An
authorization policy defines access rights in one or
more sets of rules using some policy language. Ex-
isting policy languages do not yet consider graph-
specific characteristics.

A graph is a set of vertices, which can be related to
each other in pairs by edges. In graph databases, both
vertices and edges are stored and accessed as entities.
Thus, vertices can be also considered in the context of
their relationships to other vertices, even over longer

a https://orcid.org/0000-0001-8972-6251
b https://orcid.org/0000-0001-5094-2248
c https://orcid.org/0000-0003-0310-1942
d https://orcid.org/0000-0002-9858-837X

paths, i.e. sequences of alternating vertices and edges.
Consider a knowledge graph with data objects and

tasks as vertex entities. We need to describe a path
in the authorization policy with constraints on the at-
tributes of subject and resource data object vertices.
Moreover, a task vertex has to exist somewhere along
this path having a connecting edge with certain values
for its attributes.

We worked on attribute-level path constraints in
previous research iterations (see Section 3.3) result-
ing in initial versions of our model called XACML for
Graphs (XACML4G). The policy language and access
control model support constraints on paths, but each
element of the path must be described in detail. Fur-
thermore, only graphs in ArangoDB are supported.

Our current research deals with the open issues
from these earlier iterations as well as further input
from related work. We contribute the following re-
sults to the XACML4G model and prototype:

• Flexible path specification in XACML4G autho-
rization policies without defining every vertex and
edge in the path pattern.

• Edges are also considered as resources.

• A datastore-independent enforcement model us-
ing a source-subset graph.

442
Mohamed, A., Auer, D., Hofer, D. and KÃijng, J.
XACML Extension for Graphs: Flexible Authorization Policy Specification and Datastore-Independent Enforcement.
DOI: 10.5220/0012090000003555
In Proceedings of the 20th International Conference on Security and Cryptography (SECRYPT 2023), pages 442-449
ISBN: 978-989-758-666-8; ISSN: 2184-7711
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)



• Support path-related attributes in the XACML4G
policy and request by extending an established
XACML implementation.

• A proof of concept prototype of the extended
XACML4G language and architecture, imple-
menting flexible authorization policy specification
and datastore-independent enforcement.

• A demo case to show the extended XACML4G
policy definition and enforcement as well as han-
dling XACML4G requests.
The rest of the paper is structured as follows.

In Section 2, we give an overview of our research
method and research questions. Section 3 describes
relevant access control models, technologies, and re-
sults of our previous research iterations. The pol-
icy language and enforcement details of our current
XACML4G extension are explained in Section 4.
Section 5 gives details about our prototypical imple-
mentation and a demo case. In Section 6, we inves-
tigate the performance of the implemented prototype
compared with XACML and our previous work. The
paper concludes with a summary and an outlook on
future work in Section 7.

2 RESEARCH METHOD

We follow a design science research (DSR) method
(Hevner et al., 2004) and thus, focus on problem solv-
ing to enhance human knowledge by designing ar-
tifacts. The requirements for authorization and ac-
cess control in the context of graph-structured data
originate from a real-world problem in the domain
of IT-supported knowledge work in a patent law firm
(Hübscher et al., 2021).

Concepts, prototypes and knowledge are de-
signed, developed and evaluated in an iterative re-
search process in two complementary projects with
partners from business and research. While the first
two iterations were strongly driven by the needs of
our business partner, we now generalize the concept
to be flexible, adaptable and datastore-independent.

We discuss the results of our previous iterations,
approaches and technologies, i.e., our DSR knowl-
edge base, in Section 3. In the current research itera-
tion, we focus on the following research questions:
RQ1. What are the main challenges for a flexible

definition and datastore-independent enforce-
ment of XACML4G path constraints?

RQ2. What are suitable concepts for designing the
identified challenges?

RQ3. Can a prototype implementation of the concept
be provided and applied to real-world cases?

To evaluate our design, we focus on analytical
proofs and feedback circles with our project partners
for RQ1 and RQ2. Concerning RQ3, we implement
a proof of concept prototype, showing its feasibility
on a generated dataset from the patent and trademark
prosecution domain (see Section 5). We overcome the
limitations regarding flexible definition of path con-
straints and generally applicable enforcement.

3 RELATED WORK

Besides the related access control models to protect
graph-structured data, we introduce the models and
technological background as well as the main results
of our previous research iterations.

3.1 Access Control Models

Current graph and multi-model database systems pro-
vide role-based access control (RBAC), e.g., Neo4j1,
Microsoft Azure CosmosDB2, and ArangoDB3. How-
ever, RBAC is not sufficient as it neither considers
protecting data via restrictions on paths in the graph
nor takes entity properties into account.

Protecting graph-structured data requires to con-
strain the path from the subject to the resource by
content, not only by properties such as depth, type or
trust level as in several relation-based access control
(ReBAC) models (Fong, 2011; Cheng et al., 2016).
ReBAC is based on evaluating relationships between
subjects and resources. The lack of a common defi-
nition of ReBAC led to a number of domain-specific
models with rather ad-hoc enforcement models and
implementations. Clark et al. (2022) consider Re-
BAC policies as graph queries and formalize their
ReBAC query language ReLOG according to the lan-
guage features derived from comparing ReBAC mod-
els. Most ReLOG features are already supported in
our previous XACML4G versions, such as querying
basic graph patterns, mutual exclusion constraints, ar-
bitrary path semantics, path negation, parameterized
queries, and the any predicate. Path patterns do not
need to describe the overall path from subject to re-
source in ReLOG, which is an open issue in previ-
ous XACML4G versions, but will be considered in
the current research. ReLOG is based on regular
property-graph logic and introduces custom functions
to overcome the limited expressiveness of the policy
language. Whenever the policy is changed, functions

1Role-based access control in Neo4j enterprise edition
2Azure role-based access control in Azure Cosmos DB
3Access control in the ArangoGraph Insights Platform

XACML Extension for Graphs: Flexible Authorization Policy Specification and Datastore-Independent Enforcement

443



need to be added or changed. But with ReLog, fine-
grained access control and an implementation are still
open issues. Furthermore, ReLog (like our previous
works) does not consider edges as resources worth
protecting like vertices, although both are equivalent
elements in the graph model.

Neither RBAC nor comprehensive ReBAC mod-
els support fine-grained access control applying con-
straints on the entities to be protected. Attribute-based
access control (ABAC) (Hu et al., 2017) overcomes
this limitation. Constraints can be defined at the at-
tribute level for subjects, resources, actions to be per-
formed, and environment conditions. Unlike ReBAC,
the ABAC model lacks the natural specification of re-
lationships between subject and resource. The com-
parison of ABAC and ReBAC in Ahmed et al. (2017)
shows that ABAC models are more expressive.

3.2 Models and Technologies

Braun et al. (2008) regard XML-based models, like
XACML, as the closest to graph-related requirements.
Thus, we rely on XACML as it is considered the
defacto standard for managing and enforcing fine-
grained privileges, e.g., Wu et al. (2006) and the
PRIMA system (Lorch et al., 2003). As our cur-
rent design relies on a graph database to enforce
XACML4G policies, we further discuss the graph
query language Cypher and the graph database Neo4j.

3.2.1 XACML

XACML is the abbreviation of eXtensible Access
Control Markup Language. It is an OASIS approved
standard for access control established in 2001. The
policy language model of XACML is XML-based
having the three main components: rule, policy, and
policy set. Firstly, rule is the basic element having an
effect (i.e., permit or deny) as well as an optional tar-
get and condition. A target is a combination of zero or
more subjects, resources, actions, and environment at-
tributes. A policy is comprised of zero or more rules,
a rule combining algorithm, and a target. A policy set
is a composite element consisting of a target, a policy
combining algorithm besides zero or more policy sets
and policies. A rule, policy, or policy set is applicable
when its target attributes match those in the request.

XACML is not only a policy language, but also
a processing model (i.e., architecture, workflow, and
methodology) for evaluating access requests. The
data flow between the XACML conceptual units is
visualized in Figure 1. Additionally, XACML pro-
vides extension points for defining custom combining
algorithms, attribute providers, policy providers, data
types, and functions.

Figure 1: XACML reference architecture and extension.

The policy administration point (PAP) manages
policies, which will be used in evaluating access re-
quests, with respect to authoring and deployment (1).
The policy enforcement point (PEP) receives the ac-
cess request from the user (2), maps it to the XACML
request native format and sends it to the context han-
dler (3). Furthermore, the PEP fulfills obligations,
i.e., operations carried out during the policy enforce-
ment phase (13). The context handler converts access
requests from the native format to the XACML canon-
ical form (4) and vice versa for the response (12). It
also acts as an intermediate entity between the pol-
icy decision point (PDP) and the policy information
point (PIP). The PDP requests subject, resource, ac-
tion, environment, and other custom attributes from
the context handler (5). The context handler requests
the attributes from the PIP (6), retrieves them from
the respective entities (7) and returns them to the con-
text handler (8). The context handler further option-
ally includes the resource in the context (9). Finally,
the results are sent to the PDP (10) for evaluating the
policies and making authorization decisions (11).

3.2.2 Cypher Query Language

Several query languages are proposed for property
graphs such as PGQL (van Rest et al., 2016), Grem-
lin4, Blueprints5, G-CORE (Angles et al., 2018), or
Cypher6. Furthermore, the Graph Query Language
(GQL)7 ISO standard, comparable to SQL for rela-
tional data, is in development.

Cypher is a declarative query language for prop-
erty graphs and has a syntax inspired by SQL. It al-
lows to easily express graph patterns as well as path
queries. Cypher was originally created by Neo4j and
contributed to the open-source project openCypher in
2015. It is not only used with Neo4j, but also with
other graph databases (e.g., Amazon Neptune and

4https://tinkerpop.apache.org/gremlin.html
5https://github.com/tinkerpop/blueprints/wiki
6https://opencypher.org/
7https://www.gqlstandards.org/

SECRYPT 2023 - 20th International Conference on Security and Cryptography

444



SAP HANA Graph). Due to its expressiveness, flex-
ibility, and significant contribution to GQL, we de-
cided for Cypher to process and evaluate the patterns
in XACML4G authorization policies.

3.2.3 Neo4j

Neo4j8 is a native graph database implementing the
property graph model in Java. The data is struc-
tured in terms of nodes and relationships. It sup-
ports schema-free and schema-optional use and is cur-
rently available in the open source Community Edi-
tion (GPL v3) and the commercial Enterprise Edition.
In over 20 years, they established their position as
world market leader in graph databases9 with signifi-
cant evolution and an active community.

The Neo4j database is directly accessed and
queried using the declarative query language Cypher.
Furthermore, it provides means to load data from dif-
ferent sources, which is needed for implementing our
demo cases. Thus, we decided to use Neo4j to process
and evaluate XACML4G policies.

3.3 Previous Results

In Mohamed et al. (2021a), we presented a prelim-
inary approach to define and enforce graph-specific
authorizations. We proposed a model for expressing
fine-grained constraints on vertex and edge proper-
ties along the path between a subject and resource.
We introduced a JSON-formatted authorization pol-
icy based on the XACML policy structure and pro-
vided a proprietary pattern enforcement. The con-
cept and prototype are restricted to the multi-model
database ArangoDB.

Our subsequent work (Mohamed et al., 2021b)
proves the concept in the context of XACML. We
provide a formal grammar for the extended XACML
policy and request. Furthermore, the reference archi-
tecture of XACML is extended to enforce the newly
introduced element (i.e., pattern) using the extensibil-
ity points of the standard functional components. This
XACML extension has the expressiveness of standard
XACML in addition to considering path constraints
for graph-structured data. However, the complete
path between a given subject and resource needs to be
defined. Moreover, the policy is processed in advance
to generate a query for each rule having a pattern as
well as a XACML condition associated to the pattern
identifier to evaluate the pattern in the request evalu-
ation phase. This is because the pattern is an exten-
sion and cannot be evaluated directly by the XACML

8https://neo4j.com/docs/
9https://db-engines.com/en/ranking/graph+dbms

model. Requests are also processed to extract the sub-
ject and resource from the path attributes to be used in
the policy matching by XACML. The other attributes
are used for the pattern evaluation. This model is
based on ArangoDB along with its query language
AQL and thus, needs further implementation to be
used with other graph databases.

4 APPROACH

In this section, we illustrate the extended XACML4G
policy and request language. We explain the proposed
extensions of the XACML architecture, whether pro-
prietary or using extensibility points. Moreover, we
discuss the policy decision procedures on the concep-
tual level. We provide the source code of our proto-
type, an XML schema definition (XSD) of the new
elements, a demo case, and the full version of this pa-
per in our documentation10.

4.1 Challenges

According to the results of our previous research it-
erations and related work, we identify the following
challenges:

• Flexible number of hops between two path ver-
tices without specifying every path element.

• Pattern-related conditions (e.g., joining conditions
between path elements).

• A datastore-independent enforcement model of
XACML4G policies for property-graph compat-
ible datastores.

4.2 Policy Language Extension

In the following, we explain the policy, rule, and re-
quest structure of XACML4G.

4.2.1 XACML4G Policy

The XACML4G policy is extended with a new ele-
ment Meta to specify the entities of vertices and edges
used in evaluating the policy. We manage the de-
fined subset of the overall source data in an indepen-
dent graph, which we call, according to its purpose,
source-subset graph.

The meta element is composed of Vertices and
Edges as XML tags. The vertices element lists at least
one node label in the source graph using a tag called
VertexEntity. The same applies to the relationships
types, but using an EdgeEntity tag.

10XACML extension for graphs documentation

XACML Extension for Graphs: Flexible Authorization Policy Specification and Datastore-Independent Enforcement

445



4.2.2 XACML4G Rule

The XML schema of the XACML rule is extended by
adding two elements, Pattern and PatternCondition.
The pattern element is already introduced in our pre-
vious research iterations. It is structured as a recursive
path consisting of a vertex, an edge, and either another
vertex (i.e., the base case) or an entire path. Although
the pattern definition does not change, the elements
within the path are enhanced to support flexible pat-
terns. Thus, there is no need to specify every vertex
and edge along the path anymore.

The path vertex and edge elements express the pat-
tern constraints by specifying the attributes and their
values as a sequence of AnyOf, like in the XACML
target. An optional attribute Label is added to spec-
ify the entity/collection to which the vertex belongs.
We consider the label as part of the vertex definition,
not a property to be matched against a value. The ver-
tex has an attribute Category indicating whether it is a
subject, a resource, or belongs to the path. The subject
and resource categories are predefined by XACML
while the path category is defined in XACML4G to
handle the path vertices differently. An attribute rep-
resenting the identifier of the vertex element is called
VertexId. The identifiers are mainly used to join ver-
tices or edges in the pattern condition element.

Constraints of the edge are structured like the ver-
tex. The edge element is identified by an EdgeId at-
tribute and can belong to the path or resource category
only. The direction of the edge (e.g., inbound, out-
bound, or any) can be indicated by an attribute called
Direction. Length, MinLength, and MaxLength are
newly added attributes for pattern flexibility by spec-
ifying a range for some part of the path. An attribute
called Type is also introduced to specify the edge type.

Pattern condition is another new element. It de-
scribes constraints and joining conditions that are
related to the path elements of the pattern within
the same rule. Elements of the pattern condition
have the same structure as the XACML Apply ele-
ment, but its AttributeDesignator is extended to in-
clude a VertexId or an EdgeId attribute represent-
ing the variable defined for a vertex or an edge in
the rule pattern. Accordingly, the category property
should be either xacml4g:1.0:path-category:vertex or
xacml4g:1.0:path-category:edge.

Furthermore, the FunctionId attribute of the Apply
should be one of our defined XACML4G functions.
For now, we support conjunction, disjunction, com-
parison operators (i.e., =, !=, <, ≤, >, and ≥), and
some string functions (e.g., contains and starts with).
The function URI (e.g., xacml4g:1.0:function:and)
is then translated to the corresponding operation in
Cypher during the dynamic query generation in the

request evaluation phase.

4.2.3 XACML4G Request

The standard XACML access request consists of a se-
quence of attributes related to the subject, resource,
and action. Each request attribute has an attribute id,
a data type and a value. In Mohamed et al. (2021b),
we extended the XACML request to differentiate be-
tween the attributes’ types (i.e., action and path) with-
out changing their structure. The path attributes are
needed in matching requests against policies, espe-
cially subject and resource attributes, as well as dur-
ing the pattern evaluation in the PIP. Therefore, we
define a path category to which all vertices other than
subject and resource belong.

In this work, we are extending the request with re-
spect to language and its processing. The action and
path elements are defined as a sequence of the stan-
dard XACML Attributes consisting of an attribute el-
ement having an identifier (i.e., AttributeId) as a prop-
erty and an element for the value (i.e., AttributeValue).
The definition of the Attributes element is extended to
optionally include an attribute called Type to represent
whether it is a vertex or an edge.

For the path attributes, we need to describe not
only the category, entity, and value for a vertex (or a
resource edge), but also to which property this value
belongs. Therefore, we define the property name and
value in the AttributeValue tag separated by a colon.
We also use this format to specify the identifier name
and value of a vertex or a resource edge in the request
since the naming convention of the identifier property
could vary from a data source to another.

Several components of the XACML architecture,
i.e., context handler, PAP, PIP and PDP, are extended
as illustrated in Figure 1 to handle the language-
specific extensions according to the proposed en-
forcement concept.

4.3 Architecture Extension

To apply the XACML4G language extensions, the
policy enforcement model is extended to deal with
paths in the XACML4G requests and match them
against patterns within rules of the XACML4G pol-
icy evaluating the pattern conditions as well. We pro-
pose a datastore-independent enforcement concept to
evaluate the policy from various data sources without
changing the core model. We introduce an optional
property graph called source-subset graph containing
the source data needed to evaluate the policy.

Firstly, the policy administration point (PAP) is
extended to parse the policy files and extract the meta

SECRYPT 2023 - 20th International Conference on Security and Cryptography

446



element to create the source-subset graph indepen-
dently of the request evaluation (refer to XACML4G
create source-subset graph extension in Figure 1).
The values of the VertexEntity and EdgeEntity ele-
ments represent the node labels and relationship types
in a graph. The source-subset graph can be cre-
ated from multiple data sources including flat files
or database systems. The only requirement is that
the data model can be mapped to the property graph
model. Our model can be also configured to directly
interact with the source datastore instead of the op-
tional source-subset graph.

The context handler receiving the access requests
is extended to parse the path and action attributes,
which are used in policy matching by XACML as well
as generating a Cypher pattern for the request path
attributes by XACML4G. This is done by extending
an established open source XACML implementation
(see Section 5.1), to extract the path attributes and use
them in the policy evaluation phase.

The policy information point (PIP) is extended to
automatically handle the policy attributes related to
the vertex label and edge type as well as the cus-
tom attributes representing the pattern identifier of the
rule being evaluated. A Cypher pattern and a where
statement are dynamically generated from the pattern
and pattern condition elements to evaluate the pattern-
related attributes (refer to XACML4G generate pat-
tern query extension in Figure 1).

When the target of the policy is matched with
the subject, resource, action, and environment at-
tributes in the request, the XACML policy decision
point (PDP) proceeds with evaluating the policy rules
to determine the access decision. Before evaluating
the conditions of the matched policy rules, an addi-
tional XACML condition is appended for the rules
having a pattern. This condition is specific to eval-
uating the XACML4G pattern and its conditions (see
XACML4G evaluate pattern in Figure 1). The con-
dition evaluation is successful if the query returns a
result (i.e., true). The query is generated in the PIP
according to the pattern and its conditions within the
rule. It is executed in a Neo4j database, which is the
source datastore or the one having the source-subset
graph. If the condition fails to evaluate due to the pat-
tern query, an indeterminate decision is returned.

5 DEMONSTRATION CASE

We present the feasibility of our proposed approach
by applying our implemented prototype to an access
control case from the KnoP-2D project.

5.1 Prototype Implementation

Our prototype is implemented using Java and Neo4j.
XACML4G is not restricted to a particular database
as source datastore. For all datastores except Neo4j,
a source-subset graph must be created containing all
authorization-relevant data. These data are specified
in the meta element within the policy and can be
retrieved from different datasources via special im-
porter classes. This source-subset graph is optional
if Neo4j is the source datastore. We currently provide
importer classes for Neo4j and ArangoDB.

The prototype is based on the open-source
XACML implementation Balana11. Policies and re-
quests are expressed in the XACML4G syntax. The
request is evaluated by the Balana framework, which
we extended to (1) parse the structured attributes (i.e.,
action and path) in XACML4G requests and (2) eval-
uate the XACML4G pattern (if exists) by adding a
XACML condition dynamically when evaluating the
rule(s) of the matched policy (or policies) against the
access request. Our extensions address the open is-
sues stated in Section 4.1 without affecting the overall
XACML-specific procedures and results.

5.2 TEAM Model Case

In this demo case, we use just the instance model of
the TEAM model (Hübscher et al., 2021). DataOb-
jects vertices are related to each other via dataOb-
jectRelations edges or to tasks via accessRelations
or taskDataRelations. AccessRelations express user-
to-task relationships, whereas taskDataRelations link
tasks to dataObjects or dataObjectRelations. The
generated dataset contains 11,982 dataObjects, 2,559
tasks, 3,165 accessRelations, 13,271 dataObjectRela-
tions, and 53,246 taskDataRelations.

Our authorization scenario requires a certain rela-
tionship between a user and a resource via a task: ”As
a user, I can access a data object, if I am allocated
to or work/have worked on a task with a path to the
resource.”. The rule contains: (1) Subject: user, (2)
Resource: data object, (3) Action: access, (4) Pattern:
user → task →+ data object, and (5) Effect: permit.

The policy defines the vertex and edge collec-
tions of the graph model in the meta tag to create the
source-subset graph. The user is a data object hav-
ing an attribute typeCode with value pmUser. The
resource can be any data object. The subject and re-
source are the start and end vertices of the pattern.
The task is specified as an intermediate vertex con-
nected to the user via an access relation edge and a

11https://github.com/wso2/balana

XACML Extension for Graphs: Flexible Authorization Policy Specification and Datastore-Independent Enforcement

447



maximum of two hops from the resource. The pat-
tern has attribute-based constraints and can specify
the range of a sub-path. We define a variable for
the accessRelations edge and specify the constraint
worksOn or allocates for its typeKind property.

We specify attributes for subject, resource, and
path vertices by name and value separated by a colon
(e.g.: key:1196742142). If the request is matched
with a policy having a pattern, a XACML condition
is added to its rule. The extended PIP generates the
pattern query using the pattern and pattern condition
in the rule besides the path attributes in the request.
It looks for the intersection of the rule pattern of the
matched policy (p1) and request pattern generated
from the path attributes (p2) as shown in Listing 1.

Listing 1: Pattern query example.
MATCH p1 = (s:dataObjects{typeCode:"pmUser"})-
[e1:accessRelations]->(:tasks)-[*..2]-(:dataObjects)

MATCH p2 = ({_key:"1196741133"})-[]-
({_key:"1196741778"})-[]-({_key:"1196742142"})

WHERE e1.typeKind="worksOn" OR e1.typeKind="allocates"
AND ALL (x IN nodes(p2) WHERE x IN nodes(p1)) AND ALL
(x IN relationships(p2) WHERE x IN relationships(p1))

RETURN p1 IS NOT NULL AS result

The request path is a sequence of vertices only
and is matched by its attributes. The direction of the
edges in the rule pattern is applied to the request when
evaluating the pattern query. The query is success-
fully evaluated, as we check for an existing path in
the dataset satisfying the pattern constraints. The re-
quest decision is permit according to the rule effect.

6 PRELIMINARY EVALUATION

We provide preliminary performance measurements
evaluating access requests with different path lengths.
Three prototypes are compared for the same scenario
based on the TEAM model. Prototype 1 is based on
the standard XACML and ArangoDB. It has limited
expressiveness and scalability because XACML does
not support paths. Only subject, object, and action can
be defined within the policy and request. Moreover,
we manually add custom attributes in the policies and
statically write the respective queries to be evaluated
in the decision-making phase. Hence, each change in
the authorization requirements demands adaptations
in the policy as well as the implementation. Proto-
type 2 is the initial version of XACML4G (see Sec-
tion 3.3). These two prototypes are already investi-
gated in Mohamed et al. (2021b), but with a more
trivial evaluation design. Prototype 3 is the latest
XACML4G discussed in this paper (see Section 5.1).

The evaluation was performed offline on an In-
tel(R) Core(TM) i7-6500U CPU @ 2.50 GHz with
24 GB RAM. We investigated the execution time of

100 consecutive requests from processing till receiv-
ing the access decision. We performed the experiment
three times for each prototype and calculated the av-
erage. The results are plotted in Figure 2.

1 2 3 4 5

90

100

110

120

130

Path length

A
ve
ra
ge

ti
m
e
/
re
q
u
es
t
(m

s)

1. XACML
2. Previous Work
3. XACML4G

Figure 2: Average request evaluation time for the XACML,
previous work, and latest implementation prototypes.

The plot for the prototypes 1 and 2 look like those
in Mohamed et al. (2021b), where we proved that the
introduced overhead in the extension is constant re-
gardless of the path length. This overhead almost dou-
bled as indicated in the difference between the plots
for the path length 4 and 5 vs. shorter paths. This
is due to the additional pattern conditions to join spe-
cific elements along the path. From the implementa-
tion perspective, the two major differences between
the prototype presented in this paper and the other
ones are the underlying graph database and the pat-
tern evaluation within the reference architecture of
XACML. Previously, our approach relied on directly
connecting to the source graph database and our im-
plementation was based on ArangoDB and its declar-
ative query language AQL. In the latest implementa-
tion, our approach is independent of the source datas-
tore. It is currently based on Cypher and an embedded
Neo4j database within the XACML4G prototype for
evaluating patterns and their conditions.

As can be observed in Figure 2, our latest work is
only slightly impacted with the increased path length.
This is most likely due to the better stability of Neo4j
compared with ArangoDB.

7 CONCLUSIONS

We present our latest enhancements to XACML4G,
which are flexible constraints on paths, edges as re-
sources, and datastore-independent enforcement.

The main challenges are flexible path specifica-
tion and an enforcement for property-graph compat-
ible datastores (RQ1). Path features include pattern-
related conditions and a flexible number of hops be-
tween two vertices to no longer define the path com-
pletely. To address these challenges in (RQ2), we
rely on a declarative graph query language support-
ing the required characteristics (e.g., pattern match-

SECRYPT 2023 - 20th International Conference on Security and Cryptography

448



ing on paths, flexible path length, or incomplete
path specifications) and a property graph holding all
authorization-relevant data, which we call source-
subset graph. The proof-of-concept prototype im-
plements the latest language and architecture of
XACML4G and a case for a real knowledge graph
(RQ3). The XML schemas are further extended to
define the authorization-relevant data, support flexi-
ble path specification in the policy, and specify edges
as resources. To enforce the XACML4G language,
extensibility points in the PIP and proprietary exten-
sions of the XACML architecture (i.e., context han-
dler, PAP, and PDP) are implemented. The proto-
type extends the open source XACML implementa-
tion Balana and uses Neo4j along with Cypher for
a datastore-independent enforcement. No more pre-
processing of policies and requests is required. Com-
pared to our previous work and a statically imple-
mented XACML prototype, our current prototype has
better performance and stability in evaluating paths
with different lengths. Additionally, the current ap-
proach no longer introduces constant overhead.

This work highlighted further challenges. Patterns
are now evaluated within the XACML model as con-
ditions, but no pattern-related errors can be detected.
Moreover, multiple labels on vertices and edges have
to be considered to match with real-world graph mod-
els. The performance comparison can be improved by
excluding influencing factors, such as different graph
database systems for policy enforcement.

ACKNOWLEDGMENTS

The research reported in this paper has been partly
supported by the LIT Secure and Correct Systems Lab
funded by the State of Upper Austria. The work was
also funded within the FFG BRIDGE project KnoP-
2D (grant no. 871299).

REFERENCES

Ahmed, T., Sandhu, R., and Park, J. (2017). Classifying
and comparing attribute-based and relationship-based
access control. In Proceedings of the 7th Conference
on Data and Application Security and Privacy, CO-
DASPY ’17, page 59–70, New York, USA. ACM.

Angles, R., Arenas, M., Barcelo, P., Boncz, P., Fletcher,
G., Gutierrez, C., Lindaaker, T., Paradies, M., Plan-
tikow, S., Sequeda, J., van Rest, O., and Voigt, H.
(2018). G-core: A core for future graph query lan-
guages. In Proceedings of the 2018 International Con-
ference on Management of Data, SIGMOD ’18, page
1421–1432, New York, NY, USA. ACM.

Braun, U., Shinnar, A., and Seltzer, M. (2008). Securing
provenance. In Proceedings of the 3rd Conference on
Hot Topics in Security, HOTSEC’08, USA. USENIX
Association.

Cheng, Y., Park, J., and Sandhu, R. (2016). An access con-
trol model for online social networks using user-to-
user relationships. IEEE Transactions on Dependable
and Secure Computing, 13(4):424–436.

Clark, S., Yakovets, N., Fletcher, G., and Zannone, N.
(2022). Relog: A unified framework for relationship-
based access control over graph databases. In Data
and Applications Security and Privacy XXXVI: 36th
Annual IFIP WG 11.3 Conference, DBSec 2022,
Newark, NJ, USA, July 18–20, 2022, Proceedings,
page 303–315, Berlin, Heidelberg. Springer-Verlag.

Fong, P. W. (2011). Relationship-based access control: Pro-
tection model and policy language. In Proceedings of
the First ACM Conference on Data and Application
Security and Privacy, CODASPY ’11, page 191–202,
New York, NY, USA. ACM.

Hevner, A. R., March, S. T., Park, J., and Ram, S. (2004).
Design science in information systems research. MIS
Q, 28(1):75–105.

Hu, V. C., Ferraiolo, D. F., Chandramouli, R., and Kuhn,
D. R. (2017). Attribute-Based Access Control. Artech
House information security and privacy series. Artech
House, Boston.

Hübscher, G., Geist, V., Auer, D., Ekelhart, A., Mayer, R.,
Nadschläger, S., and Küng, J. (2021). Graph-based
managing and mining of processes and data in the do-
main of intellectual property. Information Systems,
106:101844.

Jøsang, A. (2017). A consistent definition of authorization.
In Livraga, G. and Mitchell, C., editors, Security and
Trust Management, pages 134–144, Cham. Springer
International Publishing.

Lorch, M., Adams, D. B., Kafura, D., Koneni, M., Rathi, A.,
and Shah, S. (2003). The prima system for privilege
management, authorization and enforcement in grid
environments. In First Latin American Web Congress,
pages 109–116, Phoenix, AZ, USA. IEEE.

Mohamed, A., Auer, D., Hofer, D., and Küng, J. (2021a).
Extended authorization policy for graph-structured
data. SN Computer Science, 2(5):1–18.

Mohamed, A., Auer, D., Hofer, D., and Küng, J. (2021b).
Extended xacml language and architecture for access
control in graph-structured data. In The 23rd Interna-
tional Conference on Information Integration and Web
Intelligence, iiWAS2021, page 367–374, New York,
NY, USA. Association for Computing Machinery.

van Rest, O., Hong, S., Kim, J., Meng, X., and Chafi, H.
(2016). Pgql: A property graph query language. In
Proceedings of the Fourth International Workshop on
Graph Data Management Experiences and Systems,
GRADES ’16, New York, NY, USA. ACM.

Wu, J., Leangsuksun, C. B., Rampure, V., and Ong, H.
(2006). Policy-based access control framework for
grid computing. In 6th IEEE International Symposium
on Cluster Computing and the Grid (CCGRID’06),
volume 1, pages 391–394, Singapore. IEEE.

XACML Extension for Graphs: Flexible Authorization Policy Specification and Datastore-Independent Enforcement

449


