Comparing Data Store Performance for Full-Text Search:

To SQL or to NoSQL?

George Fotopoulos?, Paris Koloveas', Paraskevi Raftopoulou' and Christos Tryfonopoulos'

Keywords:

Abstract:

LDepartment of Informatics & Telecommunications, University of the Peloponnese, Tripolis, Greece

2WITSIDE (Intelligence for Business Ltd), Athens, Greece

Database Performance, Text Search, NoSQL Data Stores, Relational Databases, Performance Comparison.

The amount of textual data produced nowadays is constantly increasing as the number and variety of both new
and reproduced textual information created by humans and (lately) also by bots is unprecedented. Storing,
handling and querying such high volumes of textual data have become more challenging than ever and both
research and industry have been using various alternatives, ranging from typical Relational Database Manage-
ment Systems to specialised text engines and NoSQL databases, in an effort to cope with the volume. However,
all these decisions are, largely, based on experience or personal preference for one system over another, since
there is no performance comparison study that compares the available solutions regarding full-text search and
retrieval. In this work, we fill this gap in the literature by systematically comparing four popular databases in
full-text search scenarios and reporting their performance across different datasets, full-text search operators
and parameters. To the best of our knowledge, our study is the first to go beyond the comparison of characteris-
tics, like expressiveness of the query language or popularity, and actually compare popular relational, NoSQL,
and textual data stores in terms of retrieval efficiency for full-text search. Moreover, our findings quantify the
differences in full-text search performance between the examined solutions and reveal both anticipated and

less anticipated results.

1 INTRODUCTION

In contrast to keyword search, which is a method
of searching for documents that include the exact
keywords specified by a user, full-text search refers
to searching some text inside computer-stored docu-
ments (or a collection of documents in a data store)
and returning results that contain some or all of the
words from the query posed by a user (Schuler et al.,
2009). Full-text queries, which can include either
simple words and phrases or multiple forms of a word
or phrase, perform linguistic searches against text
data and return any documents that contain at least
one match (Microsoft, 2023).

Relational (or else SQL) databases excel at stor-
ing data in tables, rely on a static schema to define
the structure and relationships between tables, and
are vertically scalable. Most relational databases pro-
vide support for keyword search, even in the case
when some field in a record includes free-form text
(like a product description); this approach gives re-
sults that miss the precision of the relevancy rank-
ing provided by full-text search systems (Lucidworks,

406

Fotopoulos, G., Koloveas, P., Raftopoulou, P. and Tryfonopoulos, C.
Comparing Data Store Performance for Full-Text Search: To SQL or to NoSQL?.
DOI: 10.5220/0012089200003541

2019). Non-relational (or else NoSQL) data stores,
on the other hand, store data in a variety of for-
mats, such as collections, documents, key-value pairs,
and graph databases, use a dynamic schema, and are
horizontally scalable, being more flexible and adapt-
able to changing data structures. Text search systems
and non-relational data stores are better for quickly
searching high volumes of structured, unstructured,
or semi-structured textual data according to a specific
word, bag of words, or phrase, since they provide rich
text search capabilities and give sophisticated rele-
vancy ranking of results (McCreary and Kelly, 2013).

Several works in the literature have evaluated the
performance and have compared relational to non-
relational data stores, both in the context of features,
but also with respect to the advantages and disadvan-
tages of each system type. In their survey, Nayak et
al. (Nayak et al., 2013) analyse the different types and
characteristics of SQL and NoSQL systems, while
in (Mohamed et al., 2014; Sahatqija et al., 2018),
SQL/NoSQL data stores are compared in terms of
main features, such as scalability, query language,
security issues, etc. Along the same lines, (Jatana

In Proceedings of the 12th International Conference on Data Science, Technology and Applications (DATA 2023), pages 406-413

ISBN: 978-989-758-664-4; ISSN: 2184-285X

Copyright (© 2023 by SCITEPRESS — Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

Comparing Data Store Performance for Full-Text Search: To SQL or to NoSQL?

et al., 2012) provides a general comparison of rela-
tional and non-relational data stores, while (Lourenco
et al., 2015) reviews NoSQL data stores in terms of
the consistency and durability of the data stored, as
well as with respect to their performance and scala-
bility; the results indicate that MongoDB can be the
successor of SQL databases, since it provides good
stability and consistency of data.

Query execution time and related system perfor-
mance measurements have also been examined in
the relevant literature. The work in (Brewer, 2012)
compares the performance of HBase and MySQL,
and concludes that under the same scenarios, the
NoSQL alternative is faster than the relational one,
while (Li and Manoharan, 2013) compares several
NoSQL databases and SQL Server Express, to ob-
serve that NoSQL databases are not always faster
than the SQL alternative. The work in (Fraczek and
Plechawska-Woijcik, 2017) is a comparative analysis
of relational and non-relational databases in the con-
text of data reading and writing in web applications,
and demonstrates that MongoDB performs better at
reading data, while PostgreSQL at writing. In (Truica
etal., 2015), the performance of document data stores
and relational databases is compared, concluding that
CouchDB is the fastest during insertion, modification
and deletion of data, while MongoDB is the fastest at
reading. Similarly, the work in (Ceresiidk and Kvet,
2019) compares popular relational database storage
architectures with non-relational systems and shows
that MongoDB outperforms its competitors.

Despite the explosion in textual data over the last
decade, mainly driven by the contribution of textual
content in social networks in the form of posts, com-
ments and forum threads, surprisingly, there is no
study concerning the performance in terms of the
efficiency of popular data stores when it comes to
the retrieval of big (unstructured) textual data. It
is worth noting that the available comparisons of
full-text search enalbed systems are mainly technical
news articles and research works (Lucidworks, 2019;
AnyTXT, 2021; Carvalho et al., 2022) that focus on
the qualitative characteristics of the systems (e.g., ex-
pressiveness of the query language, popularity, matu-
rity, ease of use, and community support), and nei-
ther consider any quantitative elements nor perform
any kind of efficiency comparison. In this work, we
present a comparative study among four popular rela-
tional and non-relational solutions that offer full-text
search capabilities, highlighting the overall character-
istics of each data store technology in text retrieval. In
the light of the above, our contributions can be sum-
marised as follows:

* We systematically compare four popular data

stores (namely PostgreSQL, MongoDB, Elastic-
Search, Apache Solr) in full-text search scenar-
ios and report their performance efficiency across
datasets of different sizes, various full-text search
operators, and a wide variety of parameters.

* We quantify the performance differences between
the examined systems, highlight the best option
for each full-text search scenario and provide
guidelines for the system and parameter setup.

» We openly distribute! our experimental setup and
configuration both in the form of source code and
as aready-to-use virtual machine that may be used
by the research community to replicate, verify
and/or expand our findings.

Note that, although vector space queries are an im-
portant part of full-text search, we have deliberately
left them out of our comparison since most of the
examined systems have no inherent support for them
and any custom implementation from our side would
interfere with the objectivity of the reported results.

The paper is structured as follows. In Section 2,
we outline the textual datasets utilised for the per-
formance comparison, the systems under examination
along with some of their important features relevant
to our task, and the necessary configurations to create
the testbed, i.e. the parameters and indexes used for
each system. In Section 3, we present the experimen-
tal setup, including the full-text queries that we use in
our evaluation, and present the experimental results
of our study. Finally, Section 4 outlines the work and
gives some future directions.

2 DATA AND SYSTEM
CONFIGURATION

In this section, we introduce the datasets used, present
the systems compared and outline their querying ca-
pabilities, focusing specifically to full-text retrieval,
and provide technical specifications on the testbed,
including the machine characteristics and specialised
software that was used to execute the comparison.

2.1 Datasets Configuration

The first dataset used is the Crossref (CR) dataset;
it consists of publication metadata and it has been
published by the Crossref organisation on January
2021.2 The dataset is 38.5GB, contains 12.1 million

Uhttps://github.com/pkoloveas/DATA23-resources
Zhttps://www.crossref.org/

407

DATA 2023 - 12th International Conference on Data Science, Technology and Applications

Table 1: Dataset characteristics.

Dataset Size (Records) Fields Avg words

per record
[Crossref | 4IGB(3M) | ‘tile, ‘abstract [228 |
| Yelp reviews | 1.8GB (3M) | ‘review.id’, ‘review’ | 104 |

records, and each record contains the fields: doi, ti-
tle, year_published, date_published, author, journal,
domain, and abstract.

The second dataset used is the Yelp reviews (Yelp)
dataset; it consists of reviews and recommendations
written and posted by consumers, suggesting restau-
rants, hotels, bars, shopping, etc. The dataset has been
downloaded from Kaggle,3 is 3.8GB, contains 5.3
million records, and each record contains the fields:
review_id, user_id, business_id, stars, date, review,
useful, funny, and cool.

Since our task was to measure full-text search per-
formance, not all the aforementioned fields were re-
quired. We used the title and abstract fields from
the Crossref dataset and the review_id and review
fields from the Yelp dataset. The resulting datasets
and their key characteristics are summarised in Ta-
ble 1. Finally, in order to perform the experiments
on varying sizes, we randomly split the (constructed)
datasets into smaller batches in the range of 500K to
3M records (D) with a 500K step.

2.2 Systems Configuration

For the performance comparison we selected four
popular systems, namely, PostgreSQL, MongoDB,
ElasticSearch, and Apache Solr, that incorporate full-
text capabilities and are typical representatives of the
broader SQL, NoSQL, and search engine categories.
The main criteria of our selection were the usabil-
ity and robustness of the systems, their wide accep-
tance among the users, and their ability to execute
full-text queries on unstructured text. In the follow-
ing sections, we briefly introduce each system, outline
its technical configurations with respect to the perfor-
mance comparison carried out, and state any system-
specific indexes that were used.

PostgreSQL. A free and open-source object-
relational database management system that uses the
SQL language. Postgres features transactions with
ACID properties and is designed to handle a range of
workloads, from single machines to data warehouses
and web services. Postgres has been proven to be
highly extensible and scalable both in the sheer quan-
tity of data it can manage and in the number of con-
current users it can accommodate.

3https://www.kaggle.com/datasets/luisfredgs/
yelp-reviews-csv

408

For our testbed, we installed and used version
13.3. We also created the databases for each dataset.
Then, in each database we created tables for the
different batches of the datasets, i.e., for S00K-3M
records. To configure Postgres for full-text search use,
we created a new column for each table, named “doc-
ument” of data type “tsvector”, containing the fields
we wanted to use for text search.

Postgres provides two index types that can be used
to index tsvector data types: Generalized Inverted In-
dex (GIN) and Generalized Search Tree (GiST). We
used the GIN index for our setup since it is recom-
mended by Postgres as the default index type for full-
text searching, especially for long documents.

MongoDB. A source-available cross-platform
document-oriented data store; it is classified as a
NoSQL system and stores data in JSON-like docu-
ments with dynamic schema in the form of (field:
value, pair) rather than tabular form. Mongo provides
high performance, high availability, easy scalability,
auto-sharding, and out-of-the-box replication.

For our testbed, we installed and used version
4.4.2. Mongo uses text indexes to support text search
queries and to perform full-text search in a docu-
ment. Like most non-relational data stores, Mongo
stores data in collections instead of tables; an index in
Mongo is created after creating the database and the
respective collections. Similarly to the PostgreSQL
case, we created one collection for each batch of the
datasets. Subsequently, we created the appropriate
text indexes to facilitate full-text search; Mongo text
indexes come with a limitation of only one per collec-
tion. In order to index the fields of the collections that
contain string elements, we specified the string literal
text in the index documents.

ElasticSearch. A search engine, based on the
Apache Lucene library; it provides a distributed
multitenant-capable full-text search engine with an
HTTP web interface and schema-free JSON docu-
ments. ElasticSearch emphasises scalability and re-
silience via the distribution of the stored data and their
respective indexes. It also, supports real-time GET re-
quests, which makes it suitable as a NoSQL datastore
although it lacks distributed transactions.

For our testbed, we installed and used version
7.10.0 (together with Kibana 7.10.0 as part of the
ELK stack). In ElasticSearch, each index is created
when each dataset is imported on the Elasticsearch
server. Indexes are used to store the documents in
dedicated data structures corresponding to the data
types of their respective fields. The process of defin-
ing how each document and the corresponding fields

Comparing Data Store Performance for Full-Text Search: To SQL or to NoSQL?

are stored and indexed is called mapping. By using
the get-mapping API, we can view the mappings for
the indexes that were created after data insertions.
As previously, we created indexes for the different
batches of our datasets. For further editing of indexes
and mappings, we used the Kibana user interface.

Apache Solr. An open-source, enterprise search
platform built on top of the Apache Lucene library.
All of Lucene’s search capabilities are provided to
Solr through HTTP requests. Its main features in-
clude full-text and faceted search, real-time indexing,
hit highlighting, advanced analysis/tokenization, dy-
namic clustering, and database integration.

For our testbed, we installed and used version
8.6.3. To setup Solr for our experiments, we created
Solr cores; a Solr core runs an instance of a Lucene
index that contains all the Solr configuration files re-
quired to use it. We created as many cores as the num-
ber of batches that the datasets were split in. To index
data under the created cores, we mapped the respec-
tive text fields from the datasets and specified the type
for each field as text_general. The field type is used
to inform Solr on how to interpret and query it; in our
case we define the fields of type fext that are appropri-
ate for performing full-text search.

2.3 Technical Details & Specifications

In this section, we discuss the technical specifications
and the requirements for each of the systems above.

All system versions were the latest stable ones at
the time of the initialisation of the performance com-
parison. Programming operations and query execu-
tions were implemented in Python and a commodity
system (with Core i3 2GHz processor, 6GB RAM)
was used to run the experiments.

A number of Python libraries and modules were
also used to achieve the connections and execute the
queries for each system. More specifically, to con-
nect to Postgres and execute the SQL queries, we in-
stalled and used the psycopg2 database adapter for
Python. To be able to connect to MongoDB, we
used a MongoClient by installing pymongo, a na-
tive Python driver for Mongo. To establish a con-
nection with the ElasticSearch server in order to in-
dex and search for data, we used a Python client for
ElasticSearch from the elasticsearch package, while
for HTTP connections with Apache Solr and REST
API tasks we resorted to the urllib.requests module.
For operations regarding data preprocessing such as
combining, merging and handling missing data, we
utilised the Python pandas and nlitk libraries.

3 EXPERIMENTAL EVALUATION

In this section, we present the experimental evalua-
tion of our study. Initially, we discuss the query gen-
eration process and subsequently present the experi-
mental comparison of the systems in terms of query
execution time (across various parameters), data in-
sertion time, and memory utilisation.

3.1 Query Design and Generation

Since no database of queries was available to us, we
initially designed and generated appropriate queries,
based on the methodology in (Zervakis et al., 2017;
Tryfonopoulos et al., 2009; Tryfonopoulos, 2018),
that varied in type (phrase matching, wildcard search,
boolean queries) and selectivity (high, medium low).
To do so, we extracted the appropriate keywords from
the datasets and used them to form different groups
of queries. Initially, we extracted the most frequent
words from each dataset, after performing punctua-
tion removal and case folding. To avoid utilising dif-
ferent queries for the different batches of documents,
we selected terms that were frequent across all dif-
ferent batches of data. Similarly, we selected terms
that were infrequent across all batches of data. Subse-
quently, we composed multi-word terms by extracting
keyword pairs present in the datasets.

The frequency of occurrence of single- and multi-
word terms has an effect on the selectivity of the cre-
ated query. In our setup, we define three levels of
selectivity, i.e. high, medium, and low; a highly selec-
tive query executed over any of the datasets would re-
sult in returning (on average) a low number of relevant
records; similarly a query of low selectivity would re-
sult in returning a high number of relevant records.
To create queries of varying selectivity, we used com-
binations of single- and multi-word terms; we could
foresee their selectivity based on their frequency of
occurrence. For example, highly selective queries
were constructed by infrequent single- and multi-
word terms randomly chosen from a specifically cre-
ated group of infrequent terms for each dataset.

Query selectivity (0) is used as a parameter in the
query generation process of the various query types
(Q). Specifically, for exact phrase matching, wild-
card search, and boolean search, the corresponding
selectivity values used were the following: (a) high
- 0.02%, 0.25%, 0.08%, (b) medium — 0.2%, 2.5%,
0.8%, and (c) low — 2%, 25%, 8%.

Exact Phrase Matching. Exact phrase matching
returns database results that match a particular phrase;

409

DATA 2023 - 12th International Conference on Data Science, Technology and Applications

® Postgres with GIN index
X Postgres without GIN index
Crossref

Postgres
Mongo
Elasticsearch
Solr
Crossref
——— Yelp reviews

0
X

———_Yelp reviews

10000 1000

00}

Time (seconds)
Time (seconds)

-
-

® Postgres
X Mongo
Elasticsearch
= Solr
—— Crossref
——— Yelp reviews

_ -

Time (seconds)

b3 T i

Number o

03 25 3

1.5 2
Number of documents (millions)

Figure 1: Exact phrase matching — Post-
greSQL with/without using GIN index.

an exact phrase query is represented as a sequence of
terms enclosed in double quotation marks.

To issue an exact phrase matching in PostgreSQL,
we utilise the phraseto_tsquery() function within the
tsvector and tsquery text search operators, after hav-
ing created a new document column. To issue the
same query in MongoDB, we use the $text operator
inside the find() method, right after the abstract col-
umn has been previously indexed as a new text col-
umn, in order to perform any full-text operations in
MongoDB. Finally, Apache Solr and ElasticSearch
execute the exact phrase matching query using the
Lucene parser according to the Query DSL syntax.

Wildcard Search. Wildcard search is used as an
advanced search feature to manually stem results or
when in doubt of the correct writeup; an asterisk (*¥)
is utilised as the wildcard symbol to represent the ex-
istence (or not) of none, one or more other characters.

In wildcard search, we resort to the to_tsquery()
function to execute the query in PostgreSQL, while in
MongoDB we utilise the $regex operator that provides
us with regular expression capabilities for matching
string patterns in queries. To issue a wildcard search
query in ElasticSearch, we use the query_string, while
in Apache Solr we execute the query with the use of
the Lucene parser using the Query DSL syntax.

Boolean Search. In boolean search we have gener-
ated only conjunctive queries since other operations
like disjunction and negation are just different types
of constraints that end up to different levels of selec-
tivity. Executing conjunctive queries is a straightfor-
ward operation/function readily supported in all sys-
tems under comparison.

410

S5 2 25
f documents (millions)

Figure 2: Exact phrase matching.

bs T

1.5 2 25 3
Number of documents (millions)

Figure 3: Wildcard search.

3.2 Querying Time
In this section, we present a series of experiments
that compare the different systems (i.e., PostgreSQL,
MongoDB, ElasticSearch, and Solr) in terms of query
time under various query types and various levels of
query selectivity.

The time measured is wall-clock time and the re-
sults of each experiment are averaged over five runs
to eliminate measurements fluctuations.

Exact Phrase Matching. In this section, we present
the findings that derived from the experiments, com-
paring the systems’ query execution time for exact
phrase matching. Please note that all diagrams are
displayed in logarithmic scale.

Figure 1 presents the execution time for Post-
greSQL with respect to the use or not of GIN in-
dex. Notice the speedup in execution time when util-
ising the index and also that, PostgreSQL crashes af-
ter 1.5M documents when not using it. We thus, used
the GIN index for our setup, as also recommended by
Postgres for full-text searching.

In Figure 2, the results comparing the different
systems with respect to the database size for each one
of the datasets are presented. As the database size gets
larger the execution time for each system increases
as expected. ElasticSearch and Solr though, seem to
achieve the best performance compared to MongoDB
and PostgreSQL, which both need significantly more
time to execute the issued queries. Notice however
that, MongoDB and PostgreSQL have in this set of
experiments similar performance, an observation that
does not hold for the rest of the query types examined
(presented in later sections). In addition, for each sys-
tem, the differences in the runtimes measured for the

Comparing Data Store Performance for Full-Text Search: To SQL or to NoSQL?

Table 2: Performance for different selectivity levels across
datasets and query types (in seconds).

MongoDB | ElasticSearch | Solr

PostgreSQL |
CR

[2 o | [Yelp | CR | Yelp | CR | Yelp | CR | Yelp |
E Tow 759 320 | 492 | 178 | 122 | 64 6 | 105
2 | M | Med 550 264 | 341 141 | 105 | 52 14 | 14
3 High 470 155 | 310 | 134 | 92 | 51 | 133 | 93
= Tow T6AT | 1196 | 1585 | 671 | 173 | 113 | 168 | 125
% | 2M | Med 1350 | 751 | 1378 | 465 | 164 | 108 | 163 | 121
£ High 996 500 | 1100 | 365 | 132 | 11 141 | 104
= Tow 2766 | 2257 | 2550 | 1050 | 18,6 | 115 | 19,1 2
§ 3M Med 2150 1013 2150 960 18,1 11 18,5 11,2
& High 1308 | 902 | 1650 | 849 | 152 | 105 | 165 | 10

Tow 354 05 | 581 | 200 7 3 08 | 73

= | IM | Med 43 22 | 498 | 139 6 3 78 | 66
g High 19 32 | 408 | 110 | 52 | 27 | 54 5
s Tow || 3379 | 739 | 1359 | 548 | 103 6 T8 | 84
s | oM | Med 72 46 | 1267 | 425 | 92 | 48 | 84 | 67
S High 29 4 1060 | 371 | 66 | 55 | 55 | 57
g Tow || 10049 | 1948 | 4959 | 3659 | 1L1 | 64 | 11,5 | 85
M Med 10,6 7.4 1720 1221 11 56 7.7 6,7

High 42 37 | 1398 | 975 | 84 | 52 7 58

different datasets are due to the high frequency of oc-
currence of terms in the Yelp dataset as opposed to
the lower frequency of occurrence in the CR dataset.
Note that the results in Figure 2 concerns highly se-
lective queries — the detailed experiments regarding
selectivity are presented later in the section.

Wildcard Search. The second set of experiments
measures the time needed to query the data stores
using wildcard search and the results are shown in
Figure 3. As we observe, all systems perform much
better in terms of query time when compared to ex-
act phrase matching, with PostgreSQL, ElasticSearch
and Solr to process the query load in less than 10
seconds for all datasets. The performance of Post-
greSQL, being similar to that of the other systems, is
attributed to the use of the GIN index that supports
the querying of a single term inside a text field. Also
notice that, although PostgreSQL achieves the best
performance when less than 2.5M documents, it then
converges with the performance of the rest of the sys-
tems. This demonstrates the expected result of bet-
ter scalability of non-relational data stores over the
relational ones as data grows in size. Finally, Mon-
goDB performs significantly better in this setup, as it
achieves almost 50% of the time needed to match the
same amount of exact phrase queries (Figure 2).

Boolean Search. In this set of experiments, we
evaluate the query execution time for boolean search
performed as conjunctions of keywords. Figure 4
presents the results for the different systems with re-
spect to the database size for each one of the exam-
ined datasets. Both ElasticSearch and Solr are fast
and are able to execute the boolean searches in un-
der 10 seconds for both datasets. Once again, Mon-
goDB performs significantly slower than its alterna-
tives, whereas PostgreSQL performs fastest among
the examined systems. Similarly to our previous find-
ings, this can be attributed to the use of the GIN index

® Postgres
X Mongo
Elasticsearch
= Solr
—— Crossref
——=_Yelp reviews

1000

Time (seconds)
3
8

1.5 2 25
Number of documents (millions)

Figure 4: Boolean search.

that is designed mainly for conjunctive queries and
provides an advantage over the rest of the systems.

As it has also been observed in the previous sec-
tions, in the case of boolean search, query execution
times for the Yelp dataset are lower compared to those
for the CR dataset, due to the high frequency of oc-
currence of terms in the Yelp dataset.

Selectivity. In this section, we present the evalua-
tion of the systems related to the query selectivity.
In the top half of Table 2, we present the results de-
rived after comparing exact phrase matching queries
in terms of low, medium and high selectivity with re-
spect to the database size for each dataset, while the
lower half of the table concerns boolean search. The
results for wildcard search are omitted due to space
constraints.

The results illustrate that for all systems the run-
times increase proportionally with the size of the
database, as also observed in Figures 2 and 4. Notice
though in Table 2 that, ElasticSearch and Solr seem to
be relatively agnostic to increasing/decreasing selec-
tivity for exact phase matching (upper part of tha ta-
ble), while there is a slight difference in their perfor-
mance when varying selectivity in all database sizes
for boolean search (lower part of the table). In ad-
dition, MongoDB slightly improves its performance
in terms of execution time when increasing the selec-
tivity of the queries executed in all database sizes for
both datasets. The setup used though, does not af-
fect the performance of all the systems with the same
way; PostgreSQL seem to be greatly affected both by
the selectivity and the query type used.

More specifically, PostgreSQL performs faster
with queries of high selectivity. Notice in Table 2 that,
PostgreSQL needs one order of magnitude less query
execution time for high selectivity queries when per-

411

DATA 2023 - 12th International Conference on Data Science, Technology and Applications

Table 3: Performance for different query types and high se-
lectivity (in seconds).

[[PostgreSQL | MongoDB | ElasticSearch | Solr |
[DT Q J] CR [Yelp [CR [Yelp [CR [Yelp | CR | Yelp |
EPM 470 195 581 200 7 3 10,8 73
M WS 1,2 2,2 498 139 6 3 7.8 6,6
BS 1,9 32 408 110 5.2 2,7 54 5
EPM 996 500 1100 365 13,2 11 14,1 10,4
2M WS 24 2,6 225 219 8 4,7 72 4
BS 2,9 4 1060 371 6,6 5,5 6,3 5,7
EPM 1308 902 1650 849 15,2 10,5 16,5 10
3M WS 57 4,5 412 349 82 5 7 34
BS 4,2 3,7 1398 975 8,4 52 7 5,8

forming boolean search (lower part of the table) in
contrast to low selectivity ones. Also, when compared
to MongoDB, for exact phase matching (upper part of
tha table) they have similar performance when using
the CR dataset, while MongoDB outperforms Post-
greSQL when using the Yelp dataset. However, Post-
greSQL performs significantly faster (i.e., one order
of magnitude) than MongoDB for boolean search and
medium/low selectivity.

Query Operations. For this set of experiments, we
investigate the time needed for each one of the sys-
tems to query the databases, when using different
query operations. We compare each system’s perfor-
mance in querying documents for the full-text search
operations of exact phrase matching (EPM), wildcard
(WS) and boolean search (BS). All tests have been
carried out by applying queries of high selectivity.

In Table 3, we can see the results for each sys-
tem. Notice that, exact phrase matching needs sig-
nificantly more time to be executed by all systems in
most of the cases, while on the contrary, wildcard and
boolean search demand less time on average. Post-
greSQL needs more than 1000 seconds to query 3M
records for the CR dataset, while it needs less than 10
seconds for the rest of the operations; a similar be-
haviour can also be seen for the Yelp dataset. Elas-
ticSearch and Solr also need more time to operate
with exact phrase matching queries, but still signifi-
cantly less compared to PostgreSQL (in all datasets)
and with minor time differences compared to the other
query operations. Finally, MongoDB performs better
with wildcard search in comparison to exact phrase
and boolean search.

In summary, we conclude that the majority of
systems face difficulties in executing exact phrase
queries in full-text search, especially with large
amounts of data, while on the other hand, wildcard
and boolean search are operations faster to execute in
most of the examined systems.

3.3 Insertion Time & Memory Usage

In this section, we present the results concerning the
time needed to index the documents into each sys-

412

® Postgres
X Mongo
Elasticsearch
= Solr
—— Crossref
——— Yelp review:

1000

Time (seconds)

2

05

1.5 2 25
Number of documents (millions)

Figure 5: Data insertion time.

tem. In Figure 5, we present the results for all systems
across datasets for data insertion time as the size of the
database grows. A general observation is that as the
database size increases, more time is needed to index
new documents for all examined systems. It is worth
noting though, that Solr needs less time to index new
documents compared to ElasticSearch, whereas Post-
greSQL has the fastest indexing times across all ex-
amined data stores, with MongoDB being the slowest
system in data insertion/indexing.

We have also executed a set of experiments to
investigate memory requirements for each system.
Solr and ElasticSearch have high memory require-
ments for data indexing, while MongoDB utilises sig-
nificantly less memory. Also, PostgreSQL typically
needs less memory than the rest of the systems, apart
from Solr, especially for smaller database sizes. Re-
garding the querying process, we conclude that Solr
and ElasticSearch consume significantly less memory
to execute a set of given queries compared to Mon-
goDB and PostgreSQL. The detailed results are omit-
ted due to space constraints.

3.4 Summary of Results

Our extensive experimentation has demonstrated that
ElasticSearch and Solr have responded in the ex-
periments with balanced time measurements in pro-
portion to the dataset size and without any fluctua-
tions in most of the query types examined. Post-
greSQL proved to perform much better with the use
of the GIN index, competing non-relational systems
and outperforming MongoDB in the wildcard and
boolean search scenarios, but becomes significantly
slower and has more memory requirements than its
competitors for queries with low selectivity. Memory
utilisation is also one of MongoDB drawbacks, es-
pecially in smaller database sizes, while performance

Comparing Data Store Performance for Full-Text Search: To SQL or to NoSQL?

is not as expected in most of the cases (especially in
comparison to the NoSQL alternatives).

Our experimentation has also quantified how
query selectivity affects the performance of the dif-
ferent systems. In the exact phrase matching scenario
the systems under comparison responded without any
serious fluctuation in query answering time, but in
the boolean search scenarios significant fluctuations
in query execution were observed. Additionally, most
of the examined systems present faster query execu-
tion times in the wildcard and boolean search scenar-
ios. Finally, we demonstrated that PostgreSQL needs
lower insertion/indexing time over its competitors.

Overall, we conclude that NoSQL and text data
stores indeed provide a fast and trustworthy alterna-
tive for full-text search that is agnostic to the size
of the database. However, MongoDB is the slow-
est and most sensitive to parameter and query setup
among the NoSQL competitors, whereas PostgreSQL
performs (surprisingly) well in some query scenar-
ios (mainly wildcard and boolean search) and outper-
forms some of the NoSQL competitors especially for
small and medium database sizes.

4 FUTURE WORK

In the future, we plan to (i) expand our study with
more systems (including CouchDB, Cassandra, Spinx
and SQL Server), query types (including proxim-
ity, fuzzy and synonyms) and parameter combina-
tions, (ii) incorporate a variety of textual content
(web pages, social media posts, emails, publications,
audio/video transcripts), and (iii) introduce a ma-
chine learning component that will enable the self-
designing of text stores depending on the dataset and
the workload in the spirit of (Chatterjee et al., 2021).

ACKNOWLEDGEMENTS

This work was supported in part by project
ENIRISST+ under grant agreement No. MIS
5047041 from the General Secretary for ERDF & CF,
under Operational Programme Competitiveness, En-
trepreneurship and Innovation 2014-2020 (EPAnEK)
of the Greek Ministry of Economy and Development
(co-financed by Greece and the EU through the Euro-
pean Regional Development Fund).

REFERENCES

AnyTXT (2021). AnyTXT Searcher: Lucene vs

Solr vs ElasticSearch, 2021. https://anytxt.net/
how-to-choose-a-full-text-search-engine/.

Brewer, E. (2012). CAP twelve years later: How the rules
have changed. Computer, 45(2).

Carvalho, 1., S4, F., and Bernardino, J. (2022). NoSQL Doc-
ument Databases Assessment: Couchbase, CouchDB,
and MongoDB. In DATA.

Ceresiiak, R. and Kvet, M. (2019). Comparison of query
performance in relational a non-relation databases.
TRPRO, 40.

Chatterjee, S., Jagadeesan, M., Qin, W., and Idreos,
S. (2021). Cosine: A cloud-cost optimized self-
designing key-value storage engine. VLDB Endow-
ment, 15(1).

Fraczek, K. and Plechawska-Wojcik, M. (2017). Com-
parative Analysis of Relational and Non-relational
Databases in the Context of Performance in Web Ap-
plications. In BDAS.

Jatana, N., Puri, S., Ahuja, M., Kathuria, 1., and Gosain,
D. (2012). A survey and comparison of relational and
non-relational database. IJERT, 1(6).

Li, Y. and Manoharan, S. (2013). A performance compari-
son of SQL and NoSQL databases. In IEEE PACRIM.

Lourenco, J. R., Cabral, B., Carreiro, P., Vieira, M., and
Bernardino, J. (2015). Choosing the right NoSQL
database for the job: a quality attribute evaluation. J

Big Data, 2.
Lucidworks (2019). Full Text Search Engines
vs. DBMS. https://lucidworks.com/post/

full-text-search-engines-vs-dbms/.

McCreary, D. G. and Kelly, A. M. (2013). Finding informa-
tion with NoSQL search. Manning.

Microsoft (2023). Full-text search. https:
//docs.microsoft.com/en-us/sql/relational-databases/
search/full- text-search?view=sql-server-verl5.

Mohamed, M., Altrafi, O., and Ismail, M. (2014). Rela-
tional vs. nosql databases: A survey. IJCIT, 3(3).

Nayak, A., Poriya, A., and Poojary, D. (2013). Type of
NOSQL databases and its comparison with relational
databases. IJAIS, 5(4).

Sahatqija, K., Ajdari, J., Zenuni, X., Raufi, B., and Is-
maili, F. (2018). Comparison between relational and
NOSQL databases. In IEEE MIPRO.

Schuler, K., Peterson, C., and Vincze, E. (2009). Data Iden-
tification and Search Techniques. Syngress.

Truica, C. O., Radulescu, F., Boicea, A., and Bucur, 1.
(2015). Performance evaluation for CRUD opera-
tions in asynchronously replicated document oriented
database. In CSCS.

Tryfonopoulos, C. (2018). A Methodology for the Auto-
matic Creation of Massive Continuous Query Datasets
from Real-Life Corpora. In ICAIT.

Tryfonopoulos, C., Koubarakis, M., and Drougas, Y.
(2009). Information Filtering and Query Indexing for
an Information Retrieval Model. ACM TOIS, 27(2).

Zervakis, L., Tryfonopoulos, C., Skiadopoulos, S., and
Koubarakis, M. (2017). Query Reorganisation Al-
gorithms for Efficient Boolean Information Filtering.
IEEE TKDE, 29(2).

413

