
Indentation in Source Code: A Randomized Control Trial on the
Readability of Control Flows in Java Code with Large Effects

Johannes Morzeck1, Stefan Hanenberg2 a, Ole Werger2 b and Volker Gruhn2 c

1Independent Researcher, Germany
2University of Duisburg–Essen, Essen, Germany

Keywords: Programming, Indentation, Empirical Study, User Study.

Abstract: Indentation is a well-known principle for writing code. It is taught to progammers and applied in software
projects. The typical argument for indentation is that it makes code more readable. However, taking a
look into the literature reveals that the scientific foundatation for indentation is rather weak. The present
work introduces a four factor experiment with focus on indentation in control flows. In the experiment,
20 participants (10 students and 10 professional developers) were asked to determine the results of given
Java code consisting of if-statements and printouts. Measured was the time required to answer the question
correctly. The experiment reveals that indentation has a strong (p < .001) and large (η2

p = .832) positive
effect on the readability in terms of answering time. On average participants required 179% more time on
non-indented code to answer the question (where the different treatment combinations varied on average
between 142% and 269%). Additionally, participants were asked about their subjective impressions on the
tasks using the standardized NASA TLX questionnaire (using the categories mental demand, performance,
effort, and frustration). It turned out that participants subjectively perceived non–indented code with respect
to all categories more negative (p < .001, .4 < η2

p < .79).

1 INTRODUCTION

Indentation is a known and often applied technique
to format source code. Taking a look into tutorials
for popular programming languages such as Java1

or C++2 shows that source code is mostly indented.
And taking a look into modern IDEs such as
IntelliJ, Visual Studio, etc. shows that indentation
is massively considered there as well, either in
terms of auto-formatting tools or simply in terms of
user interfaces that indent code whenever it seems
appropriate.

Considering this, one easily forgets that common
indentation guidelines are not naturally given in
languages. For example, common indentation
guidelines for languages such as SQL are not
as widely spread as for the previously mentioned
programming languages: just taking a look into SQL

a https://orcid.org/0000-0001-5936-2143
b https://orcid.org/0009-0007-3226-1271
c https://orcid.org/0000-0003-3841-2548
1https://docs.oracle.com/javase/tutorial/
2https://www.w3schools.com/CPP/default.asp

tools such as PGAdmin3 shows that no automatic
support for indentation is given. The same statements
hold for other languages such as regular expressions,
etc. as well – languages that are today massively
used (and often integrated in modern programming
languages).

Given the fact that indentation is widely spread
at least for popular programming languages, it is
reasonable to ask whether there is a need for another
empirical study. This question gets more obvious
taking into account that indentation is quite an old
technique – the first study by Weissman on that topic
can be found in 1974 (Weissman, 1974). But it
turns out that the scientific literature does not provide
much evidence for positive indentation effects: the
authors of the present paper are aware of only
nine publications that explicitly focus on indentation.
While for one publication it is unclear whether or
not an effect was found, three publications found
a positive effect of indentation – five did not find
an effect. And one publication that did not find an
effect is a replication of a study that found an effect.

3https://www.pgadmin.org/

Morzeck, J., Hanenberg, S., Werger, O. and Gruhn, V.
Indentation in Source Code: A Randomized Control Trial on the Readability of Control Flows in Java Code with Large Effects.
DOI: 10.5220/0012087500003538
In Proceedings of the 18th International Conference on Software Technologies (ICSOFT 2023), pages 117-128
ISBN: 978-989-758-665-1; ISSN: 2184-2833
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

117

Hence, one might say that so far only two publications
showed a (positive) effect.

But for empirical studies it is not only a question
of whether the effect exists. The question is also,
how large it is. And it turns out that only one of
the two publications report an effect size.4 This
remaining study by Albayrak and Davenport from
2010 (Albayrak and Davenport, 2010) measured the
number of functional defects found by developers
depending on whether or not indentation was present.
While the difference in means was 25%, i.e.,
indentation increased the number of found defects by
25%, the effect was small (η2=.047). However, the
study does not give any details about the given code,
the defects that were to be found, or the defects that
were more often found in the presence of indentation.
From that perspective, one can argue that despite its
popularity, indentation has been hardly studied so
far (9 publications known to the authors), or at least
that there is not much evidence for a positive effect
of indentation (three publications, for one of them
a replication did not show comparable results), but
even among those studies that found an effect, the
reported effect is very small (just on single study with
η2=.047).

Programmers might argue that this does not
matter: Indentation should be simply used because
the costs of indentation seem negligible, no study
has shown any negative effect of indentation, and
tools for indentation are available. Still, we consider
such argument as problematic. First, we think it is
necessary in computer science education not only to
convince students to use some technology because
it is available, but to give students evidence that the
application of a certain technology helps. Second,
we need to take into account that for tool builders
even the development of a rather simple tool such
as a code formatter is an investment – and for all
investments there should be the desire to determine
upfront whether such an investment has a positive
effect. Third, we also think that developers should
not just rely on tools because they exist, but because
they do help. I.e., the application of a technology
should not be based upon a common belief in such
technology, but should be based on documented
evidence.

The present paper introduces a randomized
control trial that studies indentation from the
perspective of readability of control flows in
programs. In the four-factor experiment (with
the factors indentation, skipping, brackets, and

4Evidence standards such as CONSORT (Moher et al.,
2010) consider the reporting of effect sizes as a minimum
requirement for quantitative studies.

background) Java code snippets were given
participants to read. Each snippet consisted just
of if- and print statements. The participants were
asked what the output of the program was and
the time required to give the correct answer was
measured. The code snippets were chosen with
respect to whether parts of the code could be skipped
and whether or not brackets were used to mark the
beginning and ending of the if-statements.

It turned out that indentation has a strong (p <
.001) and large (η2

p = .832) positive effect on the
readability in terms of answering time. On average
participants required 179% more time on non-
indented code to answer the questions in comparison
to indented code (where the different treatment
combinations varied on average between 142% and
269%). Additionally, participants were asked about
their subjective impressions using the standardized
NASA TLX questionnaire (Hart and Staveland,
1988). In the used categories mental demand,
performance, effort, and frustration participants
considered non-indented code more negative (p <
.001, .4 < η2

p < .79). The participants’ background
(students or professional developers) had no effect on
the dependent variable.

Altogether, we see the contribution of the present
experiment in two ways. First, it answers a
question about the effect of indentation (with the
answer that the effect exists and is large in control
flow with multiple conditionals). This is from
our perspective urgently missing in the literature,
taking the fundamental characteristics of indentation
in programming into account. Second, the experiment
shows that the effort for studing programming related
technologies does neither necessarily require complex
experimental designs nor huge effort. Running such
studies (and getting answers) would help the field of
software science to develop a stable background.

Finally, we think the study could encourage
researchers to address even simple questions or
simple technologies in empirical studies. Such studies
should not be executed for the sake of running studies,
but for the sake of getting documented evidence about
effects of such technologies.

2 ON INDENTATION

The word indentation decribes an approach to
organize source code in a way that some space in
the beginning of a line of code is used in order to
emphasize some code fragments (such as bodies of
loops, bodies of conditions, etc.).

Figure 1 illustrates a simple Java program that

ICSOFT 2023 - 18th International Conference on Software Technologies

118

1 / / With i n d e n t a t i o n
2 c l a s s A r g u m e n t P r i n t e r {
3 p u b l i c s t a t i c vo id main (S t r i n g [] a r g s) {
4 i f (a r g s l . l e n g t h () = = 0) {
5 p r i n t ("No a r g s ") ;
6 } e l s e {
7 f o r (i n t i =0 ; i < a r g s . l e n g t h () ; i ++) {
8 p r i n t (" Arg : " + a r g s [i] ;
9 }

10 }
11 }
12 }
13
14 / / W i t h o u t i n d e n t a t i o n
15 c l a s s A r g u m e n t P r i n t e r {
16 p u b l i c s t a t i c vo id main (S t r i n g [] a r g s) {
17 i f (a r g s l . l e n g t h () = = 0) {
18 p r i n t ("No a r g s ") ;
19 } e l s e {
20 f o r (i n t i =0 ; i < a r g s . l e n g t h () ; i ++) {
21 p r i n t (" Arg : " + a r g s [i] ;
22 }
23 }
24 }
25 }

Figure 1: Simple Java code example with and without
indentation. Details such as System.out.println are
abbreviated by print.

prints out the arguments passed to the program or
"No args" in case no argument is passed. The
indented version highlights that main is part of the
class ArgumentPrinter: all lines that have two
additional white spaces in the beginning represent
a field or a method in the class. Furthermore,
it emphasizes what code belongs to a method:
all lines that have four or more white spaces in
the beginning belong to a certain method. And
within methods, additional space illustrates that some
code belongs to another syntactical element. For
example, the indentation of the line following the
if-statement makes clear that the line is part of the
body and the indentation of the line following the for-
statement makes explicit that it belongs to the loop’s
body. It seems that non-indented code makes such
relationships harder to detect.

Apart from the question how many whitespaces
or tabs should be used for indentation, different
programming styles differ with respect to what
code should be indented. For example, in Java
there are styles where opening brackets appear in
a new line after an if-statement (without additional
indentation). There are others, where the opening
brackets appear at the end of a line. And finally
there are programming languages where indentation
is connected to the language’s semantics. Examples
for such languages are Python or Haskell (in contrast
to, for example, Java or C++).

3 RELATED WORK

While there are countless resources on different
code styles, empirical studies on them in general,
respectively studies on indentation in particular are
quite rare. Actually, identifying related work on
indentation is not as trivial as it seems. A number of
experiments were executed in the 70s and 80s and and
it is not easy to get details about them. Additionally,
there are indicators for experiments in the literature
where it is unclear to the present authors whether or
not they can be considered. For example, Vessey
and Weber gave an overview of 12 experiments in
programming in 1984 (Vessey and Weber, 1984) and
mentioned two experiments by Sime et al. (Sime
et al., 1977; Sime et al., 1973) that have according
to Vessey and Weber indentation as a controlled
variable. However, a closer look at these experiments
reveals that it remains at least unclear to what extent
indentation was indeed controlled.5 Consequently,
we do not consider these works in the following.

Table 1: Experiments on indentation (some publications
contain more than one experiment). Column Effect
describes whether or not an effect was detected, column
Size describes whether traditional effect sizes or at least
differences between groups were documented.

No Pub Experiment Effect Size
1 1 Weissman 1974 (1) no -
2 1 Weissman 1974 (2) no -
3 1 Weissman 1974 (3) unclear no
4 2 Shneiderman, McKay 1976 no -
5 3 Love 1977 no -
6 4 Norcio 1982 (1) yes no
7 4 Norcio 1982 (2) yes no
8 5 Norcio, Kerst no -
9 6 Miara et al. 1983

(replication by Bauer et al.)
yes unclear

10 7 Kesler et al. 1984 no -
11 8 Albayrak and Davenport 2010 yes yes
12 9 Bauer et al. 2019

(replication of Kesler et al.)
no -

Table 1 summarizes the experiments on
indentation we are aware of.

In 1974, Weissmann (Weissman, 1974) reported
different experiments while some of them also
studied indentation. A first experiment using
the programming language PL/I on the programs
Quicksort and “Wirth’s Eight Queens” was executed
on 16 students. It is not 100% clear what the
response variable in the experiment was, because

5Both experiments by Sime et. al considered if
statements where the if-, then-, and else-clause was or was
not separated by line breaks. While we see that this has
definitively something to do with code formatting, we do
not think that these experiments focus much on indentation
but rather on line breaks.

Indentation in Source Code: A Randomized Control Trial on the Readability of Control Flows in Java Code with Large Effects

119

the experiment protocol just mentions that the
participants were “asked for a self-evaluation”
(Weissman, 1974, p. 95). But whatever the
dependent variable was, Weissman reported that
the experiment did not reveal significant results.
A second experiment studied different programs
(Quicksort and Postfix) in the programming language
Algol on 48 students. Again, Weissman reported that
with respect to indentation no statistical differences
were found (Weissman, 1974, p. 97). And finally,
one experiment was performed again on PL/I on the
programs Heapsort and “Shortest Paths in a Graph”
using 24 participants: “The subjects were given five
minutes to read the program. They were next asked
for a self-evaluation and given fifteen minutes for a
detailed study, using any method they wished, and
a quiz. They were then asked for a second self-
evaluation, and given twenty minutes to make two
specific modifications to the program. Finally, they
were given ten minutes for a third self-evaluation
and a second quiz.” (Weissman, 1974, p. 131).
Weissman reported that “a paragraphed listing was
significantly better than an unparagraphed listing
on the first self-evaluation”, but the report did not
mention any effect on the other self-evaluations nor
on the program modifications which makes it unclear
whether or not the experiment could be interpreted as
a positive effect for indentation. Finally, one should
take into account that even a possible positive effect is
only a matter of the subjective self-evaluation of the
participants.

In 1976, Shneiderman and McKay reported on an
experiment where participants were given an indented
and unindented PASCAL program and participants
had to locate and repair bugs (Shneiderman and
McKay, 1976). The dependent variable was credits
for giving correct answers. The authors reported that
none of the main effects were significant.

In 1977, a study by Love (Love, 1977) “also found
no reliable improvement in a reconstruction task for
indented and unindented short Fortran programs”
(Sheil, 1981, p. 109).

In 1982, Norcio studied the effect of indentation in
two trials executed on 70, respectively 60 participants
(Norcio, 1982). In each, participants were given
Fortan code containing a blank line that needed to be
written. One of the variables in the experiment was
indentation. The dependent variable was the number
of correct statements. The result with regard to
indentation was “that groups with indented programs
and interspersed documentation were able to supply
significantly more correct statements” (Norcio, 1982,
p. 118). The paper only reports the p-value but does
not describe the differences between both groups.

Hence, one can only state that the evidence for the
difference is strong (p<.05), but it is not possible to
state how large the effect was. The second experiment
was comparable to the first one. Again, indentation
had a positive effect (p<.008), but the effect size of
indentation was not documented.

In 1983, Norcio and Kesler gave 60 participants
Fortran programs to read and memorize. Afterwards,
the participants had to write the remembered code.
A number of different treatments were considered
(documentation, segmentation into logic boundaries)
and one additional treatment was indentation. It
turned out that indentation was no significant factor.

In 1983, Miara et al. (Miara et al., 1983)
performed an experiment on 86 participants with
seven different versions of the same Pascal program
(with different kinds of indentation) taken from
a textbook. The dependent variable was a
comprehension quiz consisting of 13 questions.
Additionally, the participants were asked to give a
subjective rating. The results showed a strong effect
of indentation (p<.05). Unfortunately, it cannot be
derived from the paper what the effect is and taking
a closer look into the graphical representation of
the results (Miara et al., 1983, p. 866) gives the
impression that an indentation level of 2 had probably
a positive effect (in comparison to no indentation),
while an indentation level of 6 rather had a negative
effect.

In 1984, Kesler et al. found no significant
effect of indentation in their study (Kesler et al.,
1984). 72 students received 3 versions of Pascal
programs (no indentation, excessive indentation, and
moderate indentation). The participants were given a
questionnaire consisting of 10 questions. The number
of correctly answered questions was the dependent
variable. The experiment did not show significant
differences using a commonly accepted alpha-level of
.05.

In 2010, Albayrak and Davenport divided 88 first
year students into four groups with the focus on
defects in indentation and naming on the detection of
functional defects. Each group received a different
version of a comparable piece of code consisting
of “about 100 LOC of Java source code” (Albayrak
and Davenport, 2010). Each version contained six
functional defects, but the versions differed with
respect to defects: one version did not contain any
defect, one version contained ten naming defects,
another version ten indentation defects and the final
version contained four indentation defects and six
naming defects. Each group’s task was to detect
functional defects. With respect to indentation defects
it turned out that in the presence of indentation

ICSOFT 2023 - 18th International Conference on Software Technologies

120

1 c l a s s Example {
2
3 p u b l i c s t a t i c vo id main (S t r i n g [] a r g s) {
4 System . o u t . p r i n t l n (" H e l l o World ") ;
5 i f (a r g s . l e n g t h ! = 0) {
6 d o _ s o m e t h i n g _ e l s e () ;
7 }
8 }
9

10 p u b l i c s t a t i c vo id d o _ s o m e t h i n g _ e l s e () {
11 System . o u t . p r i n t l n (" Something e l s e ") ;
12 }
13
14 }

Figure 2: Unindented code where the effect of indentation
is probably small.

defects 25% fewer functional defects were found (η2
p

= .832). Unfortunately, no more details are given
about the study, especially not the code nor the kind
of functional defects to be found. Additionally, no
information was given about the experiment protocol
– but it seems plausible that the same amount of time
was given to all groups.

In 2019, Bauer et al. replicated the experiment
by Miara et al. on 39 participants where the original
code base was migrated to the language Java and
additionally an eye tracker was used. Altogether,
the authors summarize that the “results did not
show any effect of indentation depth on program
comprehension, perceived difficulty, or visual effort,
indicating that indentation is indeed simply a matter
of task and style, and do not provide support for
program comprehension” (Bauer et al., 2019, p. 163).

In summary, one can say that if we accept the
work by Bauer et al. as a failed replication of the
findings by Miara et al., we could just state that two
publications reveal a positive effect of indentation:
the work by Norcio and and the work by Albayrak and
Davenport. However, only Albayrak and Davenport
report how large the effect was, but the authors did
not give any details about the studied code.

Hence, our conclusion is that not much evidence
exists on the potential positive effect of indentation.

4 ON THE POSSIBLE EFFECTS
OF INDENTATION

Before describing an experiment, it is necessary to
understand the initial considerations that led to the
experiment. Actually, we think that indentation has
different effects for different tasks and for difference
source codes.

Figure 2 illustrates a code example from which

1 c l a s s Example {
2
3 . . . main (. . .) {
4 i n t i = . . . a r g s [0] ;
5 i n t j = . . . a r g s [1] ;
6 i f (i != j) {
7 i f (j >10) {
8 i f (i <10) {
9 p r i n t (5) ;

10 } e l s e {
11 p r i n t (1 0) ;
12 }
13 } e l s e {
14 p r i n t (1 2) ;
15 }
16 } e l s e {
17 i f (i <10) {
18 p r i n t (2 3)
19 } e l s e {
20 p r i n t (1 5)
21 }
22 }
23 }
24
25 }

c l a s s Example {

. . . main (. . .) {
i n t i = . . . a r g s [0] ;
i n t j = . . . a r g s [1] ;
i f (i != j) {
i f (j >10) {
i f (i <10) {
p r i n t (5) ;
} e l s e {
p r i n t (1 0) ;
}
} e l s e {
p r i n t (1 2) ;
}
} e l s e {
i f (i <10) {
p r i n t (2 3)
} e l s e {
p r i n t (1 5)
}
}
}

}

Figure 3: Indented and unindented Java code where the
effect of indentation is probably large. Details are omitted
(...) or abbreveated (print).

we do not believe that indentation has a major effect.
If we ask developers about the number of methods,
we do not think that the absence of indentation has
a measurable effect because we think that the empty
lines in line 2 and line 13 are good separators that
help identify methods. Likewise, asking developers
about the number of lines of code is probably also not
influenced by indentation. Also, we think that asking
developers how many lines of the code print on the
console will not reveal any effects.

Actually, we do not even think that indentation
contributes much to the understanding of Example
because the code can be easily read from top to
bottom. The only moment where we expect that
indentation has a potential effect is the if-statement’s
body in line 6. There developers have to infer on
their own whether or not the line belongs to the if-
statement’s body. But since no other lines follow
within the same method body we do not think that
developers would benefit much from indentation.

We believe the situation is different in Figure 3.
When asking “what is the result of the program if it
is started with the parameters 5 and 5?” indentation
has probably a large effect. After someone becomes
aware that both parameters are stored in local
variables, one has to understand the functionality
of the method which is determined by nested if-
conditions. Reading such if-statements is from our
perspective extraordinary hard without indentation,

Indentation in Source Code: A Randomized Control Trial on the Readability of Control Flows in Java Code with Large Effects

121

because even if someone understands that an if-
condition does not hold, it becomes hard to determine
the next line of code that needs to be read.

We think it makes sense to compare the code from
Figure 2 and 3. Our argument is that indentation
matters for if-statements, but we still argue that it
rather does not count for the code in Figure 2.
The reason is that the body of the if-statement in
Figure 2 is rather trivial and it does not require
major effort to identify the if-statement’s body. From
our perspective, unindented code becomes complex
if larger then- or else-branches exist in the code
(possibly even nested).

5 EXPERIMENT: INDENTATION,
BRACKETS AND SKIPPING

Based on the previous discussion, we do not think
that indentation has a measurable effect in general
and we believe there is a need to distinguish between
indentation that intends to highlight the control flow
of programs (i.e. indentation in if-statements, loops,
etc.) and indentation that intends to highlight
structural elements (such as method bodies, etc). We
believe it makes sense to study the different facets of
indentation in separation and the goal of the present
paper is to focus on control flows.
Algorithmic Complexity. When studying the control
flow of programs, one has to keep in mind that
the algorithmic complexity of programs plays a role,
too, and we believe that a program’s complexity
has many facets. For example, we mentioned
in Section 3 the study by Weissman where quite
complex algorithms were given to participants. We
believe understanding such complex algorithms takes
time and this potentially hides the effect caused
by indentation. Consequently, we see the need to
keep the algorithmic part of programs as simple
as possible. Keeping this in mind, we think it is
reasonable to reduce the code to be studied only
to if–statements, because it is plausible that reading
and understanding e.g. loops adds an undesired
complexity – a study by Ajami et al. gives evidence
that loops are harder to understand than if-statements
(Ajami et al., 2019). Finally, one needs to keep
in mind that even the condition in an if–statement
potentially becomes complex, because the Boolean
expression might consist of multiple comparisons.
Again, our argument is that we should keep this
condition as simple as possible in order to avoid
additional complexity caused by something that is not
in the focus of the study. As a result, we use nested if-
statements where the then- or else-branch hardly does

anything except printing out something.
Tasks. We already discussed tasks that could be given
to developers. However, while tasks such as asking
for the lines of code or asking for the number of
methods is a purely structural task, we think that –
taking into account that we concentrate on the control
flow of programs – asking for a program’s result is
reasonable. I.e., for programs such as the one given
in Figure 3 we can simply ask what the output of
such program is. Such tasks also have the benefit
that articulating the output is quite trivial and does not
require any complex explanations by participants.

In the experiment we only distinguish between
indented and non-indented Java code. But we wanted
to take into account that the identification of if–
statement bodies matter instead of the pure lines of
code. Our goal was to use the following approach:

• Non-Skippable Code. Every outer condition is
true, so that all the inner statements have to be
checked (which will then be false, except for the
actual solution). Consequently, every statement
has to be checked.

• Skippable Code. Every outer condition is false.
That way inner statements can be skipped.

• Mixed Code. Mixes the previous ones. Some
inner statements can be skipped, some have to be
read.

Figure 4 shows an excerpt of the three kinds of
skipping in indented Java code. However, we need
to take into account that concentrating on skipping
(again) leads to the question, whether or not brackets
become a factor: it is quite plausible to assume
that opening and closing brackets are appropriate
separators to help people to identify the start or end
of a code body. Consequently, we assume that this
influences (potential) differences between indented
and non-indented code.

Our goal was to additionally integrate subjective
perceptions by participants as well. For that, we
applied the NASA TLX (Hart and Staveland, 1988).
The NASA TLX is a standard questionnaire to
measure mental and physical demand, performance,
effort, and frustration. This questionnaire is (although
originally built for a different domain) often applied
in software engineering (see for example (Fritz et al.,
2014; Hollmann et al., 2017; Couceiro et al., 2019;
Al Madi et al., 2022) among others). We applied
this questionnaire without questions about physical
demands (since we do not think that physical demand
plays a larger role in our context).

ICSOFT 2023 - 18th International Conference on Software Technologies

122

1 i n t f =14;
2 i n t s =23;
3
4 i f (f ==7) {
5 i f (f ==34) {
6 p r i n t ("Y") ;
7 } e l s e i f (f ==12) {
8 p r i n t ("T") ;
9 }

10 } e l s e i f (s ==10) {
11 i f (s ==22) {
12 p r i n t ("A") ;
13 } e l s e i f (s ==45) {
14 p r i n t ("G") ;
15 }
16 }
17 . . .
18 . . .

1 i n t f =15;
2 i n t s =26;
3
4 i f (f ==15) {
5 i f (f ==13) {
6 p r i n t ("V") ;
7 } e l s e i f (s ==14) {
8 p r i n t ("Z") ;
9 }

10 } e l s e i f (s ==23) {
11 . . .
12 }
13 . . .
14 . . .
15 . . .
16 . . .
17 . . .
18 . . .

1 i n t f =8 ;
2 i n t s =32;
3
4 i f (f ==13) {
5 . . .
6 }
7 i f (f ==8) {
8 i f (s ==11) {
9 p r i n t ("A") ;

10 }
11 i f (s ==30) {
12 p r i n t ("G")
13 }
14 . . .
15 }
16 . . .
17 . . .
18 . . .

Figure 4: Code excerpts of skippable, non-skippable and mixed code. For illustration purposes, the code is slightly modified:
the variable names in the experiment code is different (firstInt instead of f, secondInt instead of s), before and after the
double equals sign white spaces occured, instead of print the experiment uses System.out.println.

5.1 Experiment Layout

The experiment was designed as a within-
subject experiment where all subjects received
16 programming snippets. Four code snippets were
used as warm–up tasks, 12 code snippets were used
for the actual measurements.

• Dependent Variables.
– Time Until Correct Answer. The time until

the correct answer was given. The moment an
answer was given, the time was stopped. If the
answer was not correct, the participant was told
so and and the measurement continued (right
after the feedback was given to the participant).

– Subjective Ratings. The NASA TLX with the
the dimensions mental demand, performance,
effort, and frustration (each measured on a
scale from 1=low to 20=high). I.e., there
are four different dependent variables, each
representing a different dimension in the NASA
TLX.

• Independent Variables.
– Indentation. With the treatments indentation

and non–indentation.
– Brackets. With the treatments with and

without brackets.
– Skipping Type. With treatments non-skippable

code, skippable code, mixed code.

• Non-Controlled Variables.
– Background (Between Subject). Student or

professional developer.

– Ordering. The subjects received in the
beginning the 4 warm-up tasks (in a random
order), afterwards the 12 tasks in random
order.6

• Fixed Variable.
– Lines of Code. All code snippets had 48 lines

of functional code (variable declarations, if-
statements, print-statement without) including
a method header. The code versions with
brackets were longer due to the chosen code
format (closing brackets in separate lines).

• Task. “Say what the given program prints out”.

Giving each participant 12 tasks is the result of the
independent variable: there are altogether 12 different
treatment combinations (2 x indentation, 2 x bracket,
3 x skipping type, i.e. 2 x 2 x 3 = 12).

5.2 Execution and Results

The experiment was executed on 10 students and 10
professional developers chosen based on purposive
sampling. The code snippets were shown to the
participants on the screen. The time measurement
was manually done. The experiment started with
four warm-up tasks. The data was analyzed using a
repeated measures ANOVA using SPSS v27. Table 2
shows the results of the statistical analysis.

If we reduce the analysis to the variable
indentation, we receive the ratio of means

6We chose to assign the tasks randomly in order
to counter–balance potential periodic effects (see for
example (Madeyski and Kitchenham, 2018; Hanenberg and
Mehlhorn, 2021)).

Indentation in Source Code: A Randomized Control Trial on the Readability of Control Flows in Java Code with Large Effects

123

Table 2: Experiment Results – Confidence intervals (CI) and means (M) are given in rounded, full seconds. Non-significant
interactions were omitted. N describes the number of datasets per treatment(-combination).

df F p η2
p Treatment N CI95% M

Indentation (I) 1 89.372 <.001 .832 Indented 120 38; 58 48
Non-Indented 120 115; 153 134

Brackets(B) 1 1.025 .325 .054 omitted due to insignificant results
Skipping(S) 2 1.278 .291 .066 omitted due to insignificant results
Background 1 .797 .384 .042 omitted due to insignificant results

I * S 2 18.025 <.001 .500

Indented/Non-Skippable 40 49; 71 60
Indented/Mixed 40 35; 52 43

Indented/Skippable 40 24; 55 39
Non-Indented/Non-Skippable 40 119; 171 145

Non-Indented/Mixed 40 122; 170 146
Non-Indented/Skippable 40 119; 171 144

I * S* B 2 3.820 .031 .175 ommitted due to large number of combinations

MNon−Indented
MIndented

= 134
48 = 2.791, i.e. on average

non-indented code required 179% more
time. However, it is necessary to take the
interactions into account. Figure 5 illustrates
the interaction Indentation*Skipping. It shows
that the difference between indentation and non-
indentation is relatively small in non-skippable
code MNon−Indented

MIndented
= 145

60 = 2.417, while the
differences between mixed and skippable are larger
(146

43 = 3.396, respectively 144
30 = 3.692). However,

the difference between mixed and skippable code
was not significant.

The dataset also contained a significant interaction
Indentation*Skipping*Brackets and the results were
from our perspective counter-intuitive: while for
non–skippable code the ratios between non-indented
and indented code were almost constant (with
brackets= 99

54 = 1.833, without bracket = 132
66 = 2.00),

the introduction of brackets decreased the ratios in
skippable code (with brackets = 158

33 = 4.788, without
= 123

45 = 2.73).
Background was neither a significant variable, nor

did it interact with any other variable.

5.3 Results of Subjective Ratings

We analyzed the responses of the NASA TLX in
the same way as the previously measured times.
Since four different responses were collected (mental
demand, performance, effort, and frustration),
four different repeated measures ANOVAs were
executed.7

7We are aware that one could argue that the kind
of response, i.e. the different categories, could also be
considered as a separate variable in the analysis. However,
we think that the main goal of the NASA TLX is to
collect different kinds of responses of different categories
independent of each other. Consequently, we analyze them
independent of each other.

Figure 5: Interaction between indentation and skipping.

Taking into account that reporting each dependent
variable in separation takes too much space, we
reduce the reporting of the subjective ratings to a
(from our perspective acceptable) minimum where
we concentrate only on the variables indentation
and bracket, and report for each dependent variable
(mental demand, performance, effort, frustration)
p-values, η2

p and means. We intentionally report
the variables brackets and indentation, because
indentation is the main goal of the current study, and
brackets turned out to be a non-significant factor in
the previous time measurements. Table 3 summarizes
the results of the analyses.

With respect to indentation, the results of the
NASA TLX are in line with the previous time mea-
surements. The factor is significant in all dimensions
of the NASA TLX: in the absence of indentation par-
ticipants consider tasks as much more demanding, the
effort as much higher, and participants feel less per-
formant, and much more frustrated.

However, with regard to brackets, the results are
not even closely in line with the time measurements.

ICSOFT 2023 - 18th International Conference on Software Technologies

124

Table 3: Pairwise Comparisons of the variables defined by
the TLX

Category Treatment Means p η2
p

Mental
Demand

Indentation MIndented = 5.33; <.001 .789MNon−Indented = 12.22

Brackets MBrackets = 8.29 .002 .146
MNo−Brackets= 9.26

Perfor-
mance

Indentation MIndented = 12.79 <.001 .396MNon−Indented = 9.08

Brackets MBrackets = 11.34 .027 .081MNo−Brackets = 10.53

Effort Indentation MIndented = 4.9 <.001 .68MNon−Indented = 11.52

Brackets MBrackets = 7.79 .005 .126MNo−Brackets = 8.62
Frustra-
tion

Indentation MIndented = 3.14
MNon−Indented = 9.59

<.001 .626

Brackets MBrackets = 6.04
MNo−Brackets = 6.69

.094 .047

The factor brackets is significant in all dimensions
except frustation (where brackets approaches signifi-
cance with p=.094): in the absence of brackets, partic-
ipants consider the tasks slightly more demanding, the
effort slightly higher, and the participants feel slightly
more performant.

6 THREATS TO VALIDITY

The experiment does not rely on industrial code but
uses artificial code: the conditions in the if-statements
are trivial and so are the bodies of the then- or else-
branches. And we need to point out that the present
work only concentrates on control flows and we be-
lieve that the effects on other constructs will be dif-
ferent. While this is obviously an external threat to
validity, we need to keep in mind that the goal of con-
trolled trials is to keep as much as possible under con-
trol. I.e. using artificial code helps to focus on the
variable being studied. But the implication is, that the
effects of indentation that can be found in reality are
probably much smaller than the ones reported in the
present paper: due to other confounding factors, not
due to a reduced effect of the main factor.

Another (external) threat is, that the present paper
just measures answering times without giving partic-
ipants the opportunity to interact with the code (via
a debugger, etc.). While it is disputable to guess
whether or not such situations should be studied at
all, one needs to keep in mind that the pure reading
of code probably still plays a role even in situations
where development tools are available. Actually, so
far we are not able to quantify how much reading time
is actually required per day by developers, but at least
there are studies available that give evidence that time
spent in understanding code is probably larger than
any other activity in development (see for example

Murphy et al. (Murphy et al., 2006)).
We also need to keep in mind that the measure-

ment technique was hand-measured time. We are
aware that measuring time that way is quite imprecise
and it probably influenced the results of the experi-
ment as well. However, even if we assume that hand-
measured time varies even by a few seconds, the mea-
sured differences are still large enough to compensate
for this effect, i.e. we think it is not plausible that the
results differ much if a different measurement tech-
nique would be used.

While we do not think it mattered in the exper-
iment, the experiment design suffers from a serious
internal threat: participants can compromise experi-
ment results. This can be done simply by reading the
code and saying the printed statements as quickly as
possible. In principle, this could be solved by adding
some algorithmic complexity to the code that does not
permit to simply guess what the result of the code
might be. However, we need to keep in mind that it
was the experiment’s intention to remove any kind of
algorithmic complexity from the code. Another alter-
native could be to define an exclusion criterion such
as a certain number of errors in the answers.

However, we need to keep in mind that another
way to compromise the experiment is to sit down
without doing anything. In such case, the answer time
will be quite long and possible effects can still be hid-
den. I.e., we think that this kind of threat is inherent
in experiments with time measurements based on par-
ticipants’s activities. So far, we are not aware of any
solution to this problem.

7 SUMMARY AND DISCUSSION

This paper performed a randomized control trial on
the readability of indented and non-indented code, be-
cause it turned out that evidence for an effect of in-
dentation is missing in the literature – despite the of-
ten and common application of indentation in teach-
ing and practice: Although the authors of the present
paper are aware of 12 experiments where indenta-
tion was a controlled factor, only one experiment by
Albayrak and Davenport (Albayrak and Davenport,
2010) was able to reveal an effect and report the effect
size. However, the experiment did not report much
on the code given to the participants nor does it say
much about the defects that had to be found. Hence,
we think it is quite hard to interpret the results and we
see the need for more experiments on that topic.

The experiment presented in this paper (executed
on 10 students and 10 professional developers) con-
sidered four factors: indentation, skipping, brackets

Indentation in Source Code: A Randomized Control Trial on the Readability of Control Flows in Java Code with Large Effects

125

and background. Reducing it only to the factor in-
dentation, large effects could be found with on av-
erage 179% higher answer times for non–indented
code up to 269% higher answer times in situations
where parts of the code can be skipped. Moreover,
the experiment showed that the difference in answer
times between indented and non-indented code is in-
fluenced by the given code: not with respect to the
code’s length (which was kept constant in the experi-
ment), but with respect to whether or not parts of the
code can be skipped. However, it turned out that our
notion of skippable and mixed did not reveal the ex-
pected results: the differences between indented and
non–indented code were the same for both kinds of
code. With respect to brackets, our original expec-
tations were that brackets help in non–indented code
where part of the code can be skipped. However, it
turned out that the opposite was true.

Based on the NASA TLX, we were able to ob-
serve that the subjective ratings were in line with
the time measurements. However, the subjective rat-
ings also considered the presence of brackets as help-
ful (except with respect to TLX’s dimension frustra-
tion where we did not measure a significant differ-
ence) which was not in line with the time measure-
ments. Actually, the reason why we introduced brack-
ets in the experiment was that we expected this would
help participants especially in situations where inden-
tation was not present. And while this assumption
did not hold (insignificant variable brackets in time
measurements), the subjective perception of partic-
ipants matched our original assumption. We think
that the latter statement rather expresses the strong be-
lief among developers (and even our own belief) that
brackets are helpful, although the non-subjective time
measurements did not reveal such a phenomenon.

We should note that the experiment is just on con-
trol flows caused by if-statements. We think that such
kind of code has one special characteristic: it can be
read from top to bottom without the need to go back
to other lines that were already read. We believe that
other control-flow specific language constructs such
as loops have other implications – we think that jump-
ing back and forth in the code would reduce the effect
of indentation and we think that other effects (such
as the existence of beacons in the code – see for ex-
ample (Crosby et al., 2002)) play a larger role. Ac-
tually, there is already evidence that if-statements are
harder to read than loops (see (Ajami et al., 2019)).
And we need to keep in mind that the effects reported
here are caused by highly controlled source code and
we need to keep in mind that source code one finds
in reality contains many other factors that do not (or
hardly) play a role in the presented experiment. One

of these factors is the choice of identifiers: For ex-
ample, the studies by Binkley et al. (Binkley et al.,
2013) or by Hofmeister et al. (Hofmeister et al., 2019)
showed that the style as well as the length of identi-
fiers has a large effect on readabilty. Keeping in mind
that different code in reality contains different identi-
fiers implies that this is a potential source of deviation
(i.e., a confounding factor). Consequently, we believe
that it is quite likely that the effects of indentation one
finds in industrial code is smaller than in the here re-
ported experiment. While one might argue that this
is rather an argument against the present paper (be-
cause its generalizability is quite limited and probably
does not permit to make a statement about industrial
code), we argue that one needs to keep in mind that
the whole point in randomized control trials is to con-
trol variables. The goal is to identify the effect of the
studied variable and to remove possible confounding
factors. This is what the present paper did and this
is probably the reason why the large effects could be
found. It does not mean that we are not aware of mul-
tiple confounding factors that exist in industrial code.

Another facet of the study was that the back-
ground of the participants did not matter: no signif-
icant differences in answer times between students
and professionals were found. From our perspective,
this is caused by the quite simple control flows. Pro-
fessional developers probably have more experience
with APIs, tools, complex algorithms, or infrastruc-
tures, but we do not think that these skills help much
when reading control flows.

We think that with respect to the main factor in-
dentation the experimental results are quite clear: the
effect of indentation is strong and large. This directly
leads to the question how it comes that we hardly find
experiments in the literature that revealed this effect.

We believe this is caused by two effects that often
appear at the same time and that both possibly hide
the effect of indentation. First, the code of experi-
ments in the literature was relatively complex. We do
believe that complex code increases the deviation in
the dependent variable and that this possibly hides the
effect of indentation (in case the effect of indentation
is smaller than the deviation). An example for such
an experiment was the one by Weissman who gave
subjects source code with Quicksort and the Eight
Queens Problem.

Another potential problem we find in the literature
is the choice of dependent variables such as question-
naires consisting of multiple questions where correct
answers give some credit. An example for such an
experiment is the one by Shneiderman and McKay.
The potential problem is, that some questions might
or might not refer to the possible difference between

ICSOFT 2023 - 18th International Conference on Software Technologies

126

indented or non–indented code but rather on some
other facets of the code. For example, in Section 4 we
discussed a possible question of how many lines of
code some code snippet contains. If a questionnaire
contains a number of questions that do not focus on
the possible effect of indentation, we think that such
questionnaires are rather inappropriate to be used in
a study that focuses on indentation. I.e., the result-
ing studies that end up with null results do not indi-
cate that indentation has no effect. Instead, it simply
means that under the experimental conditions no ef-
fect could be measured (which is an important differ-
ence, because such null effects are possibly caused by
inappropriate experimental designs).

Finally, we think that the present paper gives some
more insights about a phenomenon that was studied
by Johnson et al. (Johnson et al., 2019) as well as
Ajami et al. (Ajami et al., 2019): both works identi-
fied that the deeper the nesting, the harder is it for de-
velopers to understand the code. Actually, the present
paper says that nesting has another effect: the pres-
ence of nesting indicates code that can be skipped
while reading (under some circumstances). I.e., the
question is not only how deep a nesting is, but how
much code is actually nested. We think that this is-
sue deserves more studies in the future, because the
present study was not able to reveal this effect: al-
though the variable skipping was significant, the study
did not find a difference between mixed and skip-
pable. I.e., future work should address this in order
to find an explanation for the readability differences
between indented and non-indented code.

8 CONCLUSION

The main point of the present work is that indentation
is an important issue in education and development –
but there is so far not much evidence in the scientific
literature that indentation actually matters.

The present work shows that indentation has – at
least in the context of control flows – a large, posi-
tive effect in comparison to non-indented code. But it
also shows something different: The effect of inden-
tation is not a fixed factor. It depends on other factors
as well and the present work identified “code skip-
ping” as such an influencing factor with larger effects
on the difference between indented and non-indented
code. However, the experiment was not able to re-
veal a readability difference between skippable code,
something that should be addressed in future work.

To conclude, we think that the present paper could
be used to tell students or professional developers
why indentation matters. The answer from the present

experiment is: Because it saves a lot of time when
reading code. We might not know how much time it
saves for some given code basis (where multiple, ad-
ditional factors influence the readability of the code).
But in the reported experiment, non-indented code re-
quired between 142% and 269% more time to deter-
mine the output of the code.

Note

A replication package of the experiment is available
via https://drive.google.com/drive/folders/1ZVDMfT
BDIvpKF0uQtZemhmvH_LxoUODf. There, also the
raw measurements of the experiment are available.

REFERENCES

Ajami, S., Woodbridge, Y., and Feitelson, D. G. (2019).
Syntax, predicates, idioms — what really affects
code complexity? Empirical Software Engineering,
24(1):287–328.

Al Madi, N., Peng, S., and Rogers, T. (2022). Assessing
workload perception in introductory computer science
projects using nasa-tlx.

Albayrak, O. and Davenport, D. (2010). Impact of main-
tainability defects on code inspections. In Proceed-
ings of the 2010 ACM-IEEE International Sympo-
sium on Empirical Software Engineering and Mea-
surement, ESEM ’10, New York, NY, USA. Associ-
ation for Computing Machinery.

Bauer, J., Siegmund, J., Peitek, N., Hofmeister, J. C., and
Apel, S. (2019). Indentation: Simply a matter of
style or support for program comprehension? In
Proceedings of the 27th International Conference on
Program Comprehension, ICPC ’19, pages 154–164.
IEEE Press.

Binkley, D. W., Davis, M., Lawrie, D. J., Maletic, J. I., Mor-
rell, C., and Sharif, B. (2013). The impact of identifier
style on effort and comprehension. Empir. Softw. Eng.,
18(2):219–276.

Couceiro, R., Duarte, G., Durães, J. a., Castelhano, J. a.,
Duarte, C., Teixeira, C., Branco, M. C., de Carvalho,
P., and Madeira, H. (2019). Biofeedback augmented
software engineering: Monitoring of programmers’
mental effort. In Proceedings of the 41st Interna-
tional Conference on Software Engineering: New
Ideas and Emerging Results, ICSE-NIER ’19, pages
37–40. IEEE Press.

Crosby, M. E., Scholtz, J., and Wiedenbeck, S. (2002). The
roles beacons play in comprehension for novice and
expert programmers. In Proceedings of the 14th An-
nual Workshop of the Psychology of Programming In-
terest Group, PPIG 2002, London, UK, June 18-21,
2002, page 5. Psychology of Programming Interest
Group.

Fritz, T., Begel, A., Müller, S. C., Yigit-Elliott, S., and
Züger, M. (2014). Using psycho-physiological mea-

Indentation in Source Code: A Randomized Control Trial on the Readability of Control Flows in Java Code with Large Effects

127

sures to assess task difficulty in software development.
In Proceedings of the 36th International Conference
on Software Engineering, ICSE 2014, pages 402–413,
New York, NY, USA. Association for Computing Ma-
chinery.

Hanenberg, S. and Mehlhorn, N. (2021). Two n-of-1 self-
trials on readability differences between anonymous
inner classes (aics) and lambda expressions (les) on
java code snippets. Empirical Software Engineering,
27(2):33.

Hart, S. G. and Staveland, L. E. (1988). Development of
nasa-tlx (task load index): Results of empirical and
theoretical research. In Hancock, P. A. and Meshkati,
N., editors, Human Mental Workload, volume 52
of Advances in Psychology, pages 139–183. North-
Holland.

Hofmeister, J. C., Siegmund, J., and Holt, D. V. (2019).
Shorter identifier names take longer to comprehend.
Empir. Softw. Eng., 24(1):417–443.

Hollmann, N., Rossenbeck, T., Kunze, M., Tuerk, L., and
Hanenberg, S. (2017). What’s the effect of projec-
tional editors for creating words for unknown lan-
guages? a controlled experiment. The 8th Workshop
on Evaluation and Usability of Programming Lan-
guages and Tools (PLATEAU) at SPLASH 2017.

Johnson, J., Lubo, S., Yedla, N., Aponte, J., and Sharif,
B. (2019). An empirical study assessing source code
readability in comprehension. In 2019 IEEE Interna-
tional Conference on Software Maintenance and Evo-
lution (ICSME), pages 513–523.

Kesler, T. E., Uram, R. B., Magareh-Abed, F., Fritzsche, A.,
Amport, C., and Dunsmore, H. (1984). The effect of
indentation on program comprehension. International
Journal of Man-Machine Studies, 21(5):415–428.

Love, L. T. (1977). Relating individual differences in com-
puter programming performance to human informa-
tion processing abilities. PhD thesis.

Madeyski, L. and Kitchenham, B. A. (2018). Effect sizes
and their variance for AB/BA crossover design stud-
ies. Empir. Softw. Eng., 23(4):1982–2017.

Miara, R. J., Musselman, J. A., Navarro, J. A., and Shnei-
derman, B. (1983). Program indentation and compre-
hensibility. Commun. ACM, 26(11):861–867.

Moher, D., Hopewell, S., Schulz, K. F., Montori, V.,
Gøtzsche, P. C., Devereaux, P. J., Elbourne, D., Egger,
M., and Altman, D. G. (2010). Consort 2010 explana-
tion and elaboration: updated guidelines for reporting
parallel group randomised trials. BMJ, 340.

Murphy, G. C., Kersten, M., and Findlater, L. (2006). How
are java software developers using the eclipse ide?
IEEE Softw., 23(4):76–83.

Norcio, A. F. (1982). Indentation, documentation and pro-
grammer comprehension. In Proceedings of the 1982
Conference on Human Factors in Computing Systems,
CHI ’82, pages 118–120, New York, NY, USA. Asso-
ciation for Computing Machinery.

Sheil, B. A. (1981). The psychological study of program-
ming. ACM Comput. Surv., 13(1):101–120.

Shneiderman, B. and McKay, D. (1976). Experimental
investigations of computer program debugging and
modification. Proceedings of the Human Factors So-
ciety Annual Meeting, 20(24):557–563.

Sime, M., Green, T., and Guest, D. (1973). Psychologi-
cal evaluation of two conditional constructions used
in computer languages. International Journal of Man-
Machine Studies, 5(1):105–113.

Sime, M., Green, T., and Guest, D. (1977). Scope mark-
ing in computer conditionals–a psychological evalua-
tion. International Journal of Man-Machine Studies,
9(1):107..118.

Vessey, I. and Weber, R. (1984). Research on structured pro-
gramming: An empiricist’s evaluation. IEEE Transac-
tions on Software Engineering, SE-10(4):397–407.

Weissman, L. M. (1974). A Methodology for Studying
the Psychological Complexity of Computer Programs.
PhD thesis. AAI0510378.

ICSOFT 2023 - 18th International Conference on Software Technologies

128

