Nagare Media Engine: Towards an Open-Source Cloud- and
Edge-Native NBMP Implementation

Matthias Neugebauer'2

a

I Department of Information Systems, University of Miinster, Leonardo-Campus 3, 48149 Miinster, Germany
2ZHLdigital, University of Miinster, Fliednerstrafie 21, 48149 Miinster, Germany

Keywords:

Abstract:

Nbmp, Network-Distributed Multimedia Processing.

Making efficient use of cloud and edge computing resources in multimedia workflows that span multiple

providers poses a significant challenge. Recently, MPEG published ISO/IEC 23090-8 Network-Based Media
Processing (NBMP), which defines APIs and data models for network-distributed multimedia workflows. This
standardized way of describing workflows over various cloud providers, computing models and environments
will benefit researchers and practitioners alike. A wide adoption of this standard would enable users to easily
optimize the placement of tasks that are part of the multimedia workflow, potentially leading to an increase
in the quality of experience (QoE). As a first step towards a modern open-source cloud- and edge-native
NBMP implementation, we have developed the NBMP workflow manager Nagare Media Engine based on
the Kubernetes platform. We describe its components in detail and discuss the advantages and challenges
involved with our approach. We evaluate Nagare Media Engine in a test scenario and show its scalability.

1 INTRODUCTION

Multimedia processing is increasingly becoming
more sophisticated. In order to increase the quality of
experience (QoE), workflows now include advanced
machine learning algorithms that optimize parameters
based on the individual user session (Mueller et al.,
2022). Furthermore, workflows are becoming more
distributed as computing and caching are moved fur-
ther to the edge of the network. This changing envi-
ronment poses a challenge to workflow developers as
they now have to integrate with different providers.

To meet these challenges, the Moving
Picture = Experts Group (MPEG) published
ISO/IEC 23090-8 Network-Based Media Pro-
cessing (NBMP) (ISO/IEC, 2020) which defines
common APIs and data models. Workflows are
broken up into multiple interconnected tasks, which
are instances of functions that are deployed onto
media processing entities (MPEs).

Ideally, an NBMP implementation can use the
same MPE in different environments. We argue that
Kubernetes is a good fit for that role, as it provides a
common platform across cloud and edge providers.
Beyond that, Kubernetes has emerged as a leading

(2 https://orcid.org/0000-0002-1363-0373

404

Neugebauer, M.

Nagare Media Engine: Towards an Open-Source Cloud- and Edge-Native NBMP Implementation.

DOI: 10.5220/0012087200003538

container orchestration system. Its scheduling mecha-
nisms and built-in support for various workloads have
matured in recent years. We, therefore, think that
leveraging Kubernetes as part of an NBMP imple-
mentation would be beneficial. In this paper, we ex-
plore this idea by implementing an NBMP workflow
manager that is based on Kubernetes and extends its
functionality. In summary, the contributions of this
paper are as follows:

1. A detailed description of how multiple Kuber-
netes clusters might be used as MPEs within an
NBMP system.

2. Nagare Media Engine — An open-source
NBMP workflow manager implementation that is
based on the Kubernetes platform.

The rest of this paper is structured as follows. In
the next section, we discuss NBMP as well as the Ku-
bernetes platform as background for this paper. Sec-
tion 3 gives an overview of the related work, after
which we explain our implementation in Section 4.
We discuss limitations in Section 5 and evaluate our
approach in Section 6. Finally, Section 7 concludes
this paper.

In Proceedings of the 18th International Conference on Software Technologies (ICSOFT 2023), pages 404-411

ISBN: 978-989-758-665-1; ISSN: 2184-2833

Copyright (© 2023 by SCITEPRESS — Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

Nagare Media Engine: Towards an Open-Source Cloud- and Edge-Native NBMP Implementation

2 BACKGROUND

2.1 Network-Based Media
Processing (NBMP)

NBMP describes a framework for network-distributed
multimedia processing. It was standardized by MPEG
as ISO/IEC 23090-8 in 2020 (ISO/IEC, 2020) with
a second edition currently in development. NBMP
defines a reference architecture split into a control and
media plane, each containing several components as
depicted in Figure 1.

Function

discovery API
Function

repository

NBMP workflow NBMP workflow
NBMP source | 4P/ manager

Workflow (Builds workflow/DAG, allocates tasks,
description runtime confi am binding

NBMP

repoy

Task

Media processing entity (MPE)
Task 1

Media source Task 2 Media flow Media sink

control flow
nnnnnn

Runti
stream/event binding

Figure 1: NBMP reference architecture (ISO/IEC, 2020).

5 dataflow

The control plane consists of the following. New
workflows are initiated by an NBMP source. It com-
municates with the NBMP workflow manager us-
ing the Workflow API to create, monitor, update and
delete workflows. In an NBMP system, workflows
form a directed acyclic graph (DAG) of media pro-
cessing functions connected over a network. Avail-
able functions can be discovered via the Function
Discovery API implemented by a function repository.
The function selection can either be performed by the
NBMP source or by the NBMP workflow manager
based on provided constraints.

After the DAG is constructed logically, the NBMP
workflow manager communicates with MPEs to in-
stantiate the selected functions as tasks. How this
communication takes place is outside the scope of
the NBMP specification. This leaves room for sev-
eral implementations in varying computing environ-
ments. Note that an NBMP workflow can span multi-
ple MPEs. NBMP thus enables distributed multime-
dia processing for multi-cloud or edge scenarios. The
workflow description allows specifying task schedul-
ing constraints, but ultimately the NBMP workflow
manager decides where a task is deployed to. The
MPEs will signal the deployment status to the NBMP
workflow manager. If all tasks are deployed success-
fully, the NBMP workflow manager will use the Task
API for configuration and starting the execution.

Next to tasks, the media plane consists of me-

dia sources and media sinks. These represent the
workflow inputs and outputs, respectively, and are
part of the DAG. NBMP is suited for both streaming-
and file-based scenarios. It is further agnostic to the
streaming and media format. If a function is limited
to certain formats, the function description needs to
include these restrictions.

In total, NBMP defines three interfaces: the
Workflow, Task and Function Discovery API. These
should be implemented as Representational State
Transfer (REST) APIs using JavaScript Object No-
tation (JSON) as an exchange format. The stan-
dard further specifies the JSON objects through JSON
Schema (Wright et al., 2022) definitions. JSON ob-
jects that adhere to this schema are called workflow,
task or function description documents (WDD, TDD,
FDD), respectively. They share common descriptors
also defined through JSON Schema. The MPEG pub-
lished the schema definitions in a public repository!
that already contains various improvements for the
second edition. Our work is based on the updated
schema.

NBMP describes the workflow and task lifecycles
as state machines. The lifecycle starts in instantiated.
After configuration, the state shifts to idle. It then
transitions and stays in the running state as long as it
receives a media stream. If an error occurs, the work-
flow or task is in the error state. Finally, the destroyed
state signals the deletion. NBMP allows for interrup-
tions in the media stream between tasks in case a task
is reconfigured while being in the running state. In
case of an error, multiple failover modes can be used.

2.2 Kubernetes

Kubernetes®> is an orchestration platform mainly
known for managing container workloads over mul-
tiple nodes. However, it is not limited to only or-
chestrating containers. It has thus become a “lingua
franca” of cloud platforms. All major cloud providers
have a managed Kubernetes offering that ties directly
into the rest of the cloud platform, e.g. providing spe-
cific storage solutions for containers. Administrators
can therefore use the same (or similar) API over mul-
tiple cloud providers. In recent years, Kubernetes has
furthermore been used for edge computing. Where an
upstream Kubernetes installation is not feasible, K3s3
and Microk8s* provide a full Kubernetes distribution

https://github.com/MPEGGroup/NBMP
Zhttps://kubernetes.io/

3https://k3s.io/

“https://microk8s.io/

405

ICSOFT 2023 - 18th International Conference on Software Technologies

with a smaller footprint. KubeEdge> and SuperEdge®
are solutions for devices with even stricter resource
constraints and unstable networks between cloud and
edge nodes.

At the core, the Kubernetes orchestration de-
sign evolves around resources and associated con-
trollers. Resources provide a declarative way of spec-
ifying a certain state. For instance, the Pod resource
describes a collection of tightly coupled containers
that are deployed together on the same node. Re-
source types are part of a versioned group that forms
a specific APL. Resources are often represented in
YAML Ain’t Markup Language (YAML) and usu-
ally follow a specific structure. The metadata field
is mandatory for all resources and at least specifies
the name of the resource. Additionally, the names-
pace is required if the resource type is not scoped
cluster-wide. Most resources further contain a spec
field. It contains subfields that specify the desired
state as defined by the user. The status field,
on the other hand, contains subfields that describe
the actually observed state. Kubernetes allows ad-
ministrators to define custom resources through the
CustomResourceDefinition (CRD) resource. As
with built-in types, CRDs contain a versioned descrip-
tion of a type that is part of a specific group. JSON
Schema is used to define the structure as well as val-
idation rules. This feature allows third-party ven-
dors to natively integrate with Kubernetes while users
work with a familiar API. However, the Kubernetes
API server is not responsible for the business logic
associated with the resource. It only validates user
input, possibly relying on webhooks for custom vali-
dation logic.

In order to reconcile the desired with the actual
state, built-in and third-party controllers are running
within the Kubernetes system. Controllers run a rec-
onciliation loop that, for a given resource, continu-
ously checks for a deviation from the desired state. In
that case, steps are taken to reconcile the difference.
Multiple controllers can work in unison to achieve a
desired outcome. For instance, after the creation of
a Job, the job controller will create a Pod accord-
ing to the job specification. The scheduler, in turn,
will update the Pod with a reference to a selected
node. Finally, the node will spawn the actual con-
tainers and report the status in the appropriate fields
of the Pod. The job controller will notice the status
update and update the Job resource as well. This ex-
ample also shows how different resources might re-
late to each other. Pods form the basis for higher-
level constructs describing various workload types.

Shttps://kubeedge.io/
Shttps://superedge.io/

406

This relationship can be expressed as an owner refer-
ence as part of the resource’s metadata. In doing so,
Kubernetes will automatically garbage-collect depen-
dent resources once an owner gets deleted simplifying
the controller cleanup logic.

As an optimization, controllers usually don’t con-
tinuously check for changes but rely on notifications
from the Kubernetes API server by defining a watch
on a certain type. Furthermore, in-memory caching of
resources plays a central role in efficient and scalable
controller implementations. Third-party controllers
can use the Kubebuilder framework’ to take advan-
tage of these optimizations.

3 RELATED WORK

NBMP is a fairly new standard only being published
in 2020. Leading up to the publication, WIEN ET AL.
provided an overview of the MPEG-I ISO/IEC 23090
standards collection NBMP is part of (Wien et al.,
2019). XU ET AL. present NBMP in more detail in
(Xu et al., 2022) and argue for its necessity. Vari-
ous applications from the literature and the authors
are discussed extensively. In the end, they encourage
the development of NBMP implementations.

In (Ramos-Chavez et al., 2021), RAMOS-CHAVEZ
ET AL. describe a testbed NBMP implementa-
tion that is used to evaluate various streaming func-
tions for MPEG Dynamic Adaptive Streaming over
HTTP (DASH) (ISO/IEC, 2019) and HTTP Live
Streaming (HLS) (Pantos and May, 2017) streaming.
The test results were then used for optimizations of
the streaming solution.

YOU ET AL. implemented an NBMP prototype on
the research stream processing platform World Wide
Streams for solving computer vision problems (You
et al., 2020, 2021).

The use of containers for NBMP functions has
been proposed before (Bassbouss et al., 2021). The
work of BASSBOUSS ET AL. involves using NBMP
as a standardized workflow description for video-on-
demand (VoD) media caching at the edge on trains.
In a proof-of-concept, Docker containers provide var-
ious functions for transferring media to caches and
monitoring the media streaming process.

Finally, MUELLER ET AL. describe an NBMP
workflow that moves the transcoding to the edge to
adapt the bitrate to the available bandwidth of the “last
mile” (Mueller et al., 2022). This workflow addition-
ally includes a microservice that uses machine learn-
ing for predicting optimal encoding parameters. AWS

7https://github.com/kubernetes-sigs/kubebuilder

Nagare Media Engine: Towards an Open-Source Cloud- and Edge-Native NBMP Implementation

Elastic Compute Cloud (EC2) is used to deploy a test
setup. It is not detailed if and how the NBMP work-
flow manager was implemented.

As far as we know, an open-source NBMP imple-
mentation based on a modern, openly available plat-
form such as Kubernetes is currently missing. Com-
mercial off-the-shelf solutions do not yet exist either.

4 NAGARE MEDIA ENGINE

With Nagare Media Engine, we propose an NBMP
implementation based on Kubernetes serving as MPE.
This paper will only describe our NBMP workflow
manager prototype. We take advantage of Kube-
builder in order to develop multiple efficient cus-
tom controllers. The codebase includes example
configurations, is open source and can be retrieved
from https://github.com/nagare-media/engine under
the Apache 2.0 license. We intend to use Nagare
Media Engine in a production scenario for live and
VoD media but also think it can serve as a basis for
future research. The following subsections will intro-
duce the architecture and discuss each component.

4.1 Architecture Overview

In order to support multiple MPEs, Nagare Media
Engine can talk to multiple Kubernetes clusters. One
cluster fulfills the role of a management cluster that
runs the NBMP control plane. All other clusters are
used for running tasks and don’t require any special
components. We define multiple CRDs that are stored
and reconciled on the management cluster (see Sub-
section 4.2).

Management Kubernetes Cluster
NBMP Workflow Manager

‘ NBMP Gateway ‘

I
Worker Kubernetes Cluster

Job

Secrets

Controller Manager
‘ MPE Controller ‘ ‘ Workflow Controller ‘

‘ Task Controller H Job Controller ‘
Webhooks

Figure 2: Nagare Media Engine architecture.

As depicted in Figure 2, our NBMP workflow
manager consists of the NBMP Gateway and Con-
troller Manager. The NBMP Gateway implements
the Workflow API and translates WDD requests to
and from our Kubernetes resources. The Controller
Manager is a collection of Kubernetes controllers that
observe our custom resources and try to reconcile the
desired state. Additionally, it provides mutating and
validating webhooks, i.e. HTTP endpoints called by

the Kubernetes API server during the processing of
our custom resources. The result of a successful rec-
onciliation is the creation of one or multiple Jobs in
worker Kubernetes clusters. The Job is a built-in re-
source type and is meant for workloads that run to
completion.

We choose not to implement the Task API for the
configuration and management of tasks. Instead, a
Secret, another built-in type for securely storing and
passing data, is mounted to the filesystem of the Job.
This is closer to how other workloads are usually con-
figured in Kubernetes. The main reason, however, is
that we then no longer need to have network access
to each deployed task. Even though Kubernetes has
types to describe how incoming (HTTP) network re-
quests should be routed, this can vary depending on
the installed networking solution as well as additional
components (network policies, service meshes, etc.).
Our solution provides a more generic implementation
that should work with many Kubernetes clusters. Al-
though, for better compatibility with NBMP function
vendors, we might need to develop a small translation
layer and deploy it with each task. Functions must
be packaged as container images and made available
through a container image repository.

4.2 Custom Resource Definitions

We define six namespace-scoped custom Kuber-
netes resource types enabling multi-tenancy scenar-
ios. Four additional types provide a cluster-scoped
variant to allow administrators to define shared re-
sources. These types have “Cluster” as the prefix in
their names. Some types only store information and
don’t need to be reconciled.

The Function and ClusterFunction resources
describe an NBMP function. The specification con-
tains a Job template field that is used to instantiate
Job resources. Furthermore, arbitrary default config-
uration values can be provided.

Access to media often requires authentication.
The NBMP standard contains a security descrip-
tor that can be associated with workflows, func-
tions and tasks. Additionally, media is accessed
through various transport protocols. To store this
information, we defined the Medialocation and
ClusterMediaLocation resources. Authentication
information is not stored directly in the custom re-
source. Instead, a reference to a Secret resource
must be provided.

Users can define available MPEs through the
MediaProcessingEntity and ClusterMedia
ProcessingEntity resources, respectively. MPEs
may either be local, i.e. the worker Kubernetes cluster

407

ICSOFT 2023 - 18th International Conference on Software Technologies

is identical to the management Kubernetes cluster, or
remote. The status field will inform users whether
a connection to the MPE has been established. Ad-
ministrators can define cluster- or namespace-wide
default MPEs through a special annotation in the
resource metadata.

Workflow resources specify NBMP work-
flows. As workflows always run in a specific
namespace, there exists no cluster-scoped version.
The specification contains a list of references to
(Cluster)MediaLocations as well as arbitrary
configuration values. Nagare Media Engine con-
trollers will update status fields to inform users about
the execution state.

The Task resource specifies an NBMP task.
Tasks contain references to a Workflow, (Cluster)
Function and (Cluster)MediaProcessingEntity.
Instead of a fixed reference to functions and MPEs,
users may choose to use label selectors (i.e. key-value
pairs). These are matched against labels defined in the
metadata of the respective resources. The Task speci-
fication could also contain arbitrary configuration val-
ues that overwrite the defaults from the selected func-
tion. The status contains fields to inform users about
the execution state of the Task.

As similar workflows are often executed on differ-
ent inputs, we implemented the two optional resource
types TaskTemplate and ClusterTaskTemplate.
They contain the same fields as a Task except for the
status. Tasks may choose to only reference a tem-
plate. Nagare Media Engine will then merge the
specifications during the reconciliation.

We implement Kubernetes API webhooks for all
resource types in order to provide validation and de-
fault values. Our resource model splits an NBMP
WDD into multiple smaller Kubernetes resources that
reference each other. A referred resource might not be
immediately available. Our implementation can han-
dle this eventual consistency model which is typical
for Kubernetes controllers.

4.3 NBMP Gateway

The NBMP Gateway implements the Workflow API
and translates between our custom resources and
WDDs. Each API request is validated according to
the constraints defined in the NBMP standard. As
our NBMP workflow manager implementation does
not yet support all WDD descriptors, the validation
also checks if the request can be fulfilled. The WDD
acknowledge descriptor is added to all API responses
and contains detailed information about invalid, par-
tially fulfilled or unsupported items.

The NBMP specification allows NBMP sources to

408

reference arbitrary NBMP function repositories. It is
unclear to us how NBMP implementations that are
built on different computing environments can share
the same function repository. For instance, execu-
tion modes and packaging differ wildly for virtual ma-
chines, containers and serverless offerings. Addition-
ally, allowing NBMP sources to reference arbitrary
NBMP functions could pose a security risk. For these
reasons, we choose to forbid requests that reference
NBMP function repositories.

4.4 Media Processing Entity Controller

The MPE controller will reconcile (Cluster)Media
ProcessingEntity resources. Its main purpose is
to establish a connection to the configured Kuber-
netes cluster. A client object will be placed in an in-
memory map that other controllers can use to manage
resources in worker clusters. Additionally, it will in-
stantiate a job controller (see Subsection 4.5) for each
MPE. If the reconciliation is successful, the condi-
tion status field will indicate that the MPE is ready.
On deletion, the connection is closed and the job con-
troller stopped.

4.5 Job Controller

Each MPE will have an associated job controller in-
stance. In contrast to the other controllers, it com-
municates with the API server of the worker Kuber-
netes cluster. The job controller only observes sta-
tus changes of Jobs associated with NBMP tasks. We
use metadata labels to differentiate these Jobs. Labels
also specify the name and namespace of the Task in
the management cluster since owner references only
work within a single cluster.

The job controller serves as a link between the
worker Kubernetes cluster and the task controller (see
Subsection 4.7). Once a change to a Job is observed,
it will trigger a reconciliation of the associated Task
in the task controller.

4.6 Workflow Controller

The workflow controller reconciles Workflow re-
sources by watching for changes to both Workflow
and associated Task resources. This controller is
structured into multiple phases roughly correspond-
ing to the NBMP workflow lifecycle states (see Sub-
section 2.1). The current phase is reported to the user
as a status field.

After the first reconciliation, the Workf1low will be
in the initializing phase. During each of the follow-
ing iterations, the workflow controller tries to retrieve

Nagare Media Engine: Towards an Open-Source Cloud- and Edge-Native NBMP Implementation

all Tasks belonging to this Workflow. Since we as-
sume an eventual consistency model, the returned list
might be empty. As soon as a Task is observed, the
Workflow will be transitioned to the running phase.
Because we also defined a watch on Task changes, the
workflow controller will be informed about their cur-
rent states. During each reconciliation, it counts the
number of active, successful and failed Tasks and up-
dates these numbers in the corresponding status fields.
When all Tasks have been successful, we don’t im-
mediately transition to the succeeded phase. Instead,
the Workflow will shift to the awaiting completion
phase and is requeued for reconciliation after some
time (by default 20 seconds). If no new Tasks are ob-
served in the next iteration, it will transition to its fi-
nal phase “succeeded”. This intermediate phase helps
to mitigate race conditions during the initial creation
where very sort Tasks would bring the workflow to
a termination state while new Tasks are still being
added. This assumes all relevant resources are cre-
ated within the duration of the waiting time. If the
workflow controller observes a failed Task, it will
either transition to the failed phase or ignore the er-
ror depending on the user-defined Task failure policy.
Both “succeeded” and “failed” are terminal phases,
i.e. new Task resources should not be created for this
Workflow and will fail immediately if they are.

4.7 Task Controller

The task controller implements the main logic of
our NBMP workflow manager. The reconciliation
of Task resources is triggered in one of three ways:
changes to the Task or the related Workflow or Job
resources. The previously discussed job controller
will inform the task controller about Job changes.

Similarly to the workflow controller, it is struc-
tured into multiple phases. Each iteration will check
the status of the Workflow resource. If it is being
deleted or has failed, the Task will be deleted or tran-
sitioned to the failed phase as well. The task con-
troller will also make sure that an owner reference to
the Workflow is set.

Tasks start in the initializing phase, where the
task controller tries to determine the MPE and func-
tion according to the given definition. NBMP sources
may specify a direct reference or only add labels
that are used in the selection process. Alterna-
tively, a (Cluster)TaskTemplate could be used.
Finally, if not determined otherwise, the default
MPE could be selected. The status is then up-
dated with a reference to the selected MPE and func-
tion and the Task moves on to the job pending
phase. Here the necessary information is compiled

from the Workflow, (Cluster)MediaLocations,
(Cluster)Function, (Cluster)TaskTemplate and
the Task itself in order to create a Secret and Job
in the worker Kubernetes cluster. An owner reference
is placed on the Secret such that a deletion of the
Job will clean up the Secret as well. After that, the
Task is in the running phase until a termination of the
Job is observed. Depending on the outcome, it will
then transition to the succeeded or failed phase. For
automatic retries in case of a failure, we instead rely
on the mechanisms of the Job resource, i.e. if a Job
fails, its error handling already failed as well.

4.8 Error Handling

Similarly to many other Kubernetes components,
Nagare Media Engine is built on an eventual con-
sistency model. As such, we expect failures to hap-
pen and instead, design the system to respond accord-
ingly. The controller design around a reconciliation
loop has led to robust systems such as Kubernetes it-
self. However, it can also pose challenges to the de-
sign of the controlled workloads, i.e. the function im-
plementations in an NBMP system.

The ideal workload running in a Kubernetes clus-
ter will tolerate interruptions. Pods may crash due
to an error that occurred. However, the termination
might also be “planned”, i.e. deliberate. All Pods
have an assigned priority. Higher priority Pods may
preemptively displace lower ones in a resource con-
tention situation. Administrators may also clear out
Kubernetes nodes for maintenance or the Cluster Au-
toscaler could automatically remove the node entirely
during a cluster scale-down.

Multiple strategies should be used by function
vendors and Kubernetes administrators to handle this
dynamic environment. At the very least, functions
should not expect to be executed only once to han-
dle restarts gracefully. Of course, a restart would
still lead to a short interruption which might be un-
acceptable in the case of a live stream. In order to
mitigate this, workloads in Kubernetes are usually
replicated. Additionally, administrators can create
PodDisruptionBudget resources to describe how
many “planned” terminations a replicated workload
might tolerate without downtime. Kubernetes will
then delay further terminations until new replicas are
running elsewhere. We think this can also be ap-
plied to the design of NBMP workflows. For in-
stance, the DASH Industry Forum (DASH-IF) live
media ingest protocol specification (DASH-IF, 2022)
already describes an ingest protocol that can synchro-
nize multiple incoming streams from redundant live
encoders. Function authors should therefore not as-

409

ICSOFT 2023 - 18th International Conference on Software Technologies

sume only one instance will run at the same time. In
a more advanced mitigation strategy, functions might
create checkpoints after some time or certain opera-
tions. However, we would generally suggest splitting
long-running NBMP tasks into multiple smaller ones,
e.g. splitting an encoding task into multiple chunks
that are merged at the end. Next to a potentially higher
parallelization, smaller tasks are less likely to be inter-
rupted and provide natural checkpoints in an NBMP
workflow system.

“Planned” terminations can also be an advantage
for certain use cases. The Pod priority system enables
mixed workloads on the same infrastructure. For in-
stance, a new live stream workflow might postpone a
low-priority VoD workflow that is resumed automat-
ically after the live stream has ended. Additionally,
a resilient function implementation has the advan-
tage that Kubernetes administrators can utilize spot
instances of cloud providers (i.e. virtual machines that
are offered significantly cheaper but could be termi-
nated preemptively at any time), potentially resulting
in cost savings.

S LIMITATIONS

Work on Nagare Media Engine is still ongoing
as several NBMP descriptors are not yet sup-
ported. = However, some descriptors also don’t
seem to apply to containerized environments
(e.g. static-image-info subfields seem to refer
to the provisioning of virtual machines). During
the development process, we got the impression
that the semantics of some NBMP descriptors is
underspecified. Currently, a second edition of the
NBMP standard is in development. We hope it will
include a more detailed description of these aspects.

NBMP has a sophisticated way of specifying con-
figuration parameters with constraints between values
of different Tasks. These relationships are currently
ignored.

As presented in this paper, Nagare Media
Engine only implements the Workflow API. It would
be beneficial if the NBMP Gateway would also pro-
vide the Function Discovery API such that NBMP
sources can search for appropriate functions.

For our implementation, we choose Kubernetes
Secrets for Task configuration in order to avoid
granting network access to each Task. However, this
implies that we do not support push-based inputs and
pull-based outputs where the NBMP source is in-
formed about network connection details of the Task
that should receive the input or provide the output.

Finally, the observability of the workflow execu-

410

tion could be improved. We provide logging data and
state information, but an integration into tracing and
monitoring solutions is missing.

6 EVALUATION

To evaluate Nagare Media Engine, we created
a management and worker Kubernetes cluster in
Google Cloud. The worker cluster consisted of eight
e2-standard-2 nodes. We used the “autopilot”
mode for the management cluster such that Google
Cloud would manage the type and the number of
nodes automatically.

Our main focus was to explore how the workflow
manager would handle increasingly larger amounts of
Workflows. In particular, we measured its CPU and
memory usage as well as the total time to fully recon-
cile all Workflows of a given set. Each Workflow is
identical and consists of two Tasks that simply sleep
for 20 seconds. The Job template still contained CPU
and RAM requests (0,4% of one CPU core and 12
MB RAM) such that the Kubernetes scheduler would
deploy the Jobs evenly on the worker nodes.

In total, we tested four sets containing 50, 100,
500 and 1000 Workflows, respectively. For each set,
the log output was gathered to determine the total exe-
cution time for a full reconciliation. These times thus
also include the 20s run time of the Jobs as well as the
time Kubernetes took for scheduling and instantiating
Pods. Table 1 summarizes the measured absolute and
relative times.

Table 1: Absolute and relative execution times for varying
amounts of Workflows.

Relative time
1.632 s/Workflow
1.301 s/Workflow
1.067 s/Workflow
1.009 s/Workflow

Workflows Absolute time
50 1:21.614m

100 2:10.104 m

500 8:53.503m

1000 16:48.991m

While the relative times slightly improve with
larger sets, the execution times still demonstrate an
overhead involved with processing the Workflows.
By default, reconciliation loops only process one
resource at the same time. We rerun the experi-
ment with four parallel reconciliations for the 1000
Workflows set but could not observe a significant dif-
ference (16:44.797 m:s.ms). We suspect that the
main contribution of the overhead comes from the ac-
tual scheduling and instantiation of the Pods.

Figure 3 depicts the CPU and memory usage for
each set over time. While it increases with larger sets,
it remains relatively low, leaving room for even larger

Nagare Media Engine: Towards an Open-Source Cloud- and Edge-Native NBMP Implementation

1000
500
100
50

CPU usage in %
0.2
|

0.1

T T T T T T T
0 200 400 600 800 1000 1200

seconds

80

RAM usage in MB
20 40
1

T T T T T T T
0 200 400 600 800 1000 1200

seconds

Figure 3: Nagare Media Engine CPU and memory usage.

installations. One can also observe that memory us-
age does not significantly decrease after all resources
are reconciled. This is because the resources are still
kept in the Kubebuilder cache.

7 CONCLUSION

In this paper, we discussed how we used Kubernetes
as NBMP MPE in our workflow manager implemen-
tation Nagare Media Engine. Building upon the
Kubernetes platform allows for a resilient NBMP sys-
tem that can handle an eventual consistency model.
However, this model might pose additional challenges
for NBMP function developers. In an evaluation, we
demonstrated how our workflow manager can scale to
many concurrently executing workflows while being
resource efficient at the same time.

Work on Nagare Media Engine is still ongoing.
It is our plan to implement a library of compati-
ble NBMP functions for efficient and reliable NBMP
workflows. As the second edition of the NBMP stan-
dard is currently in work, we are eager to see how this
technology will evolve in the future.

REFERENCES

Bassbouss, L., Fadhel, M. B., Pham, S., Chen, A., Steglich,
S., Troudt, E., Emmelmann, M., Gutiérrez, J., Maletic,
N., Grass, E., Schinkel, S., Wilson, A., Glaser, S.,
and Schlehuber, C. (2021). 5G-VICTORI: Optimiz-
ing Media Streaming in Mobile Environments Using

mmWave, NBMP and 5G Edge Computing. In Maglo-
giannis, 1., Macintyre, J., and Iliadis, L., editors, Arti-
ficial Intelligence Applications and Innovations. AIAI
2021 IFIP WG 12.5 International Workshops, volume
628, pages 31-38. Springer International Publishing,
Cham. Series Title: IFIP Advances in Information and
Communication Technology.

DASH-IF (2022). DASH-IF Live Media Ingest Protocol.
Technical report, DASH Industry Forum.

ISO/IEC (2019). ISO/IEC 23009-1:2019 Information tech-
nology — Dynamic adaptive streaming over HTTP
(DASH) — Part 1: Media presentation description and
segment formats. Standard, International Organiza-
tion for Standardization, Geneva, CH.

ISO/IEC (2020). ISO/IEC 23090-8:2020 Information tech-
nology — Coded representation of immersive media
— Part 8: Network based media processing. Stan-
dard, International Organization for Standardization,
Geneva, CH.

Mueller, C., Bassbouss, L., Pham, S., Steglich, S., Wis-
chnowsky, S., Pogrzeba, P., and Buchholz, T. (2022).
Context-aware video encoding as a network-based
media processing (NBMP) workflow. In Proceed-
ings of the 13th ACM Multimedia Systems Conference,
pages 293-298, Athlone Ireland. ACM.

Pantos, R. and May, W. (2017). HTTP Live Streaming.
Technical Report RFC8216, RFC Editor.

Ramos-Chavez, R., Mekuria, R., Karagkioules, T., Grif-
fioen, D., Wagenaar, A., and Ogle, M. (2021). MPEG
NBMP testbed for evaluation of real-time distributed
media processing workflows at scale. In Proceed-
ings of the 12th ACM Multimedia Systems Conference,
pages 173-185, Istanbul Turkey. ACM.

Wien, M., Boyce, J. M., Stockhammer, T., and Peng, W.-
H. (2019). Standardization Status of Immersive Video
Coding. IEEE Journal on Emerging and Selected Top-
ics in Circuits and Systems, 9(1):5-17.

Wright, A., Andrews, H., Hutton, B., and Dennis, G.
(2022). JSON Schema: A Media Type for Describing
JSON Documents. Internet-Draft draft-bhutton-json-
schema-01, Internet Engineering Task Force. Backup
Publisher: Internet Engineering Task Force Num
Pages: 78.

Xu, Y., Yin, J., Yang, Q., and Yang, L. (2022). Media Pro-
duction Using Cloud and Edge Computing: Recent
Progress and NBMP-Based Implementation. [EEE
Transactions on Broadcasting, 68(2):545-558.

You, Y., Fasogbon, P., and Aksu, E. (2021). NBMP Stan-
dard Use Case: 3D Human Reconstruction Workflow.
In 2021 International Conference on Visual Commu-
nications and Image Processing (VCIP), pages 1-1,
Munich, Germany. IEEE.

You, Y., Hourunranta, A., and Aksu, E. B. (2020).
OMAF4Cloud: Standards-Enabled 360° Video Cre-
ation as a Service. SMPTE Motion Imaging Journal,
129(9):18-23.

411

