A Java Testing Framework Without Reflection

Lorenzo Bettini

a

Dipartimento Statistica, Informatica, Applicazioni. Universita degli studi di Firenze, 50134 Firenze, Italy

Keywords: Java, Reflection, Testing Framework.

Abstract:

Java reflection allows a program to inspect the structure of objects at run-time and provides a powerful mech-

anism to achieve many interesting dynamic features in several Java frameworks. However, reflection breaks
the static type safety properties of Java programs and introduces a run-time overhead; thus, it might be better
to avoid reflection when possible. In this paper, we present a novel Java testing framework where reflection is
never used: we implement the framework only with the Object-Oriented and functional programming mecha-
nisms provided by Java. We will show that implementing and using such a framework is easy, and we avoid
the run-time overhead of reflection. Our framework can be used with existing testing libraries and is meant to

be extendable.

1 INTRODUCTION

Despite the soundness of its type system (Igarashi
et al., 2001), Java allows for unsafe mechanisms
such as reflection and dynamic class loading, which
are known to break the static type system proper-
ties (Bodden et al., 2011; Smaragdakis et al., 2015;
Landman et al., 2017; Braux and Noyé, 2000; Li
et al., 2019; Livshits et al., 2005; Sobernig and Zdun,
2010; Park and Lee, 2001).

Java reflection allows a Java program to inspect
the structure of its objects at run-time and change field
values, and call methods through reflection, even if
such members are private. When performing such re-
flective operations, we lose the static type checking
since we manipulate objects and members by their
names, relying on strings, which cannot be typed be-
forehand. Moreover, reflection also inevitably intro-
duces run-time overhead.

In many situations, such dynamic mechanisms al-
low Java developers to recover most of the dynamic
flexibility of dynamically typed languages. More-
over, there are several contexts where this enables the
creation of dynamic frameworks or extensions to the
Java language: ORM (Object—Relational Mapping)
frameworks, visual editors, and dependency injec-
tion frameworks. Such reflection-based frameworks
typically rely also on Java annotations with run-time
scope.

Despite its usefulness in some contexts, and due

(12 https://orcid.org/0000-0002-4481-8096

Bettini, L.
A Java Testing Framework Without Reflection.
DOI: 10.5220/0012082800003538

to the above-mentioned drawbacks, we want to avoid
reflection when the same goals can be achieved with
standard and statically safe mechanisms of Java,
mainly Object-Oriented features (inheritance, subtyp-
ing, and dynamic method lookup) and functional pro-
gramming features (lambda expressions).

Reflection and runtime annotations are typically
used in Java testing frameworks, like JUnit' and
TestNG.? This paper introduces a new Java testing
framework, INRTEST (Java no reflection Test), which
does not rely on reflection to provide the typical test-
ing framework’s features. JNRTEST is an open-source
project,® based on Java 17, which can be seen as a
prototypical proof of concept implementation to show
that Java language mechanisms are powerful enough
to implement a testing framework without reflection,
annotations, and dynamic class loading. Moreover,
our framework never uses instanceof and down-
casts. To allow for easy extensions, we also avoid
static methods.

In particular, with JNRTEST, we want to achieve
the following desired properties:

1. Create a Java testing framework without reflec-
tion, relying only on statically typed safe linguis-
tic mechanisms of Java.

2. Such a framework should be easy to implement
and maintain for its developers, and

Uhttps://junit.org

Zhttps://testng.org
3https://github.com/LorenzoBettini/jnrtest

369

In Proceedings of the 18th International Conference on Software Technologies (ICSOFT 2023), pages 369-376

ISBN: 978-989-758-665-1; ISSN: 2184-2833

Copyright (© 2023 by SCITEPRESS — Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)



ICSOFT 2023 - 18th International Conference on Software Technologies

3. easy to use for developers already familiar with
other Java testing frameworks like JUnit.

4. Keep the implementation of the framework simple
(the source code of its main parts can be described
in a paper).

5. The framework should be usable with existing as-
sertion libraries, starting from JUnit assertions up
to other mainstream testing libraries like Assert].
Moreover, other testing libraries should be usable
with our testing framework. This includes testing
libraries or other systems based on reflection: we
do not use reflection in our implementation but al-
low reflection-based testing systems to be usable
with JNRTEST.

6. Running tests with our framework should be faster
than with JUnit.

7. The framework should be easily extendable, again
without using reflection but only standard OO
mechanisms.

We describe our framework’s features by showing
the main classes’ implementation. We also present
several examples of tests written with JNRTEST.

The paper is organized as follows. Section 2
presents the concepts of “test case” in JNRTEST, and
Section 3 shows how to run tests in our framework.
Section 4 shows how to write parameterized tests, and
Section 5 how to extend our framework by possibly
integrating it with existing testing libraries. Section 6
evaluates our framework concerning the above-listed
properties. Section 7 presents a few related works,
and Section 8 concludes the paper with hints on fu-
ture work.

2 SPECIFYING TEST CASES

We assume the reader is familiar with JUnit (in partic-
ular, the latest version JUnit 5). We will describe the
main concepts and features of JINRTEST by compar-
ing them to the corresponding mechanisms of JUnit.

Moreover, INRTEST does not introduce new as-
sertion libraries: existing assertion libraries can be
seamlessly used. For example, for simple tests, we
can use JUnit assertions. For more complex tests, we
can use Hamcrest and Assert] (Leotta et al., 2020).
In Section 5, we will show how to easily use other
testing libraries with JNRTEST.

In JUnit, tests are specified with methods anno-
tated with @Test. The method name implicitly rep-
resents the description of that test. In JUnit 5, the
description can be specified with the additional anno-
tation @DisplayName ("..."). In JNRTEST, tests are
specified as objects of this type:

370

public record JnrTestRunnableSpecification(
String description, JnrTestRunnable testRunnable) {}

where JnrTestRunnable is a functional interface
with the abstract method:

void runTest() throws Exception;

Since we must account for tests throwing exceptions,
including checked ones, we could not use standard
Java functional interfaces (e.g., Runnable) because
they are meant for code throwing only unchecked ex-
ceptions.

Thus, the following JUnit test:

@Test @DisplayName("this is a test")
void aTest() {
// ... test implementation

}

corresponds to a INRTEST represented by this object:

new JnrTestRunnableSpecification(
"this is a test",
0-—>A{
// ... test implementation

}
);

In JNRTEST, JnrTestRunnableSpecification
represents any possible executable code (typically in
the shape of a lambda expression) that takes part in
the test execution’s lifecycle. Thus, it is also used
for code to be executed before each/all and after
each/all test methods (in JUnit 5, such lifecycle parts
are represented by the annotations @BeforeEach,
@BeforeAll, @AfterEach and @AfterAll, respec-
tively).

Since test implementations in JNRTEST are Java
lambdas, we do not need to follow any convention
concerning static or instance methods like in JUnit
(where, for example, @BeforeEach must be used for
instance methods and @BeforeAll for static meth-
ods). Moreover, by looking at the previous JUnit 5
test, we are forced to use an additional annotation to
specify a description containing spaces (or other char-
acters that are not admissible in a method’s name). In
the presence of the annotation, the method’s name is
irrelevant, but we are forced to use a name because
JUnit relies on a Java method to represent runnable
test code.

JNRTEST specifications are stored in a JnrTest-
Store, which collects such specifications in five sep-
arate lists: one list for specifications representing tests
and the other four lists for the above-mentioned four
lifecycle parts. The class provides methods for insert-
ing specifications in the proper collection and retriev-
ing such collections.

The main entry point for specifying tests is the ab-
stract class JnrTestCase, which contains a test store.



public class FactorialJnr TestCase extends JnrTestCase {
private Factorial factorial;
public FactorialInrTestCase() {
super("tests for factorial");

@Override
protected void specify() {
beforeAll("create factorial SUT",
() —> factorial = new Factorial());
test("case 0",
() —> assertEquals(1, factorial.compute(0)));
test("case 1",
() —> assertEquals(1, factorial.compute(1)));
test("case 2",
() —> assertEquals(2, factorial.compute(2)));
test("case 3",
() —> assertEquals(6, factorial.compute(3)));
test("case 4",
() —> assertEquals(24, factorial.compute(4)));

}
}

Figure 1: An example testing the factorial implementation.

The class provides getStore, which is not a simple
getter; it ensures that the store is initialized lazily and
only once:

public InrTestStore getStore() {
if (store == null) {
store = new JnrTestStore();
specify();

return store;

}

So, the actual specification of tests is carried out
by the protected abstract method specify, which
subclasses must implement. The class JnrTestCase
provides a few methods to make runnable specifica-
tions easier to write and read. An example is shown
in Figure 1, where we write the tests for a factorial
implementation.

Thus, beforeAll is a utility method that
corresponds to creating a JnrTestRunnableSpe-
cification and storing it in the corresponding col-
lection of the underlying store. The method test
does the same for a test implementation. Other meth-
ods beforeEach, afterAll, and afterEach have
the expected semantics.

3 RUNNING TESTS

Instances of JnrTestCase are executed through an
instance of JnrTestRunner. It is a matter of using
JnrTestRunner fluent API to specify the instances of
JnrTestCase to run by using the method testCase
several times and then to call execute:

A Java Testing Framework Without Reflection

public class JnrExamplesTestMain {
public static void main(String[] args) {
var recorder = new JnrTestRecorder()
.withElapsedTime();
var runner = new JnrTestRunner()
.testCase(new FactorialJnrTestCase())
.testCase(new AnotherTestCase())
.testListener(recorder)
.testListener(
new JnrTestStandardReporter().withElapsedTime());
runner.execute();
System.out.println("\nResults:\n\n" +
new JnrTestResultAggregator().aggregate(recorder));
if (recorder.isSuccess())
throw new RuntimeException(
"There are test failures");
}

}

Figure 2: An example running test cases from a Java main.

new JnrTestRunner()
.testCase(new MyTestCase())
.testCase(new MyOtherTestCase()
.execute();

Of course, a JnrTestRunner is meant to be run
directly using a standard Java class with a main
method.

As a design choice, we kept the semantics of
execute as simple as possible: the method does not
return any value or provide feedback about the run
tests and their results.

On the other hand, JnrTestRunner accepts listen-
ers that are notified about lifecycle events (e.g., when
a test case and every single test are started and when
they are finished) and about test results: success, (as-
sertion) failure or error (due to an uncaught excep-
tion). Implementing such listeners is straightforward,
and we already provide a few of them, e.g., for record-
ing test results and reporting the test outcome on the
console (possibly by recording test execution time).
Figure 2 shows an example running a few test cases
with our runner after configuring the runner with a
few listeners.

The runner configuration shown in Figure 2 is typ-
ical when running tests with JNRTEST. In fact, we
provide a dedicated class for such a configured runner,
and the developer only has to specify the test cases to
be run.

Running our tests from Maven or Gradle is also
straightforward. No special plugin is required. Since
we are not relying on runtime test discovery, it is
enough to write a Java class with a main method like
the one shown above and run that Java class with
a standard Maven plugin like exec-maven-plugin.*

4In Gradle, the corresponding plugin can be used that
allows running a generic Java application.

371



ICSOFT 2023 - 18th International Conference on Software Technologies

<plugin>
< groupld>org.codehaus.mojo</groupld >
<artifactld>exec—maven—plugin</artifactld >
<executions>
<execution>
<id>run—jnr—tests</id>
<goals>
<goal>java</goal>
</goals>
<phase>test</phase>
</execution>
</executions>
<configuration>
<classpathScope>test</classpathScope>
<mainClass>
examples.JnrExamplesTestMain
</mainClass>
</configuration>
</plugin>

Figure 3: An example running test cases from Maven.

We show an example in Figure 3: we only need to
specify the fully qualified name of the Java main class
and the “test” classpath scope. Since the main class
shown above throws an exception if there are test fail-
ures, the Maven build will correctly fail in case of
failed tests. Providing a custom Maven plugin for
running JNRTEST tests would not add any benefit and
require about the same number of XML code lines.

Having separate test suites in JNRTEST is also
straightforward and does not require additional fea-
tures in the framework itself: it is just a matter of ad-
equately creating several Java main files.

By design, and due to the current implementation
of storing executable tests in a list, JnrTestRunner
executes the tests precisely in the order of their speci-
fication in the JnrTestCase instances. Similarly, it
executes JnrTestCase instances according to their
insertion in the JnrTestRunner instance. On the con-
trary, in JUnit, test cases and tests are run in an unpre-
dictable, though deterministic, order.’ JUnit still al-
lows the developer to specify an order by the method
name, display names, or by numbering the annota-
tions, but not in the order of the definition. We be-
lieve that, although tests, especially unit tests, should
not rely on the order in which they are executed, not
having a predictable order only worsens things. In
that respect, our predefined and simple natural order-
ing can be seen as an advantage, though testers should
not abuse it. Moreover, by redefining getStore, the
developer can also change the order of the stored tests,
e.g., by sorting them alphabetically according to the
descriptions or intentionally shuffling them in random
order.

5 https://junit.org/junit5/docs/current/\-user-guide/\#
running-tests.

372

protected <T> void testWithParameters(
String description,
Supplier<Collection<T>> parameterProvider,
JnrTestRunnableWithParameters<T> testRunnable) {
testWithParameters(description, parameterProvider,
Object::toString,
testRunnable);

protected <T> void testWithParameters(

String description,
Supplier<Collection<T>> parameterProvider,
Function<T, String> descriptionProvider,
JnrTestRunnableWithParameters<T> testRunnable) {

var parameters = parameterProvider.get();

for (T parameter : parameters) {
test(description + descriptionProvider.apply(parameter),

() —> testRunnable.runTest(parameter));

Figure 4: Parameterized tests API.

We refer to the source code on GitHub for the im-
plementation of JnrTestRunner, which consists of a
few lines of readable code.

4 PARAMETERIZED TESTS

JNRTEST also allows for parameterized tests. We did
not have to extend the standard lifecycle of INRTEST
or add any specific mechanism to the store to support
parameterized tests. JnrTestCase provides parame-
terized tests with the generic methods shown in Fig-
ure 4, which create several test implementations with
the appropriate parameters provided by the lambda of
type Supplier<Collection<T>>.°

For example, in Figure 5, we show the parameter-
ized version of the factorial tests of Figure 1, where
pair is one of our utility methods for creating pairs.

This is similar to a parameterized test in JU-
nit 5 that relies on annotations (in particular,
@ParameterizedTest). For example, in JUnit 5, one
could use @CsvSource (Comma Separated Values),
which accepts an array of strings. As strings, the com-
piler cannot check their correct contents statically.
JUnit has to interpret the strings at run-time, pars-
ing them and splitting them according to the comma
character (the separator). Then, it must ensure that
the resulting split values have the same length as
the method parameters. Finally, it must convert the
strings to the method’s parameter types. Our solution
instead is entirely statically type safe; it is straight-
forward to implement and use, at the cost of using

%The functional interface JnrTestRunnableWithPa-
rameters<T> corresponds to a Java Consumer<T> but al-
lows for checked exceptions.



M@Override
protected void specify() {

testWithParameters(" input, output",
() —> List.of(
pair(0, 1),
pair(1, 1),
pair(2, 2),
pair(3, 6),
pair(4, 24)
)
p —> assertEquals(p.second(),
factorial.compute(p.first()))
)
}

Figure 5: An example in JNRTEST testing the factorial im-
plementation with parameterized tests.

structures, like pairs, when we have more than one
parameter.

The JNRTEST user can provide a custom rep-
resentation for the current parameters, using the
second version of testWithParameters (Figure 4)
that takes a function responsible for returning the
string description, and it is fully statically typed.
In JUnit 5, the parameter name of the annotation
@ParameterizedTest provides a custom description
according to the parameter values. The argument is
again a string, where placeholders for parameters can
be used without any static check by the compiler.

5 EXTENSIONS

The developer can hook on a test case lifecycle by
using the test case’s test store and appropriately add a
few runnables before/after each/all tests.

For example, the code in Figure 6 aims at
recreating the same functionality of the JUnit 4
TemporaryFolder rule. This can be used as shown
in Figure 7, where we have also used the assertions of
Assert].

The mechanism we have just shown allows the de-
veloper to hook into the lifecycle of a test case and
provide some data that the test case must explicitly re-
trieve. Another possibility is to implement a general
extension for other testing frameworks like Mock-
ito’ or dependency injection frameworks like Google
Guice .

Note that while our framework does not use re-
flection, it does not prevent the developers from us-
ing reflection-based systems when implementing tests

"https://site.mockito.org/.
8https://github.com/google/guice.

A Java Testing Framework Without Reflection

public class JnrTestTemporaryFolder {
private File temporaryFolder;

public InrTestTemporaryFolder(JnrTestCase testCase) {
var before = testCase.getStore()
.getBeforeEachRunnables();
var after = testCase.getStore()
.getAfterEachRunnables();
before.add(0,
new JnrTestRunnableSpecification(
"create temporary folder",
0->
temporaryFolder =
Files.createTempDirectory
("jnrtest-temp-folder").toFile()
)
after.add(
new JnrTestRunnableSpecification(
"delete temporary folder",
this::delete
);

public File getTemporaryFolder() {
return temporaryFolder;

private void delete() { ... }

Figure 6: An example simulating the JUnit Temporary-
Folder rule.

public class ExampleTestCase extends JnrTestCase {
private JnrTestTemporaryFolder testTemporaryFolder;

public JnrTestTemporaryFolderExampleTestCase() {
super("JnrTestTemporaryFolder example");
this.testTemporaryFolder =
new JnrTestTemporaryFolder(this);

}

@Override
protected void specify() {
test("temporary folder can be used",
0->{
File temporaryFolder =
testTemporaryFolder.getTemporaryFolder();
var file = File.createTempFile(
"a-test-file", null, temporaryFolder);
assertThat(file).isFile().exists();

}
)

Figure 7: An example using JnrTestTemporaryFolder.

with JNRTEST. For example, even when imple-
menting a JnrTestCase, the user can use Mockito.
When doing that, the developer might want to an-
notate fields of the test case with Mockito annota-
tions like @Mock and @InjectMocks. To avoid man-
ually creating and injecting mocks in JUnit, the de-

373



ICSOFT 2023 - 18th International Conference on Software Technologies

public abstract class JnrTestCaseExtension {

public <T extends JnrTestCase>
T extendAll(T testCase) {
var store = testCase.getStore();
extend(testCase,
store.getBefore AllRunnables(),
store.getAfter AllIRunnables());
return testCase;

}

public <T extends JnrTestCase>
T extendEach(T testCase) {
var store = testCase.getStore();
extend(testCase,
store.getBeforeEachRunnables(),
store.getAfterEachRunnables());
return testCase;

}

protected abstract <T extends JnrTestCase>
void extend(T testCase,
List<JnrTestRunnableSpecification> before,
List<JnrTestRunnableSpecification> after);

}

Figure 8: The abstract extension class.

veloper can use the Mockito extension mechanisms,
like the MockitoJUnitRunner in JUnit 4 or the
MockitoExtension in JUnit 5.

For these reasons, we provide an abstract exten-
sion mechanism, whose code is shown in Figure 8.

That is not based on instance variables or static
variables like in JUnit, and the implementation of the
extension can be reused for fields meant to be initial-
ized and cleared at the test case level or a single test
level. The methods are generic, so the returned ex-
tended test case does not lose its static type.

Creating an extension for Mockito is trivial: ex-
tending this base class and implementing the single
abstract method is enough, as shown in Figure 9. Our
implementation is much more straightforward than
the JUnit 4 runner or the JUnit 5 extension of Mock-
ito (the reader might want to compare the few lines
of Figure 9 with the sources of Mockito that can be
found on its GitHub repository).

This extension can be used with any test case re-
lying on Mockito annotations. For example, given the
test case of Figure 10,° we can use our Mockito ex-
tension as follows:

9The example is intentionally simple, but it should be
enough to demonstrate the use of Mockito and our extension
to the reader familiar with Mockito. The Service/Reposi-
tory cooperation is also a typical example of mocking, and
the implementations of the simple service and repositories
should be easily guessed from the shown tests.

374

import org.mockito.MockitoAnnotations;

public class InrTestCaseMockitoExtension
extends JnrTestCaseExtension {

private AutoCloseable autoCloseable;

@Override
protected <T extends JnrTestCase>
void extend(T testCase,
List<JnrTestRunnableSpecification> before,
List<JnrTestRunnableSpecification> after) {
before.add(0, new JnrTestRunnableSpecification(
"open mocks",
() —> autoCloseable =
MockitoAnnotations.openMocks(testCase)));
after.add(new JnrTestRunnableSpecification(
"release mocks",
() —> autoCloseable.close()));
}
}

Figure 9: The extension for Mockito.

public class StringServiceWithMockTestCase
extends JnrTestCase {

@Mock
private StringRepository repository;

@InjectMocks
private StringService service;

@OQverride
protected void specify() {
test("when repository is empty", () —> {
assertThat(service.allToUpperCase())
.isEmpty();
D
test("when repository is not empty", () —> {
when(repository.findAll())
.thenReturn(List.of("first", "second"));
assertThat(service.allToUpperCase())
.containsExactlyInAnyOrder("FIRST", "SECOND");
D
}
}

Figure 10: A test case using Mockito annotations.

StringServiceWithMockTestCase testCase =
new JnrTestCaseMockitoExtension()
.extendEach(
new StringServiceWithMockTestCase());

To use the extension, we did not use any annota-
tion: we just relied on the standard Object-Oriented
mechanisms, which do not require additional reflec-
tion mechanisms besides the ones imposed by the
external frameworks, like Mockito in this example.
Moreover, by relying on the standard generics of Java,



we can also impose static-type safety without addi-
tional unsafe cast operations.

Creating an extension for Google Guice, allow-
ing a test case to rely on dependency injection, is also
trivial. We refer to the source code of our examples
on GitHub.

This section’s extension mechanisms do not re-
quire special treatment in our JnrTestCase and
JnrTestRunner classes.

6 EVALUATION

This section evaluates our testing framework accord-
ing to the desired properties described in Section 1.

First of all, concerning item 1, we never use reflec-
tion or dynamic class loading in our implementation.
Note that this does not prevent our users from using
existing testing libraries (item 5). As shown in Sec-
tion 5, INRTEST seamlessly integrates with testing li-
braries like Mockito. In particular, in Section 5, we
showed that our framework could be easily extended
(item 7). For example, we can create a reusable be-
havior like the temporary folder example (similar to
JUnit 4 rules) with only a few lines of code.

Speaking of lines of code, the main source code
of JNRTEST currently consists of 19 files and about
425 lines of code. This allowed us to show most
of the interesting implementation code in this paper
(item 4). JNRTEST has also been easy to imple-
ment (item 2): after a few experiments, carried out
with Test-Driven Development methodologies (Beck,
2003), we quickly came up with the current design
architecture, based on a small class hierarchy, where
each class has a single and clear responsibility. In
that respect, while Java annotations, as used in JU-
nit, might be a shortcut for avoiding class hierarchies
and method overriding, they require much code to be
processed. Annotation processing at run-time is also
based on reflection heavily, and, as such, it is error-
prone and harder to test. Our code, instead, can be
easily tested without much effort.

Concerning testing our testing framework, we
need a bootstrap phase: we have used JUnit 5 in that
respect. This also confirmed the simplicity of our de-
sign and implementation: with about 10 unit tests,
we fully covered our implementation. Then, start-
ing from our JUnit tests, we created the JNRTEST
versions of such tests: the code of test methods can
be simply copied and pasted in a JNRTEST runnable
specification (lambda expression). Thus, we also
tested INRTEST with JNRTEST.

This allowed us to have a first confirmation
for item 6: running tests JNRTEST is faster than

A Java Testing Framework Without Reflection

running tests in JUnit. For example, on a mod-
ern fast machine,'® our test suite in JUnit takes
about 1 second when run from Maven (using the
maven-surefire-plugin). In contrast, our test suite
in JNRTEST takes less than 0.3 seconds (using the
exec-maven-plugin, see Section 3). On a slower
machine,!! the overhead of reflection is even more ev-
ident: about 3 seconds with JUnit, instead of about 0.6
seconds with JNRTEST. Additional benchmarks (with
artificial examples) confirmed these first experimental
results concerning performance.

Finally, as shown in Sections 2-4, JNRTEST is
easy to use for developers (item 3). Developers famil-
iar with JUnit should not have problems rapidly using
JNRTEST. In particular, as already mentioned, a JU-
nit test case’s body of test methods can be copied and
pasted into a test specification’s lambda expression of
a JnrTestCase. Our simple test ordering (see Sec-
tion 3) could be seen as an improvement concerning
the JUnit unpredictable test execution order.

7 RELATED WORK

Reflection and annotations are heavily used in sev-
eral Java frameworks, independently from testing. In
some cases, some alternatives to such frameworks
without reflection have been proposed. Our testing
framework JNRTEST shares with such alternatives the
main goals. To the best of our knowledge, JNRTEST
is the first Java testing framework implemented with-
out reflection.

For example, the dependency injection framework
Google Guice, which we have mentioned in Section 5,
is based on reflection. Dagger'? is an alternative
meant to be a “fully static, compile-time dependency
injection framework” for Java and it is based on code
generation. In JINRTEST, we do not need to generate
code as an alternative to reflection: OOP mechanisms
and functional programming are enough to implement
the main tasks of a testing framework.

The Java web framework Spring!?® heavily re-
lies on reflection. The Java web framework Takes'*
demonstrates that even a web framework can be im-
plemented in Java with only OOP mechanisms. We
share with Takes the same goal. Similarly to Takes, in
JNRTEST, we do not even have public static methods
nor instanceof and downcasts.

10Intel i7, 16 Gb RAM, NVMe SSD.
!pineBook PRO ARM, 4 Gb RAM, eMMC.
https://dagger.dev/.

Bhttps://spring.io/.
4https://github.com/yegor256/takes.

375



ICSOFT 2023 - 18th International Conference on Software Technologies

The shape of our test specifications, i.e., the sig-
nature of test, might remind us of test specifications
in the Javascript testing framework Jest.!> Indeed,
we took some initial inspirations from Jest for spec-
ifying tests in JNRTEST. Of course, the rest of the
context (programming language, static typing vs. dy-
namic typing) does not allow for additional compar-
isons between JNRTEST and Jest.

As a testing framework, JNRTEST shares with
other testing frameworks in Java (JUnit and TestNG)
and other statically typed and dynamically typed lan-
guages (e.g., CUnit for C, Pytest for Python, SUnit
for Smalltalk, etc.), the same concepts of “test case”,
“test runner” and the ability to create a test fixture'6
for tests. Thus, JINRTEST should be easily usable for
developers who are already familiar with existing test-
ing frameworks, though its main context is the Java
language.

8 CONCLUSIONS

In this paper, we presented the prototype implemen-
tation of a novel Java testing framework without us-
ing reflection. Besides showing proof of concept that
we can avoid reflection with its drawbacks, our main
goals were to implement something simple to main-
tain, easy to use, and efficient. Although JNRTEST
is in its early development stage, it provides enough
features to be usable in practice, as shown in the pa-
per. Moreover, it can be extended and used with all
the existing Java testing libraries.

Currently, JNRTEST does not support nested tests
(a feature introduced in JUnit 5). We plan to investi-
gate how to implement them in our framework. An-
other future extension is to handle skipping of tests,
for example, based on predicates passed when calling
the method test.

We plan to implement some form of IDE support.
This will allow the developer to have a dedicated view
in the IDE, similar to the JUnit view in Eclipse. Run-
ning JNRTEST tests from an IDE or Maven is already
possible since, as shown in Section 3, it is enough to
create a Java file with the main method.

We will investigate the implementation of a simple
code transpiler that, given a JUnit test case, generates
the corresponding JnrTestCase. This will allow us
to perform further experiments and benchmarks with
existing Java open-source projects. Although a more
involved investigation of the execution speed of JN-
RTEST is required, our initial benchmarks are promis-

Bhttps:/fjestis.iol.

16 A predefined, reproducible and well-known state/envi-
ronment for each test.

376

ing and match the known fact that reflection intro-
duces run-time overhead.

ACKNOWLEDGEMENTS

This work was partially supported by the PRIN
project “T-LADIES” n. 2020TL3X8X.

REFERENCES

Beck, K. (2003). Test Driven Development: By Example.
Addison-Wesley.

Bodden, E., Sewe, A., Sinschek, J., Oueslati, H., and
Mezini, M. (2011). Taming reflection: Aiding static
analysis in the presence of reflection and custom class
loaders. In ICSE, pages 241-250. ACM.

Braux, M. and Noyé, J. (2000). Towards Partially Evaluat-
ing Reflection in Java. In PEPM, pages 2—11. ACM.

Igarashi, A., Pierce, B., and Wadler, P. (2001). Feather-
weight Java: a minimal core calculus for Java and GJ.
ACM TOPLAS, 23(3):396-450.

Landman, D., Serebrenik, A., and Vinju, J. J. (2017). Chal-
lenges for static analysis of Java reflection: literature
review and empirical study. In /ICSE, pages 507-518.
IEEE / ACM.

Leotta, M., Cerioli, M., Olianas, D., and Ricca, F. (2020).
Two experiments for evaluating the impact of Ham-
crest and Assert] on assertion development. Software
Quality Journal, 28(3):1113-1145.

Li, Y., Tan, T., and Xue, J. (2019). Understanding and Ana-
lyzing Java Reflection. ACM TOSEM, 28(2):7:1-7:50.

Livshits, V. B., Whaley, J., and Lam, M. S. (2005). Re-
flection Analysis for Java. In APLAS, volume 3780 of
LNCS, pages 139-160. Springer.

Park, J. G. and Lee, A. H. (2001). Removing Reflec-
tion from Java Programs Using Partial Evaluation. In
Reflection, volume 2192 of LNCS, pages 274-275.
Springer.

Smaragdakis, Y., Balatsouras, G., Kastrinis, G., and
Bravenboer, M. (2015). More Sound Static Handling
of Java Reflection. In APLAS, volume 9458 of LNCS,
pages 485-503. Springer.

Sobernig, S. and Zdun, U. (2010). Evaluating Java runtime
reflection for implementing cross-language method
invocations. In PPPJ, pages 139-147. ACM.



