
Understanding Compiler Effects on Clone Detection Process

Lerina Aversano1 a, Mario Luca Bernardi1 b, Marta Cimitile2 c,
Martina Iammarino1 d and Debora Montano3 e

1University of Sannio, Department of Engineering, Benevento, Italy
2Unitelma Sapienza University, Rome, Italy

3Universitas Mercatorum, Rome, Italy

Keywords: Software Maintainability, Software Quality Metrics, Clones Detection, Decompiled Source-Code.

Abstract: Copying and pasting code snippets, with or without intent, is a very common activity in software develop-
ment. These have both positive and negative aspects because they save time, but cause an increase in costs for
software maintenance. However, often the copied code changes due to bug fixes or refactorings, which could
affect clone detection. In this regard, this study aims to investigate whether the transformations performed
by the compiler on the code can determine the appearance of a set of previously undetectable clones. The
proposed approach involves the extraction of software quality metrics on both decompiled and source code
to bring to light any differences due to the presence of undetectable clones on the source code. Experiments
were conducted on five open-source Java software systems. The results show that indeed compiler optimiza-
tions lead to the appearance of a set of previously undetected clones, which can be called logical clones. This
phenomenon in Java appears to be marginal as it amounts to 5% more clones than normal, therefore a statis-
tically negligible result in small projects, but in the future, it would be interesting to extend the study to other
programming languages to evaluate any different cases.

1 INTRODUCTION

Software systems are constantly evolving over time,
so these changes lead to the vulnerability of their ar-
chitecture, which can be subject to numerous design
problems that need to be managed. Among these
are clones, i.e. sequences of instructions duplicated
in several points of the same source code file, or in
different files (Rattan et al., 2013). Several studies
show that about 5-20% of a software system may con-
tain duplicate code, so in recent years, the detection
of clones in software systems has become a popular
topic of study among researchers, because their pres-
ence in the source code can be considered detrimental
to the quality of the system. In this regard, the idea
that it is of fundamental importance to be aware of the
presence of clones is increasingly widespread, in or-

a https://orcid.org/0000-0003-2436-6835
b https://orcid.org/0000-0002-3223-7032
c https://orcid.org/0000-0003-2403-8313
d https://orcid.org/0000-0001-8025-733X
e https://orcid.org/0000-0002-5598-0822

der to improve the refactoring and maintenance of the
source code. Over time, several techniques and tools
for detecting clones have been developed, which can
be classified according to the input they receive, the
representation, and the algorithms they use (Nadim
et al., 2022). Broadly speaking these techniques are
classified as text-based, token-based, metric-based,
Abstract Syntax Tree (AST), Program Dependency
Graph (PDG)-based, and hybrid as shown (Saini
et al., 2018). Among the most widely used tools are
NICAD1, a scalable, flexible, and easy-to-use clone
detection tool that can be easily incorporated into
IDEs and other environments (Cordy and Roy, 2011).

The objective of this study is to understand if the
transformations performed by the compiler could de-
termine the appearance of a set of clones not previ-
ously detectable with the tools available. Some exam-
ples of typical optimizations performed by compilers
can control flow reordering, inlining of constants and
routines, precalculation of fixed expressions, and loop
unrolling. Traditionally, as far as the Java language

1https://www.txl.ca

Aversano, L., Bernardi, M., Cimitile, M., Iammarino, M. and Montano, D.
Understanding Compiler Effects on Clone Detection Process.
DOI: 10.5220/0012080100003538
In Proceedings of the 18th International Conference on Software Technologies (ICSOFT 2023), pages 345-352
ISBN: 978-989-758-665-1; ISSN: 2184-2833
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

345



is concerned, most optimizations are done by the JIT
compiler, at runtime, but unlike some suggest javac
also has a role in optimizing the code. However, there
are no tools for finding clones that work at the byte-
code level nor would they have particular relevance,
since the results would have to be compared with the
source code. Therefore, we have used an open-source
decompiler tool to convert the object files into text
code in order to be able to detect clones in a manner
comparable to the source code. The rest of the doc-
ument is structured as follows: Section 2 reports the
studies related to our study, and in Section 3 we de-
tail the approach used. Section 4 describes the results
obtained and finally, Section 5 reports the conclusions
and future work.

2 RELATED WORKS

Given the prevalence of clones in the source code
of software systems, their detection and management
have become hotly debated topics in software engi-
neering, as well as smells (Aversano et al., 2020a;
Aversano et al., 2020b). The search for duplicate code
allows a lot of information about the software system.
Applications include software licensing issues (Ger-
man et al., 2009), source code provenance (Davies
et al., 2013; Aversano et al., 2008), and software pla-
giarism detection (Prechelt et al., 2002). There are
several tools for source code and binary code clone
detection. The Longest Common Subsequence (LCS)
found in NiCad (Cordy and Roy, 2011) is one of many
used techniques based on string comparison meth-
ods. Several technologies convert source code into
an intermediate form, such as tokens, and perform
similarity analysis on the, e.g. SourcererCC (Saj-
nani et al., 2016), or CCFinder (Kamiya et al., 2002).
Using tokens can be thought of as a code normal-
ization that improves the similarity measurement of
two code snippets by changing their representation.
Another form of normalization can be decompilation,
which converts a program from a low-level language
to a high-level language. To date, numerous studies
have focused on detection before and after decompi-
lation. By converting Java and C/C++ code to assem-
bler code and using the longest common subsequence
string match along with an upward search for flexi-
ble matching, (Davis and Godfrey, 2010) can identify
clones. Simian and CCFinderX are improved by (Se-
lim et al., 2010) by converting Java code into Jimple
code and finding clones at that level. Their approach
makes it easier for tools to find type 3 clones and deal
with gap clones. (Ragkhitwetsagul and Krinke, 2017)
discovered that the decompiled clones are shorter and

clearer than the original code. Their method offers the
chance to examine and compare clones before and af-
ter decompilation, which offers several insightful ob-
servations.

3 APPROACH

Figure 1 shows the general architecture of the pro-
posed approach, which consists of three main phases.
The first phase involves the extraction from the Maven
repository of the open-source software systems con-
sidered for analysis. For each of these, both the JARs
of the releases and the source code have been down-
loaded. These are used as input for the second phase,
in which respectively the release jars, are decompiled
using the QUILTFLOWER tool which outputs the de-
compiled Java code, and the source code is manipu-
lated for the extraction of clones and quality metrics
through the NICAD and CK tools. After processing,
the source and decompiled codebase clones are output
in XML and CSV format and parsed to extract the re-
sults. By nature, the approach used can be generalized
to any codebase in a relatively simple way, as the en-
tire process has been automated through scripts writ-
ten in C#. In the following paragraphs the selected
open-source systems, the detection and matching of
the clones, and finally the extraction of the quality
metrics will be better detailed.

3.1 Open Source Software Systems

To conduct the experiments, five Java open-source
software systems available on the Maven Central
Repository were selected, having at least five stable
versions. Table 1 shows the system name in the first
column, the number of releases in the second, and
the specific releases considered in the third. For each
system, instead of considering the entire codebase of
each project, it was decided to use only the common
parts between the source and the binaries. It would
not make sense to include artifacts related to, for ex-
ample, test cases in the comparison as these are not
present in the release JAR files.

3.2 Decompilation

Once obtained, the executables are decompiled us-
ing Quiltflower, a modern Java decompiler focused
on improving the quality, speed, and usability of the
code. QuiltFlower2 is an open-source project avail-
able on GitHub. It is a fork of Fernflower and Forge-

2https://github.com/QuiltMC/quiltflower

ICSOFT 2023 - 18th International Conference on Software Technologies

346



Figure 1: Architecture of the Proposed Approach.

Table 1: Open-source Software systems considered.
Name #Release #Considered Release

atlanmod/commons 7 1.0.2, 1.0.3, 1.0.4, 1.0.5, 1.0.6, 1.1.0, 1.1.1
commons-dbutils 7 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7
Java-WebSocket 13 1.3.0, 1.3.4, 1.3.5, 1.3.6, 1.3.7, 1.3.8, 1.3.9, 1.4.0, 1.4.1, 1.5.0, 1.5.1, 1.5.2, 1.5.3

log4j-core 20 2.11.1, 2.11.2, 2.12.0, 2.12.1, 2.12.2, 2.12.3, 2.12.4, 2.13.0, 2.13.1, 2.13.2, 2.13.3, 2.14.0,
2.14.1, 2.15.0, 2.16.0, 2.17.0, 2.17.1, 2.17.2, 2.18.0, 2.19.0

org.jfree.fxgraphics2d 5 2.0, 2.1, 2.1.1, 2.1.2, 2.1.3

flower and changes include new language features,
better control flow generation, more configurability,
multithreading, and optimization.

3.3 Clones Detection

The purpose of this study is to find out if there are
logical clones, a term used to refer to clones that
are not immediately visible in the source, but appear
when the compiler optimizes the code by simplify-
ing its structure and potentially rearranging the state-
ments. This type of comparison must be done on
blind-type clones, as the decompiled code no longer
has the names of the variables and constants, mak-
ing a simple text comparison useless. As can be seen
from the example shown in Figure 2, the optimized
code can be significantly different. In this example
from Log4j-core, the compiler has removed an inter-
nal loop simplifying the control flow.

Therefore, the NICAD tool, a TXL-based hybrid
language-aware text-comparison software clone de-
tection system, was first used to perform the clone
detection. In input, it requires one or more source
directories to check for clones and a configuration file
that specifies the normalization and filtering to be per-
formed and provides the output results in both XML
format for easy parsing and HTML format for conve-
nient navigation. It allows parsing of a variety of lan-
guages, including C, Java, Python, and C#, and pro-
vides a range of normalizations, filters, and abstrac-
tions. It is designed to be easily extensible using a

component-based plug-in architecture. Specifically,
version 6.2 was used, with the type3-2 configuration,
which compares functions in blind format, i.e. with-
out identifiers (types, functions, and variables). The
output of NICAD has foreseen: an XML file contain-
ing the single functions extracted from the codebase,
identified by file and starting and ending line (i); an
XML file containing the single functions in blind for-
mat, in the same way as the previous one, identified by
initial and final files and lines (ii); a summary XML
file containing the list of functions that have clones.
These features are grouped into clone classes: all fea-
tures within the same group are clones or have a high
similarity coefficient. Once the analysis results are
obtained, the classes of homologous clones between
the source and the decompiled are compared to verify
if clones have appeared that were not present in the
analysis of the source.

3.4 Clones Matching

Given a class of similarity in the source, it is difficult
to find the decompile equivalent reliably. The process
of identifying the functions is not straightforward as
in the blind results neither the name nor the line num-
bers can be relied on as they are different between the
source and the decompiled. To solve this problem it
is necessary to cross-reference the files generated by
NICAD taking into account both the blind versions
and the versions with identifiers. One must then com-
pute a data structure that maps the filename and tuple

Understanding Compiler Effects on Clone Detection Process

347



Figure 2: Comparison example of the same function extracted from Log4j-core.

(start line, end line) of a function in the source to the
file and tuple (start line, end line) of the decompiled
and vice versa. In this regard, the steps of the ap-
proach can be summarized as follows:

• The XML files containing the non-blind functions
of the source and the decompiled are parsed, us-
ing XPath3 and RegEx4. Each function is iden-
tified by the file path and its complete signature
(to discriminate against any overloads), creating a
data structure that takes the name of NicadFunc-
tionsKey and represents the key of a HashMap
whose value is the tuple (initial row, final row)
called NicadFunctionsValue.

• The NicadFunctionsKey in common between the
two data structures loaded into memory are then
found. The result is a list of MatchedFunctions
containing the NicadFunctionsKey and the Nicad-
FunctionsValue of the source and the decompiled.

• The blind-clones-classes XML files are parsed in-
side two NicadCloneClass lists, one for the source
and one for the decompiled (cloning classes).

• The homologous IDs of the clone classes are cal-
culated by finding which ones contain the same
functions from both sides. More specifically,
when new clone classes appear in the decompile
that didn’t exist in the source, they are discarded.

• For each pair of NicadCloneClass (Source, De-
compiled) identified, its content is compared

3.5 Software Quality Metrics
Extraction

To verify the internal quality of the software systems
considered, the source code extracted for each of them
was subjected to analysis for the extraction of qual-
ity metrics (Iammarino et al., 2019; Ardimento et al.,
2021). They provide an evaluation of the long-term
maintainability of the various characteristics of the
system (Li et al., 2015; Alves et al., 2016). Specif-
ically, code cohesion, complexity, size, and coupling
are evaluated using the metrics previously specified
by Chidaber and Kemerer (Chidamber and Kemerer,
1994). Specifically, the quality indicators were ex-
tracted with the CK tool, a static code analysis tool,
available on GitHub, which allows you to calculate
class and method level metrics in Java projects with-
out the need for compiled code. Precisely, the quality
indicators were extracted with the CK3 tool, a static
code analysis tool, available on GitHub, which al-
lows you to calculate class and method-level metrics
in Java projects without the need for compiled code.

Therefore, Table 2 shows the extracted metrics, re-
porting the name in the first column and a brief de-
scription in the second.

4 RESULTS

Following a quantitative analysis, analyzing the evo-
lution of the source code metrics between the different
releases, it emerged that the metrics that tend to grow

3https://github.com/mauricioaniche/ck

ICSOFT 2023 - 18th International Conference on Software Technologies

348



Table 2: Software Quality Metrics.
Name Description

Response For a Class (RFC) Indicator of the ’volume’ of interaction between classes.
Depth of Inheritance Tree (DIT) Maximum distance of a node (a class) from the root of the tree representing the hereditary structure.

Weight Method Count per Class(WMC) Weighted sum of the methods of a class.
Lack of Cohesion of Methods(LCOM) The cohesion of a method expresses the property of a method to exclusively access attributes of the class.

Coupling Between Objects (CBO) Number of collaborations of a class, that is,the number of other classes to which it is coupled
Number of unique words Count of unique words.

Non-Commented, non-empty Lines of Code Number of lines of code, except of blank lines.
Number of static invocation Total number of invocations throught static methods

Number of methods Total amount of of methods: static, public, abstract, private, protected, predefined, final, and synchronized.
Number of fields Number of set of fields: static, public, private, protected, default, final, and synchronized.

Usage of each field Calculate the usage of each field in each method.
Usage of each variable Calculate the usage of each variable in each method.

Comparisons Total of comparisons (e.g. == or !=).
Returns Count of return statements.

Try/catches Total of try and catches.
Loops Amount of loops (for, while, do while, generalized for).

Variables Numerical index of variables declared.
Number Quantity of numbers (i.e. int, long, double, float).

Math Operations Count of mathematical operations.
Parenthesized expressions Count of expressions in parentheses.

Anonymous classes,
subclasses and lambda expressions Number of anonymous declarations of classes or subclasses.

String literals Amount of string literals (e.g. ”John Doe”). Strings that are repeated are counted as many times as they appear.
Modifiers Number of public / abstract / private / protected / native modifiers of classes / methods.

Max nested blocks The highest number of blocks nested together.

the most in value between the releases are LCOM,
LOC, and Unique Words Quantity, except when in-
terventions are made maintenance or refactoring. To
a lesser extent in projects, as far as methods are con-
cerned, modifiers also tend to grow, as one would ex-
pect as the size of the codebases increases. The ex-
ception is Java-WebSocket, where modifiers decrease
over time, especially between releases 1.3.4 and 1.3.5.
As for CBO, DIT, RFC, TCC, LCC, and NOSI, they
generally tend not to change much between releases
on average. However, it is possible to notice a mini-
mal increase for Log4j, a fact that can indicate how
Log4j is a fairly well-managed project, as it has a
high number of of releases, but these metrics have in-
creased slightly between them.

Furthermore, comparing the results obtained on
the source code and those obtained on the decompiled
it emerged that some metrics are always different
between the various projects. Specifically, the max
Nested Blocks Quantity metric indicates that there are
no nested blocks in the decompiled source code be-
cause the control flow was changed by the compiler.
The Numbers Quantity metric indicates that the sym-
bolic constants are absent in the decompiled data be-
cause they are replaced by the literals by the compiler.
Again, the Return Quantity and LOC metrics indicate
a decrease in return statements and lines of code as
a result of the compiler sorting and optimizing the
statements. Finally, other syntax-dependent factors
such as Parenthesized Expression Quantity are not
taken into consideration because the compiler may
remove parentheses inserted by programmers to aid
readability. Optimizations of a compiler are limited
to changes not visible from the outside. These can
be the elision of local variables, restructuring of con-
trol flow, or in extreme cases elimination of private
methods. The compiler cannot rearrange the class hi-
erarchy or the order and number of method calls, so,

as would be expected, these metrics are equal within
a margin of error.

Figure 3 shows the comparison of the presence of
the clones in the source code, shown with the blue
bars, and the decompiled one represented by the or-
ange bars. For each system considered in the analy-
sis, the respective graph is shown, which shows the
number of clones on the ordinate axis and the various
releases considered on the abscissa axis. The results
show that in general there was an increase in the ab-
solute number of clones between the source and the
decompiled. This effect is particularly noticeable in
larger projects. Furthermore, by analyzing the results
produced on a sample basis, it is observed that most
of the new clones mainly consist of changes to the
control flow or the member access syntax, for exam-
ple through the use of the keyword this. It is there-
fore observed that NICAD does not correctly handle
the aliasing of names, not detecting potential clones
where the only difference is how a given variable,
method, or class name.

A specific example is shown in Figure 4, where
the source code is shown on the left, and the same
code is subjected to decompilation on the right. Re-
garding the variations of the control flow instead, we
observe the reordering of some blocks and the in-
troduction of keywords not previously present, this
does not change the meaning of the code but raises
a possible discussion: the Java compiler is not par-
ticularly aggressive and these differences could even
just depend on the interpretation of the bytecode and
therefore be an artifact of the source reconstruction
process. Thus, the process of compiling and subse-
quently decompiling could be viewed conceptually as
a preprocessing step to normalize the code by remov-
ing this variability, as a result, most of these clones
could be detectable using a better preprocessing algo-
rithm in NICAD.

Understanding Compiler Effects on Clone Detection Process

349



Figure 3: The presence of the clones compared on the source code and the decompiled.

Figure 4: Difference between source (left) and decompiled (right) related to commons dbutils release 1.4.

Finally, the graphs of the measure of the differ-
ences found between the clones in the source code

and the decompiled are shown in Figure 5. Specif-
ically, the relative graph is shown for each system,

ICSOFT 2023 - 18th International Conference on Software Technologies

350



Figure 5: Trend of the differences in the presence of clones in the considered systems.

reporting the number of clones on the y-axis and the
releases considered on the x-axis. The graphs show
certain points in time where the value of the differ-
ence changes significantly. The clones present on
both sides have been ignored, consequently, a change
to this extent implies that, with the same clones, there
are more variations compared to the previous version.
Since the number of clones remains more or less un-
changed at some point in the history of the project,
something was changed causing this effect. The case
of org.jfree.fxgraphics2d is special because it shows
that the difference is always 0. In JavaWebSocket in
the first three releases the same difference is detected
and then cancels out in the following ones, on the con-
trary for Commons-core the difference at first zero,
grows in the penultimate release to remain stable. In
log4j this difference is mostly stable, then increases.

The particular case is that of commons-dbutils
which shows that at one point there is a high vari-
ation in the 1.4 release, then disappearing in subse-
quent releases and finally returning in the current re-
lease, 1.7. This behavior is believed to be due to
the version and/or options of the JDK. To validate
this hypothesis, the GIT history of the projects where
the phenomenon occurs was analyzed. There was a

correlation between changes to the POM file and the
observed results. In different commits between dif-
ferent versions, the properties relating to the target
and source javac version, JDK version, Maven ver-
sion, and Maven Java compiler plugin parameters are
changed, so it was not possible to identify a single
determining factor. To give a satisfactory explanation
to these observations, further data or experiments are
needed by modifying only the properties in question.

5 CONCLUSIONS

Finding clones, exact or identical pieces of code,
within or between software systems is the goal of
clone detection. This study proposes an approach to
compare the presence of clones in source code and
decompiled code. Decompilation can be considered
a code normalization technique because it includes
some syntactic changes made to the Java source code.

In five open-source software systems, we in-
vestigate decompilation as a preprocessing step for
clone identification. The results show that indeed
compiler optimizations lead to the appearance of

Understanding Compiler Effects on Clone Detection Process

351



many previously undetected clones, which have been
termed ”logical clones”. This phenomenon in Java
is marginal as it amounts to 5% more clones than in
regular Java, statistically negligible in small projects.
Furthermore, the trend of software quality metrics in
the presence of clones was also studied and it emerged
that some metrics differ between the various projects.

Among the problems encountered, it should be
considered that for the detection of clones, the textual
output of the decompiler is compared, and this poses
a problem as the results will be different based on the
chosen decompiler and the configuration and version
of the decompiler itself. An example of this effect
is the presence of the dot operator for name resolu-
tion: the decompiler always imports the class using
the keyword import while some projects prefer to use
the dot operator. This created ambiguity and made it
impossible to match some methods, but at the same
time, it allowed to detection of clones that NICAD
does not consider as such because it does not differen-
tiate between the method/property access point opera-
tor and the access point operator a class in a package.
A deeper analysis should consider different decompil-
ers or work directly at the bytecode level of the JVM
to detect repeating instruction patterns. It should be
noted that at the moment there are no mature tools ca-
pable of working on Java bytecode at this level. A
possible development could be the extension of the
project to other languages. At present, NICAD sup-
ports C, C#, and Python in addition to Java. However,
the CK tool only supports Java.

REFERENCES

Alves, N. S., Mendes, T. S., de Mendonça, M. G., Spı́nola,
R. O., Shull, F., and Seaman, C. (2016). Identifica-
tion and management of technical debt: A systematic
mapping study. Information and Software Technology,
70:100–121.

Ardimento, P., Aversano, L., Bernardi, M. L., Cimitile, M.,
and Iammarino, M. (2021). Temporal convolutional
networks for just-in-time design smells prediction us-
ing fine-grained software metrics. Neurocomputing,
463:454–471.

Aversano, L., Bernardi, M. L., Cimitile, M., Iammarino, M.,
and Romanyuk, K. (2020a). Investigating on the rela-
tionships between design smells removals and refac-
torings. In International Conference on Software and
Data Technologies.

Aversano, L., Carpenito, U., and Iammarino, M. (2020b).
An empirical study on the evolution of design smells.
Inf., 11:348.

Aversano, L., Cerulo, L., and Palumbo, C. (2008). Mining
candidate web services from legacy code. page 37 –
40.

Chidamber, S. R. and Kemerer, C. F. (1994). A metrics
suite for object oriented design. IEEE Transactions
on Software Engineering, 20(6):476–493.

Cordy, J. R. and Roy, C. K. (2011). The nicad clone detec-
tor. In 2011 IEEE 19th International Conference on
Program Comprehension, pages 219–220. IEEE.

Davies, J., German, D. M., Godfrey, M. W., and Hindle,
A. (2013). Software bertillonage: Determining the
provenance of software development artifacts. Em-
pirical Software Engineering, 18:1195–1237.

Davis, I. J. and Godfrey, M. W. (2010). From whence it
came: Detecting source code clones by analyzing as-
sembler. In 2010 17th Working Conference on Reverse
Engineering, pages 242–246. IEEE.

German, D. M., Di Penta, M., Gueheneuc, Y.-G., and An-
toniol, G. (2009). Code siblings: Technical and legal
implications of copying code between applications. In
2009 6th IEEE International Working Conference on
Mining Software Repositories, pages 81–90. IEEE.

Iammarino, M., Zampetti, F., Aversano, L., and Di Penta,
M. (2019). Self-admitted technical debt removal and
refactoring actions: Co-occurrence or more? page 186
– 190.

Kamiya, T., Kusumoto, S., and Inoue, K. (2002). Ccfinder:
A multilinguistic token-based code clone detection
system for large scale source code. IEEE transactions
on software engineering, 28(7):654–670.

Li, Z., Avgeriou, P., and Liang, P. (2015). A systematic
mapping study on technical debt and its management.
Journal of Systems and Software, 101:193–220.

Nadim, M., Mondal, M., Roy, C. K., and Schneider, K. A.
(2022). Evaluating the performance of clone detection
tools in detecting cloned co-change candidates. Jour-
nal of Systems and Software, 187:111229.

Prechelt, L., Malpohl, G., Philippsen, M., et al. (2002).
Finding plagiarisms among a set of programs with
jplag. J. Univers. Comput. Sci., 8(11):1016.

Ragkhitwetsagul, C. and Krinke, J. (2017). Using compi-
lation/decompilation to enhance clone detection. In
2017 IEEE 11th International Workshop on Software
Clones (IWSC), pages 1–7. IEEE.

Rattan, D., Bhatia, R., and Singh, M. (2013). Software
clone detection: A systematic review. Information and
Software Technology, 55(7):1165–1199.

Saini, N., Singh, S., and Suman (2018). Code clones: De-
tection and management. Procedia Computer Science,
132:718–727. International Conference on Computa-
tional Intelligence and Data Science.

Sajnani, H., Saini, V., Svajlenko, J., Roy, C. K., and Lopes,
C. V. (2016). Sourcerercc: Scaling code clone detec-
tion to big-code. In Proceedings of the 38th Inter-
national Conference on Software Engineering, pages
1157–1168.

Selim, G. M., Foo, K. C., and Zou, Y. (2010). Enhancing
source-based clone detection using intermediate rep-
resentation. In 2010 17th working conference on re-
verse engineering, pages 227–236. IEEE.

ICSOFT 2023 - 18th International Conference on Software Technologies

352


