RPA Testing Using Symbolic Execution

Ciprian Paduraru, Marina Cernat and Adelina-Nicoleta Staicu

Department of Computer Science, University of Bucharest, Romania

Keywords:

Abstract:

RPA, Testing, Symbolic Execution, Test Generation.

The goal of Robotic Process Automation (RPA) technology is to identify patterns in repetitive processes that

can be automated in enterprise workflows, and to create intelligent agents that can repeat those processes
contextually and without human effort. However, as the technology has evolved considerably in terms of
model complexity, data inputs, and output dimensionality, preserving the quality of the building blocks of the
operations is a difficult task. We identified that there is a gap in testing methods and tools capable of efficiently
testing RPA workflows. In this paper, we therefore propose to address this gap by using symbolic execution
as a starting point. We focus on both the methodology and algorithms required to transfer existing research
in symbolic execution to the RPA domain, propose a tool that can be used by researchers and industry, and
present our current evaluation results for various use cases along with best practices.

1 INTRODUCTION

Robotic Process Automation (RPA) (Aguirre and Ro-
driguez, 2017), (Leno et al., 2021) aims to reduce the
workload of repetitive tasks performed by employ-
ees in organizations. Rather than intervening in the
information system itself, as is the case with tradi-
tional workflow optimization, RPA generally works
by identifying patterns in repetitive processes that can
be automated. The identified patterns are written in
a specific language that we refer to as RPA workflow
so that a software robot can perform those operations.
An RPA workflow consists of the identified activities
and the relationships between them. Thus, the under-
lying abstract format of these activities takes the form
of a graph in which each activity is a node (or more
precisely a hyper-node with multiple nodes). Over-
all, the purpose of RPA workflows is to enable both
technical and non-technical people to create and man-
age content. The operations performed as part of the
activities generally relate to interactions with user in-
terfaces (Cernat et al., 2020a), cross-enterprise func-
tionality such as database or server management, or
custom APIs that connect to client infrastructure. An
RPA robot is an entity that executes workflows and re-
places repetitive human activities. It executes a work-
flow by processing the activities and operations spec-
ified in the nodes.

Recently, RPA is considered by many companies
as one of the most efficient ways to reduce costs and

Paduraru, C., Cernat, M. and Staicu, A.
RPA Testing Using Symbolic Execution.
DOI: 10.5220/0012061000003538

achieve a high return on investment (ROI) (Ray and
et al., 2022), (Economy, 2020). RPA is being used
in industries such as manufacturing, technology and
healthcare, across a range of business sizes, from
small businesses to large enterprises. As RPA tech-
nology takes hold and workflows created in enter-
prises automate and connect many endpoints, it is im-
portant to test these automation processes from start
to finish. In general, RPA testing means defining in-
puts and expected outcomes and verifying that the au-
tomation process works as expected. An automated
testing tool for RPA can detect common problems
such as logic errors, security vulnerabilities, or other
low-level coding issues.

The goal of our work is to provide a framework
for testing RPA workflows and to identify best prac-
tices based on the evaluation of the results. The work
was done in collaboration with our industry partner
UiPath!, which is currently the world-leading RPA
technology company (according to (Ray and et al.,
2022)).

Based on our literature research, our framework
brings the following innovations to the field:

* To the best of our knowledge, this is the first aca-
demic work describing a tool capable of testing an
RPA workflow from start to finish.

e We adapt existing modern symbolic execution
methods to the RPA case.

Uhttps://uipath.com

269

In Proceedings of the 18th International Conference on Software Technologies (ICSOFT 2023), pages 269-275

ISBN: 978-989-758-665-1; ISSN: 2184-2833

Copyright (© 2023 by SCITEPRESS — Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

ICSOFT 2023 - 18th International Conference on Software Technologies

* We identify best practices for testing RPA work-
flows from our collaboration with industry part-
ners by applying our methods to real-world appli-
cations.

Note that more technical details on our tool are
provided in our complementary paper (Paduraru et al.,
2023), which is based on a common technical foun-
dation but provides a concolic approach, not the sym-
bolic approach presented in here.

The rest of the paper is organized as follows. Sec-
tion 2 discusses previous work in the field of RPA
and software testing. Furthermore, Section 3 provides
an overview of the testing pipeline. Section 4 dis-
cusses how symbolic execution methods are used by
our framework in the RPA testing environment. The
evaluation of the results are presented in section 5.
The last section is dedicated to conclusions.

2 RELATED WORK

RPA and Automated Testing. By reviewing the lit-
erature on RPA and testing, we concluded that there is
a lack (from the authors understanding, because there
is no prior work at all) in white-box testing for the
RPA workflows. In (Cernat et al., 2020b), the authors
describe the state of the practice for testing software
robots and propose some ideas for test automation us-
ing model-based testing, without providing any fur-
ther evaluation or implementation proposal.

The strategy employed by (Chacén Montero et al.,
2019) is to set up a testing environment by watching
how people interact with application UI interfaces
and documenting their actions with logs and pictures.
Firstly, because the method does not evaluate an
RPA workflow, it is more appropriate to classify it
as “black-box testing”. It has limitations compared
to our proposed methods in two ways, despite being
interesting for our efforts: (a) it is more difficult to
introduce user knowledge into the test field, and (b)
using only computer vision approaches to record
operations can significantly limit the coverage of
the test state space compared to white-box testing
of a given graph. Secondly, RPA was utilized in
the publications (Holmberg and Dobslaw, 2022) and
(Cernat et al., 2020b) to test graphical user interfaces.
Additionally, RPA has been used in (Yatskiv et al.,
2019) for automation and regression testing for
additional common information system components,
like web, desktop, or mobile applications, or even
API functionality testing in large-scale software.

Testing Methods. Our research focuses on white-
box testing (Godefroid et al., 2012a) using symbolic

270

execution approaches. We utilize current state-of-
the-art techniques, but our contribution is to inves-
tigate and assess the delta of modifications for test-
ing RPA workflows. For testing at the binary, source
code, or LLVM level, we have modified our proce-
dures to fit existing solutions. In terms of techniques
and algorithms for symbolic execution, our work was
influenced by two popular open source frameworks:
KLEE (Bucur et al., 2011) and S2E (Chipounov et al.,
2012). We drew inspiration from tools like CRETE
(Chen et al., 2018) for testing at the LLVM represen-
tation level, which can be somewhat analogous to our
notion of annotation.

3 TESTING PIPELINE
OVERVIEW

This section gives an overview of the involved com-
ponents, pipelines, and user sides of the proposed au-
tomated RPA testing framework.

The process in Fig. 1 presents the components of
the testing tool and their relations during the execu-
tion. The implemented components are:

e XAML parser, which is a transformer from the
robot which is provided in its native XAML for-
mat to an annotated graph format, which is suit-
able for the testing tool;

 symbolic test generator using also fuzzing;

* integrating script (in Python), which connects the
above components.

The integrating script gets as input a file userln-
put.json containing the configuration for the XAML
parser and the test generator. It must be provided by
the user at the beginning of the testing process, as a
prerequisite. The purpose of the integrating script, as
its name states, is to connect the two components, the
XAML parser and the test generator. The the XAML
parser is used to parse XAML files, the result being
serialized in a .json file, which preserves only the in-
formation necessary to run the symbolic test genera-
tor. The execution of both components is performed
with the help of the integrating script having as result
the following files:

* outputXamlParser.json, representing the output of
the XAML parser;

* generatedTests.csv, representing the output of the
symbolic test generator;

* executionLogs.csv, with the purpose of giving de-
tails about the execution of the symbolic test gen-
erator such as the solver strategy used and the ex-
ecution time;

RPA Testing Using Symbolic Execution

oli RPA robot
nerato under test

User i | |
M give input parameters |) | |
P parse xml file I [
I
I
"""" ST |
return json file] I
I I
: process json file {
:
I
T T BT S g S e St el
| o
S | return csv file with test
- | cases |
return csv file with test cases - | |
and execution logs file : : :
I | I
) . I I I
give csv as input parameter : : :
I] I
I I I
S R e dmmm e e e
I I I]
show results : I I :
I I
I I I |
L I I I |

Figure 1: The overview of the testing process.

* CFGraph.png, representing the control flow
graph of the robot.

In addition to these components, we have created
an extra reusable RPA robot designed to execute the
integrating script and return an array of test files gen-
erated by the symbolic test generator. The resulted
test suite can be run within the test execution frame-
work provided by the RPA tool. The coverage metrics
can be extracted from there.

4 SYMBOLIC EXECUTION
STRATEGY FOR TESTING RPA
WORKFLOWS

In this section, we describe our proposal for applying
the symbolic execution methodology to the RPA do-
main, detailing both the methods and the implemen-
tation level. Our contribution in this sense is to incor-
porate them into our framework design and provide
our considerations and requirements needed for test-
ing RPA workflows. An important advantage of test-
ing RPA workflows is that the entire model, consisting
of activities and connections between them, is known.
With the help of the human in the loop, who can addi-
tionally provide what we identified earlier in the text
as annotations, the test process turns out to be com-
putationally suitable in most cases, even for methods
known to be very computationally intensive in other
use cases, such as symbolic execution. The test cor-

pus might then have the advantage of completeness,
while also being sustainable from a computational ef-
fort or time horizon perspective.

The methods described below formally assume
that the RPA workflow takes the structure of a di-
rected graph G in which each activity is a node. Cy-
cles can exist in this graph, and the starting activity
(i.e., node) is denoted Initial(G). The decision fac-
tor for a test case generation and execution process is
mainly related to branch points, i.e., when the next ac-
tivities are different depending on a certain condition.
The general idea is that when a branch point B occurs
on a path P of activities within G, the condition on
which the branch depends can be solved symbolically
with an SMT solver to check its feasibility. In our
case, we chose Z3 (Mendona de Moura and Bjorner,
2008) as the SMT solver for the framework. Several
strategies can be found in the literature, depending
on the complexity of the RPA workflow. In practice
and in collaboration with our industrial partner, we
found that most of the workflows used in the produc-
tion phase are small to medium in size. The sym-
bolic execution method (Baldoni et al., 2018) exhaus-
tively explores the graph G including loops. Since the
graphs of the workflows are usually small to medium
in terms of the number of operations (they generally
need to be evaluated visually), we have empirically
found that this method offers the best tradeoff be-
tween the completeness of the generated test corpus
and the computational efficiency. However, there are
rare cases where the workflows are very large, and in

271

ICSOFT 2023 - 18th International Conference on Software Technologies

these cases concolic evaluation might have an advan-
tage as it covers the activities per unit time faster, cf.
(Paduraru et al., 2023).

Listing 1 shows the main loop of the implementa-
tion pseudocode in our framework. The process starts
with the initial activity node in the graph G (Line 2),
inserts this initial path with a single node into a work-
list W, then extracts a promising path at each step of
the loop (with several possible customizable strate-
gies for evaluating path priorities), and continues its
forward execution, Line 7. The worklist W is a pri-
ority queue sorted by a priority of elements (paths).
By default, this priority is calculated based on how
deep in the G exploration tree the path is now. By de-
fault, paths that are at the top of the exploration tree
are promoted so that the algorithm is able to traverse a
variety of paths and activities in less time, rather than
focusing on single long paths with common activity
nodes. However, depending on the test goal, the user
is free to override this default behavior by using func-
tion hooks in our framework.

When generating new inputs to the work queue
W, the default calculation method for setting their
priority is based on the location (depth index) in the
tree where the branching constraint is reversed. Thus,
when sorting the priority queue W by priority, the de-
fault behavior is to promote changes to paths at the be-
ginning of previous paths. This is also used in (Gode-
froid et al., 2012b), but the user is free to override this
functionality with a hook function as needed.

xploration path with the ‘entry node of

2 start_path = SMTPath ([G.entry_node], priority =
MAX_PRIORITY)

3// Add this to the current Worklist
4 W.add (start_path)

5 while W.notEmpty () :

6 currPath = W.extract ()

ExecutePath (currPath, W)

Listing 1: The main loop of Symbolic execution using DFS
strategy

The code for continuing the execution of a given
path is shown in Listing 2. An execution path in this
purely symbolic model is abstracted by the code of
class SMT Path. Given knowledge of an initial set
of constraints on the variables in the DataStore (e.g.,
those propagated from annotations), Line 6 adds them
to the state of the SMT solver. Next, the implementa-
tion parses the current node to make the continuation
decision, Line 9.

‘When a branch node occurs, Lines 15-41, the cur-
rent path is cloned and split in two: one takes the
True branch and the other takes the False branch.
We add only the feasible paths to the future work-
list after calculating their priority and setting up the
next node for execution according to the considered

272

branch. It is important to note that for one of the
paths, the DataStore instance is also duplicated, Line
38. This ensures that both operate on different data
context values. This is also beneficial for paralleliza-
tion, as branches from the worklist can then be exe-
cuted in parallel. Note that the implementation pre-
sented is depth-first search (DFS) style, as the next
highest priority path continuation is the currently ac-
tively executing path, while the other is added to the
worklist and possibly executed later in the process,
Line 40.

| ExecutePath (path : SMTPath, W : Worklist)
2 Each path stores the next node to e e (initial
is the entry nc of the path)
3 currNode = path.nextNodeToExecute
4
5 // First, add all the constraints given by the
DataStore objects restrictions given by annotations
6 path.conditions_smt = DataStoreTemplate.
getVariablesAssertions ()
7
8 The noc the end of the Workflow
graph G a of the path
9 while currNode !
10 if current 1ch type, just e:
it and advan de in the workfl
11 if currNode.type != BRANCH:
12 WorkflowExecutor.Execute (currNode)
13 currNode = currNode.next ()
14 //-.If the current node is a branch,
15 se
1

6 If branch'node but the

n then jus

used 1in its condition expr
17 if not HasSymbolicVariables (currNode.condition)
18 Get the result of the evaluation and advance
19 Result = WorkflowExecutor.Execute (currNode)
20 currNode.advance (Result)
21 continue
22
23 has symbolic variables, build the

ation of the current path on both

24 / and False bra s with the next nodes and
SMT assertions needed

25 newPath_onTrue = SMTPath (nodes=currPath.nodes +
currNode .nextNode (True),

26 conditions_smt= currPath.
conditions_smt + currNode.condition)

27 newPath_onFalse = SMTPath (nodes=currPath.nodes +
currNode .nextNode (False),

28 conditions_smt= currPath.
conditions_smt + Not (currNode.condition))

29 // Then check which of them are feasible,

30 es
in parallel, and add them t

31 solvableNewPaths = []

32 if SMTSolver (newPath_onTrue) has solution:

33 solvableNewPaths.add (newPath_onTrue)

34 if SMTSolver (newPath_onFalse) has solution:

35 solvableNewPaths.add (newPath_onFalse)

36 for newPath in solvableNewPaths:

37 newPath.scorePath ()

38 newPath.data_store = currPath.data_store.clone ()

39 newPath.nextNodeToExecute = currNode.nextNode (
True if newPath == newPath_onTrue else False)

40 W.add (newPath_onFalse)

41 break

42 f the end of the path, then stream out the
model variables

43 StreamOut (currPath)

Listing 2: The main loop of symbolic execution using DFS
strategy

Other implementations might also consider
breadth-first-search (BFS) style, i.e., after a branch,
both branches are added to the worklist according
to priority, and a new path must be considered at

Figure 2: The figure shows the difference between the exe-
cution types DFS and BFS. Frontier nodes are represented
by broken circles, while the remaining nodes are consid-
ered visited nodes. The path in bold is the current (i.e., in
execution) path. In BFS-style execution, both new bound-
ary nodes are added to the priority queue worklist, and the
next iteration selects the top continuation node (by priority)
- possibly even the unexplored node on the left side of the
workflow graph. In DFS fashion, one of the two new nodes
is added to the work queue and further execution continues
on it.

each step. Figure 2 visually explains the difference
between the two.

5 EVALUATION

We evaluate the framework by providing metrics and
some other best practices that we identified while
working on a number of real-world applications au-
tomated by RPA workflows. A brief description of
these applications can be found below:

* BankLoanCheck: The automation of the eligibil-
ity check of customers based on features such as
the amount requested, loan term, existing credit
cards and loans.

* BankLoanRequest: The automation of the credit
processing as a continuation of the above process
after the credit check.

* EmployeesManagement: The automation of vari-
ous HR processes for employees within an orga-
nization.

* PrivateHospital: The automation of some pro-
cesses managing the relationship between a hos-
pital and its customers.

* InvoicesProcessing: ~ The automation of a
producer-consumer paradigm that processes
invoices in PDF format and sends them to a
queue that automatically processes their inputs in
a connected database and operations.

Metrics and Discussion. To get an overview of
the complexity of the applications evaluated, Table 1

RPA Testing Using Symbolic Execution

Table 1: The number of nodes (workflow activities) and
branch points for each evaluated application.

Model tested Nodes | Branch nodes
BankLoanCheck 32 6
BankLoanRequest 20 11
EmployeesManagement 23 8
PrivateHospital 42 14
InvoicesProcessing 32 5

Table 2: The time needed (in minutes) for each application
to obtain a 100% coverage.

Model tested Time

BankLoanCheck 30.23 min
BankLoanRequest 15.44 min
EmployeesManagement | 117.4 min
PrivateHospital 73.10 min
InvoicesProcessing 29.14 min

shows the number of total activity nodes and branch
points for each of these applications

Also, Table 2 shows the time needed for the fuzzer
to achieve full coverage of the activities (nodes) and
branches. We leave the evaluation of the coverage of
pairs of state values to future work in the next version
of our testing framework. One observation that can be
made to this point is that the time required to achieve
the full coverage discussed is not directly proportional
to the number of nodes. As a concrete example, the
time required to achieve full coverage for the Ban-
kLoanRequest and EmployeesManagement models is
very different, even though the corresponding com-
plexity of the underlying graphs is almost the same.
The main reason for this is that the latter component
requires certain input ranges and patterns to be pro-
posed by a producer component in order to trigger
some branch points at the consumer component.

On the other hand, as we have observed in prac-
tice, it is important to obtain good metric coverage
within a short time to meet today’s requirements in
agile development processes, e.g., continuous inte-
gration processes, smoke testing, evaluation of local
changes before submission, etc. To evaluate the pro-
posed set of applications and our testing framework
considering these requirements, we run the tool on
each application for a fixed time of 60 minutes to un-
derstand how deep the testing process goes. The re-
sults are shown in Table 3.

Other Lessons Learned Identified During the
Evaluation Process. The following are additional
features implemented in our framework that have
been helpful in validating results and usability for in-
dustry.

» Seeds: Setting fixed seeds for the fuzzer helped

273

ICSOFT 2023 - 18th International Conference on Software Technologies

Table 3: Coverage of the evaluated applications obtained
after letting the fuzzer run for a fixed time of 60 minutes.

Model tested Coverage (%)
BankLoanCheck 100%
BankLoanRequest 100%
EmployeesManagement 69%
PrivateHospital 93%
InvoicesProcessing 100%

the testing process both in implementation and de-
bugging, and in validating and reproducing results
while problems were observed.

* Results streaming support: This greatly facilitated
the evaluation process in practice.

* Results display options: Various options such as
displaying the variable context even if it is not
used in the branching processes, support for log-
ging to see the path of the current state in the
test process, debug images to visualize the trans-
formed graph between the pipeline components.

* Extensible, user-friendly annotations and mock-
ing support.

6 CONCLUSION AND FUTURE
WORK

In this paper we presented a framework for gener-
ating test suites suitable for RPA workflows testing.
The motivation started by the growing acceptance ra-
tio of RPA in different sectors and ranges of organi-
zation sizes. Our main contribution was to research,
observe, and adapt existing state of the art methods
for the RPA testing field. The results and best prac-
tices identified could be valuable further both for aca-
demic and industry communities. We believe that this
is only the starting point and there are many future
ideas that can be investigated and implemented. For
instance, we will apply concolic execution for larger
suites of input workflows and bring in more machine
learning methods to testing, such as reinforcement
learning agents that can guide the testing process to-
wards certain goals faster. Also, we would like to add
more human-in-the-loop features in the testing phase,
to direct better the computational efforts. In the tech-
nical field, we would like to increase the framework’s
chance of being adopted easier via a smoother integra-
tion of existing implemented workflows, which were
not previously authored for being tested (e.g., no an-
notation support).

274

ACKNOWLEDGEMENTS

We thank UiPath for their collaboration and sup-
port during the research and development of the pro-
posed methods. This research was supported by the
European Regional Development Fund, Competitive-
ness Operational Program 2014-2020 through project
IDBC (code SMIS 2014+: 121512).

REFERENCES

Aguirre, S. and Rodriguez, A. (2017). Automation of
a business process using robotic process automation
(RPA): A case study. In Proc. of Applied Computer
Sciences in Engineering - 4th Workshop on Engineer-
ing Applications, volume 742 of CCIS, pages 65-71.
Springer.

Baldoni, R., Coppa, E., D’Elia, D. C., Demetrescu, C., and
Finocchi, I. (2018). A survey of symbolic execution
techniques. ACM Comput. Surv., 51(3):50:1-50:39.

Bucur, S., Ureche, V., Zamfir, C., and Candea, G. (2011).
Parallel symbolic execution for automated real-world
software testing. In Proc. of the 6th Conf. on Com-
puter Systems, EuroSys’11, pages 183-198. ACM.

Cernat, M., Staicu, A., and Stefanescu, A. (2020a). Improv-
ing UI test automation using robotic process automa-
tion. In Proc. of the 15th Int. Conf. on Software Tech-
nologies (ICSOFT’20), pages 260-267. ScitePress.

Cernat, M., Staicu, A., and Stefanescu, A. (2020b). Towards
automated testing of RPA implementations. In Proc.
of 11th Int. Work. on Automating TEST Case Design,
Selection, and Evaluation (A-TEST’20), pages 21-24.
ACM.

Chacén Montero, J., Jimenez Ramirez, A., and Gonza-
lez Enriquez, J. (2019). Towards a method for auto-
mated testing in robotic process automation projects.
In AST’ 19 Workshop, pages 42—47.

Chen, B., Havlicek, C., Yang, Z., Cong, K., Kannavara,
R., and Xie, F. (2018). CRETE: A versatile binary-
level concolic testing framework. In 21st Int. Conf.
on Fundamental Approaches to Software Engineering
(FASE’18), volume 10802 of LNCS, pages 281-298.
Springer.

Chipounov, V., Kuznetsov, V., and Candea, G. (2012). The
S2E platform: Design, implementation, and applica-
tions. ACM Trans. Comput. Syst., 30(1):2:1-2:49.

Economy, A. (2020). Executive summary - the 2021 state
of rpa survey report. Report G00319864. Gartner.

Godefroid, P., Levin, M. Y., and Molnar, D. (2012a).
SAGE: Whitebox fuzzing for security testing. Queue,
10(1):20:20-20:27.

Godefroid, P., Levin, M. Y., and Molnar, D. A. (2012b).
SAGE: whitebox fuzzing for security testing. Com-
mun. ACM, 55(3):40-44.

Holmberg, M. and Dobslaw, F. (2022). An industrial case-
study on gui testing with rpa. In 2022 IEEE Int. Conf.
on Software Testing, Verification and Validation Work-
shops (ICSTW), pages 199-206.

Leno, V., Polyvyanyy, A., Dumas, M., Rosa, M. L., and
Maggi, F. M. (2021). Robotic process mining: Vision
and challenges. Bus. Inf. Syst. Eng., 63(3):301-314.

Mendona de Moura, L. and Bjorner, N. S. (2008). Z3: an
efficient SMT solver. In 14th Int. Conf. on Tools and
Algorithms for the Construction and Analysis of Sys-
tems (TACAS’08), volume 4963 of LNCS, pages 337—
340. Springer.

Paduraru, C., Cernat, M., and Staicu, A.-N. (2023). Con-
colic execution for RPA testing. In 27th Interna-
tional Conference on Engineering of Complex Com-
puter Systems (ICECCS’23). IEEE, to appear.

Ray, S. and et al. (2022). Gartner magic quadrant for robotic
process automation. Report 4016876. Gartner.

Yatskiv, S., Voytyuk, I., Yatskiv, N., Kushnir, O., Trufanova,
Y., and Panasyuk, V. (2019). Improved method of
software automation testing based on the robotic pro-
cess automation technology. In 9th Int. Conf. on Ad-
vanced Computer Information Technologies (ACIT),
pages 293-296.

RPA Testing Using Symbolic Execution

275

