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Abstract: Continuously evolving quantum service offerings vary in development and deployment requirements they
impose on quantum application developers. Further, since quantum applications often require classical pre-
and post-processing steps, in addition to quantum computing knowledge, expertise in cloud service models,
integration, and deployment automation is needed. Thus, to reduce the required complexity and management
overhead, applications often need to be tailored for quantum offerings suited for the desired execution scenario.
However, clear guidelines that facilitate deciding between diverse quantum offerings are currently missing. In
this work, we bridge this gap by (i) documenting five patterns that capture different execution semantics for
quantum applications. Furthermore, we (ii) analyze existing quantum offerings and document their support for
the captured patterns to facilitate the decision making process when implementing quantum applications.

1 INTRODUCTION

Compared to classical hardware, quantum comput-
ers promise to solve certain computational problems
in various domains, such as machine learning Ga-
bor et al. (2020) or chemistry Cao et al. (2018),
faster, with higher precision, or with less energy con-
sumption Arute et al. (2019); Barzen (2021). How-
ever, contemporary Noisy Intermediate-Scale Quan-
tum (NISQ) devices have limited capabilities and are
error-prone Preskill (2018). NISQ devices from ven-
dors such as IBM, IonQ, or Rigetti are accessible
as cloud offerings LaRose (2019) that vary signifi-
cantly in their capabilities. For example, graphical cir-
cuit modelers only support the execution of designed
quantum circuits without any further integration fea-
tures Vietz et al. (2021). In contrast, so-called hybrid
runtimes support deploying quantum circuits along-
side desired classical code parts and executing them
together Qiskit (2023a). This is particularly helpful
for quantum algorithms relying on classical parts,
e.g., pre- and post-processing of data.

Since most quantum algorithms are hybrid Ley-
mann and Barzen (2020), engineering quantum appli-
cations often requires expertise in (i) implementing
quantum circuits and classical programs, and (ii) in-
tegrating them Weder et al. (2020a). While many lan-
guages and formats for the implementation of quan-
tum algorithms exist Fingerhuth et al. (2018), they

are often provider-specific and require extra effort for
running them on other quantum devices, e.g., reengi-
neering or use of compatible transpilers Sivarajah
et al. (2020). Implementing for specific devices poses
another challenge – their limited availability leads to
long waiting queues, even for simple tasks. Thus, to
implement and run quantum applications, developers
need to consider both, requirements of chosen NISQ
devices and operational semantics of the underlying
service offerings. However, the lack of clear guide-
lines on different execution semantics for quantum of-
ferings can hinder this decision making process.

One well-known way to abstractly capture solu-
tions for problems recurring in specific contexts is to
use patterns Alexander et al. (1977). They can also be
interconnected in so-called pattern languages to ef-
fectively allow combining related solutions and guide
architectural activities. While there exists the quan-
tum computing pattern language Leymann (2019), it
lacks patterns capturing different execution semantics
for quantum applications. In this work, we extend this
pattern language with five execution patterns for run-
ning quantum applications that we capture and doc-
ument following the best practices. Further, we ana-
lyze the existing landscape of quantum offerings with
respect to their support for the captured execution
patterns. The resulting patterns and technology cat-
egorization aim to facilitate designing, implementing,
and executing quantum applications.
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2 FUNDAMENTALS

This section presents the necessary background about
quantum applications and pattern authoring.

2.1 Quantum Applications

Quantum devices, e.g., quantum annealing or gate-
based devices can mainly be accessed via cloud ser-
vices Leymann et al. (2020). The growing popular-
ity of gate-based devices, however, shifts the current
trend towards quantum offerings that support quan-
tum circuits as quantum algorithm implementations,
i.e., code parts that actually run on quantum devices.
Moreover, due to the hybrid nature of quantum algo-
rithms Leymann and Barzen (2020), a typical quan-
tum application comprises classical code parts in ad-
dition to one or more quantum circuits. These classi-
cal parts are pre- and post-processing steps required
by quantum circuits, e.g., for encoding input data, op-
timizing parameters between quantum circuit execu-
tions, or visualizing the outputs.

To execute quantum circuits and their classical
pre- and post-processing steps, a quantum offering
providing classical and quantum hardware or a
combination of quantum and classical offerings
must be chosen. Most quantum offerings provide
APIs, routines in SDKs, or graphical user interfaces
that simplify interacting with the quantum offering
and executing quantum circuits on the underlying
quantum devices. Furthermore, to balance the load
of incoming quantum circuit execution requests,
quantum offerings often employ queues for fair
utilization of the available quantum devices. Example
quantum offerings include Amazon AWS (2023),
IBM Qiskit (2023a), and Microsoft Microsoft (2023).

Most quantum offerings do not require deploy-
ing quantum circuits: to run a circuit it needs to
be (i) compiled for the target quantum device and
(ii) sent to the corresponding endpoint, e.g., using a
specific SDK. However, the classical pre- and post-
processing steps implemented in programming lan-
guages such as Python need to be deployed. This can
be done using one or more cloud offerings or they
can simply be executed in a local code editor when
no deployment in the cloud is necessary. This choice
of deployment targets is particularly important for
NISQ devices, as they are limited in the number of
qubits and suffer from gate and readout errors Preskill
(2018). To tackle this limitation, prime NISQ use-
cases focus mainly on Variational Quantum Algo-
rithms (VQAs) Cerezo et al. (2021). VQAs comprise
quantum and classical parts that are executed in a hy-
brid loop multiple times. Depending on how VQAs

are implemented, this may result in additional inte-
gration requirements for classical and quantum parts
that need to run on possibly different cloud services.
Another option is to deploy quantum and classical
parts together on so-called hybrid execution environ-
ments AWS (2023); Qiskit (2023a), which aim to op-
timize the placement of components and runtime effi-
ciency. Hybrid execution environments, however, also
impose vendor-specific implementation and packag-
ing requirements, e.g., to use Qiskit Runtime, a quan-
tum application must be implemented in Python and
have a custom metadata file.

2.2 Patterns and Authoring Process

Patterns document abstract solutions for problems,
which frequently reoccur in specific contexts Alexan-
der et al. (1977). Networks of interconnected patterns
are called pattern languages Falkenthal et al. (2018)
and help solving composite problems in the corre-
sponding domains, e.g., software engineering Coplien
(1996), cloud computing Fehling et al. (2014b), or
quantum computing Leymann (2019). Patterns are
documented using a well-known and intuitive struc-
ture: Each pattern has a name and an icon for memo-
rability. Further, the problem states the driving ques-
tion for the pattern. In the context section, the situ-
ation where the pattern can be used is outlined. The
forces section describes relevant conflicting factors
characterizing the problem. In the solution section, a
description is provided to show an abstract solution
for the outlined situation, often accompanied by a so-
lution sketch. Optionally, the variants section shows
variations of the pattern. The result section discusses
the effects of applying the pattern, i.e., the resulting
context, and the known uses section lists distinct in-
stances of applying this pattern in practice. Finally,
the related patterns section documents relations with
other patterns within the same language as well as re-
lations to patterns from other pattern languages.

To systematically identify and author patterns, we
used the approach by Fehling et al. (2014a), which
consists of three phases: First, the Pattern Identifi-
cation phase, in which relevant information is con-
densed and boundaries are identified to filter relevant
information. To capture the patterns presented in this
work, the documentation of different quantum cloud
service providers was analyzed with respect to the ca-
pabilities they offer. Second, the Pattern Authoring
phase, in which first the structure and format of the
pattern are determined to fit the relevant domain, and
then the patterns are written and iteratively revised.
Finally, the Pattern Application phase, which is de-
coupled from the other two phases, involves struc-
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tured search and usage of the patterns, e.g., the solu-
tions from patterns can be applied for a specific pro-
gramming language to construct a quantum circuit.

3 EXECUTION PATTERNS FOR
QUANTUM APPLICATIONS

To capture different aspects of executing quantum ap-
plications, we extend the quantum computing pattern
language initiated by Leymann (2019) with five new
patterns. Prior to presenting the new patterns in de-
tail, we briefly describe the quantum computing pat-
tern language and how our extension complements it.

Figure 1 shows existing quantum computing pat-
terns, which aim to support developers in designing
and implementing quantum applications. Different as-
pects of the quantum application lifecycle Weder et al.
(2020a) are addressed using distinct categories in the
language. For example, the Program Flow patterns
give advice on how computational tasks can be split
between quantum and classical resources Weigold
et al. (2021b). They explain hybrid quantum algo-
rithms, such as Quantum Approximate Optimiza-
tion Algorithm (QAOA), and describe techniques to
improve them, e.g., so-called Warm-Starting. Most
quantum algorithms encode classical data into the
quantum circuit, which is typically done, by adding a
subroutine creating the corresponding state to the be-
ginning of the circuit. To facilitate this task, the Data
Encodings category captures different solutions for
encoding the data Weigold et al. (2020). Another as-
pect that must be considered is related to Error Han-
dling – the eponymous category shown in Figure 1

groups various relevant patterns Beisel et al. (2022).
For instance, NISQ devices can benefit from em-
ploying so-called readout error mitigation as a post-
processing step to tackle measurement errors.

In this work, we introduce patterns document-
ing solutions for executing quantum circuits and
applications that were derived by analyzing the
documentation of existing quantum cloud services.
Our new Execution patterns shown in Figure 1
aim to facilitate the decision making process for
choosing quantum service offerings that fit best for
given execution requirements: The STANDALONE
CIRCUIT EXECUTION pattern targets the most basic
execution scenarios in which quantum circuits need
to be executed without any deployment or integration
requirements. Thus, such scenarios can benefit from
quantum offerings that simplify interaction with
quantum devices. In contrast, the AD-HOC HYBRID
CODE EXECUTION pattern focuses on the execution
of quantum circuits with classical pre- and post-
processing steps in an ad-hoc manner, i.e., without
deployment customization requirements for quantum
and classical code parts. More complex scenarios are
covered by the PRE-DEPLOYED EXECUTION pattern
in which components in quantum applications need
to be deployed in a certain way, e.g., distributed to
benefit from heterogeneous offerings or deployed
in vicinity to increase efficiency. The PRIORITIZED
EXECUTION pattern describes solutions for executing
several quantum circuits efficiently by reducing the
queuing times. It enables, e.g., only waiting once
and then executing multiple quantum circuits with
reduced waiting times or reserving a quantum device
exclusively. The execution of quantum circuits as part
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Figure 1: Overview of the quantum computing pattern language Leymann (2019); Weigold et al. (2021b); Beisel et al. (2022)
with the new patterns extension proposed in this work.
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of orchestrated quantum applications is described
in the ORCHESTRATED EXECUTION pattern. Such
applications can benefit from workflows, ensuring
the data and control flow as well as providing advan-
tages, such as scalability, robustness, or transactional
processing. The STANDALONE CIRCUIT EXE-
CUTION, AD-HOC HYBRID CODE EXECUTION,
PRE-DEPLOYED EXECUTION and ORCHESTRATED
EXECUTION patterns capture different execution
variants for quantum applications and can be chosen
based on the requirements of the given application.
In contrast, the PRIORITIZED EXECUTION pattern
focuses on improving the execution efficiency and
can be combined with other execution patterns.

3.1 Standalone Circuit Execution

Problem: How to execute standalone
quantum circuits that impose no de-
ployment or integration requirements?

U

Context: In some scenarios, only standalone quantum
circuits need to be executed, such as circuit design
and testing or education. Thereby, it is beneficial to
execute quantum circuits with minimal effort and re-
quired knowledge about different quantum offerings
as well as deployment or integration technologies.
Forces: Quantum offerings vary in features and ca-
pabilities. Use of advanced offerings for simple use
cases may incur unnecessary management overhead
and even block the task due to lacking technical ex-
pertise, e.g., deployment automation and integration
technologies. In contrast, certain quantum offerings
reduce the amount of required management efforts,
e.g., by generating execution requests automatically.
Solution: Execute quantum circuits via quantum of-
ferings that do not require implementing custom de-
ployment logic or integration with other services. Fig-
ure 2 shows the solution sketch in which distinct
quantum circuits are executed using offerings capable
of creating and executing circuits. This includes ded-
icated graphical circuit composers or text-based tools
transmitting the quantum circuits to the offering. Typ-
ically, providers are responsible for the majority of the
management efforts, e.g., deployment of circuits and
authentication to the underlying quantum offering.

Developer
Quantum 
Offering

Circuit Composer / 
Circuit Execution 

Tool

Quantum 
Circuit

Result

Figure 2: Solution sketch: Standalone Circuit Execution.

Result: Quantum offerings supporting this pattern
provide a simple way for executing quantum circuits.
However, classical pre- and post-processing steps can
not be defined using these offerings. Thus, this style
of execution is not suitable for running larger quan-
tum applications and integration with external appli-
cations is either very limited or not supported at all.
Additionally, running computations with this pattern
cannot take advantage of prioritized executions.
Known Uses: Vendors such as IBM IBM (2023b) or
Pasqal Pasqal (2023) support this pattern via graph-
ical circuit composer services that enable modeling
quantum circuits visually and executing them from
the GUI, hence, abstracting away the authentication
and construction of the invocation request.
Related Patterns: In scenarios when quantum cir-
cuits are executed for testing purposes and afterwards
require the integration with classical pre- and post-
processing steps, the AD-HOC HYBRID CODE EX-
ECUTION can be used. Additionally, different quan-
tum computing patterns can be used while modeling
quantum circuits, e.g., AMPLITUDE AMPLIFICATION
or UNIFORM SUPERPOSITION Leymann (2019).

3.2 Ad-hoc Hybrid Code Execution

Problem: How to execute quantum
circuits with classical pre- and post-
processing steps with no additional de-
ployment or integration requirements?

Context: Often it is necessary to execute standalone
quantum circuits with their classical pre- and post-
processing steps without incurring extra overhead to
deploy, run, and manage them in the cloud.
Forces: Similar to STANDALONE CIRCUIT EXECU-
TION. However, using this pattern prevents integrat-
ing the classical pre- and post-processing steps. Us-
ing local or provider-managed development environ-
ments reduces management efforts, e.g., execution of
quantum and classical code via single commands.
Solution: Use provider-managed code editors or local
editors with manually-added token-based authentica-
tion. Figure 3 shows the execution of quantum circuits
and classical code using AD-HOC HYBRID CODE
EXECUTION. The classical pre- and post-processing
steps run in a local or remote code editor. The quan-
tum circuits are executed via function calls, often
provided by the programming language or quantum
SDK, transmitting the quantum circuit to the quantum
cloud offering.
Result: This pattern offers developers more control
over the execution of quantum and classical parts,
e.g., token management or request construction via
SDKs, than the STANDALONE CIRCUIT EXECUTION
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Figure 3: Solution sketch: Ad-hoc Hybrid Code Execution.

pattern. However, integration with external applica-
tions is often limited, which makes it unsuitable for
designing larger applications or running several dis-
tinct computations. After a successful ad-hoc execu-
tion of quantum circuits and their classical pre- and
post-processing steps, all artifacts can be packaged
and deployed to a compatible offering or published
via application marketplaces to simplify their reuse.
Known Uses: This pattern is supported by vari-
ous vendors. For example, iPython notebooks are
provided as remote code editors by Amazon with
Braket AWS (2023), IBM with Qiskit IBM (2023b),
and Google with Cirq Google (2020). Local code edi-
tors support different languages via dedicated pack-
ages, e.g., Rigettis pyQuil and Forest SDK Rigetti
(2023a). Authentication to quantum services is then
performed via manual configuration of access tokens.
Related Patterns: Classical pre-processing steps in-
clude STATE PREPARATION, which can be done us-
ing, e.g., BASIS ENCODING or ANGLE ENCOD-
ING Weigold et al. (2020). Post-processing steps com-
prise, e.g., READOUT ERROR MITIGATION Beisel
et al. (2022). If multiple quantum circuits must be ex-
ecuted, PRIORITIZED EXECUTION can be used to in-
crease efficiency.

3.3 Pre-deployed Execution

Problem: How to execute quantum
circuits with classical pre- and post-
processing steps that have custom de-
ployment requirements?

Context: Most quantum algorithms are hybrid, e.g.,
VQAs contain a hybrid loop with many successive ex-
ecutions of parameterized quantum circuits with op-
timization steps in-between performed on classical
hardware Cerezo et al. (2021). Further, quantum de-
vices are accessed via the cloud and to execute a cir-
cuit, it is queued in the job-queue of the respective
service, which may not support the execution of clas-
sical code parts. Thus, a quantum circuit and its clas-
sical pre- and post-processing steps may need to be
deployed in a specific manner, e.g., together or using
specific combinations of cloud service offerings.
Forces: Quantum service offerings vary significantly

feature-wise and often rely on different authentica-
tion mechanisms, proprietary formats, and SDKs. Ad-
ditional technical expertise may be required to suc-
cessfully execute a provided quantum circuit with its
pre- and post-processing steps that can be hosted sep-
arately, e.g., due to data processing requirements. In
certain cases, it is more beneficial to execute quantum
and classical parts of the application in proximity of
each other, e.g., to reduce the networking overhead.
Solution: Pre-deploy the quantum circuit with its pre-
and post-processing steps either on (i) a single quan-
tum offering that supports execution of quantum and
classical parts, or (ii) a specific combination of quan-
tum and cloud offerings that fulfills the given de-
ployment requirements. Figure 4 shows the solution
sketch of this pattern: In Step 1, the quantum and
classical parts are deployed according to deployment
preferences. The subsequent execution and fetching
of the results shown in Steps 2&3 can be done inde-
pendently by developers or client applications.

1
Deploy Classical & 

Quantum 
Offerings

Deployment 
Model

Quantum 
Application

Developer Result

2 3

Endpoint 
Request

Figure 4: Solution sketch for the Pre-deployed Execution
pattern: a quantum application is executed on a combination
of different cloud offerings.

Variants: One deployment target option in Step 1
is a Hybrid Execution Environment offering that can
speed up the interaction between quantum and clas-
sical computations. Hence, they reduce the network
overhead and queuing times for many successive
quantum circuit executions. Another variant is a Dis-
tributed Deployment in which parts of the quantum
application are deployed on a combination of differ-
ent cloud offerings. Implementation of quantum and
classical parts, as well as their deployment models,
depend on chosen technologies, e.g., implementation
of QAOA for Qiskit Runtime would impose more
coding and deployment modeling constraints com-
pared to more general deployment scenarios such as
packaging the quantum application as one or more
containers that can be deployed to a container orches-
tration engine such as Kubernetes and later executed
via client requests.
Result: The deployment of quantum applications is
decoupled from its execution, hence, enabling the
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invocation by other users or integration with other
applications, e.g., a pre-deployed VQA can be sub-
sumed as a part of another application. In the case
of hybrid runtimes, the pre-deployed application ben-
efits from provider-managed execution transparency
but is locked into the requirements and limitations of
the underlying offering. In the Distributed Deploy-
ment variant, developers can benefit from combining
different services for specific parts of the application.
Known Uses: Qiskit Runtime Qiskit (2023a) is a ser-
vice from IBM, which offers a hybrid execution envi-
ronment that enables deploying a quantum applica-
tion packaged as a Python file with a JSON meta-
data file, and subsequently executing it via a pub-
licly available HTTP endpoint. A similar service is
Amazon Braket Hybrid Jobs AWS (2023). Microsoft
also introduced the hybrid execution environment and
shows an example how to use it Frachon (2023). For
distributed deployment scenarios, various cloud offer-
ings can be employed for classical tasks. Example of-
ferings from AWS include AWS Lambda for executing
classical Python code, AWS S3 as an object storage of-
fering, and Amazon Cloudwatch for monitoring.
Related Patterns: Pre-deployed execution of hybrid
applications improves the reusability of different al-
gorithms such as the VQA and the more concrete pat-
terns like VQE and QAOA Weigold et al. (2021b).
Additionally, pre- and post-processing steps, such as
STATE PREPARATION Leymann (2019) or READOUT
ERROR MITIGATION Beisel et al. (2022), can be ap-
plied to run on preferred execution targets.

3.4 Prioritized Execution

Problem: How to execute multiple
quantum circuits in succession while
keeping the queuing time low?

Context: Quantum applications often require execut-
ing multiple quantum circuits. This is especially the
case when utilizing VQAs on contemporary NISQ
devices. Thus, these quantum circuits should be ex-
ecuted efficiently by minimizing the queuing times.
Forces: Quantum devices are usually accessed via
queues, ensuring their fair utilization. Thus, the queu-
ing times sum up when executing multiple quantum
circuits independently of each other. One approach is
to use batch processing, i.e., combining various quan-
tum circuits into one job, which is then executed at
once Vietz et al. (2021). However, this approach is not
possible when quantum circuits depend on the results
of previous executions, e.g., for VQAs.
Solution: Use quantum offerings that enable priori-

Quantum Offering

Results

Developer QPU

1
Obtain 

Prioritized 
Access

2
Execute Circuits 
& Collect Results  

Quantum Circuits

Reuse Prioritized Access

Figure 5: Solution sketch for Prioritized Execution showing
multiple circuits executed via prioritized access.

tized access to quantum devices to reduce or com-
pletely avoid queuing times, as shown in the solu-
tions sketch in Figure 5. For this, prioritized access
to quantum devices is obtained in Step 1. In Step 2,
the quantum device can then be reused via this prior-
itized access, which restricts the number of users to
reduce queuing times for multiple circuit executions.
Variants: One variant is to enable prioritization via
Session Reuse. Hence, the session established for the
first quantum circuit execution is reused for multi-
ple subsequent circuit executions. Dedicated Access
is another variant in which a quantum device is re-
served for exclusive use without initial queuing by
booking a time-slice. However, this typically incurs
additional costs.
Result: By applying this pattern, the time spent wait-
ing inside highly occupied job queues is minimized.
The choice between the two options is a trade-off be-
tween runtime and cost. In the reserved time-slice sce-
nario, runtime is the highest priority since the reser-
vation of a quantum device incurs higher costs than
other forms of access. When using sessions for the
execution, there can still be competing executions in
the job queue from other users.
Known Uses: The Session Reuse variant is currently
supported by IBM Qiskit (2023a) and AWS AWS
(2023). Further, the Dedicated Access variant is
offered by vendors such as AWS AWS (2023),
Azure Microsoft (2023), or IBM IBM (2023b). A
concrete example of a prioritized execution using
Qiskit Qiskit (2023b) highlights which options for the
session are available and shows the details like the
session time limit.
Related Patterns: When using the VQA, VQE, or
QAOA patterns Weigold et al. (2021b), prioritization
is highly advised because of the amount of sequen-
tial quantum circuit executions. In these cases, it can
be combined with the PRE-DEPLOYED EXECUTION
pattern to address custom deployment requirements.
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3.5 Orchestrated Execution
Problem: How to ensure the control
and data flow for quantum applica-
tions comprising one or more quan-
tum circuits with corresponding clas-
sical pre- and post-processing steps?

Context: Most quantum algorithms are hybrid, i.e.,
parts are executed on quantum devices, and others run
on classical hardware Leymann and Barzen (2020).
Furthermore, quantum applications can involve multi-
ple quantum algorithms and additional classical parts,
e.g., interacting with the user or loading data from a
database. These parts must be orchestrated, i.e., the
control and data flow between them must be ensured.
Forces: Quantum devices and the corresponding
quantum cloud offerings vary strongly in characteris-
tics, such as the number of available qubits, incurred
costs for the execution, or queuing times Tannu and
Qureshi (2019); Vietz et al. (2021). The orchestra-
tion of parts running in heterogeneous environments
can get unmanageable without external orchestration
tools, e.g., as there could be long invocation chains,
complex data transfers, data format transformations,
and interactions with various heterogeneous APIs.
Solution: Utilize a workflow language to model the
quantum and classical parts as tasks within a work-
flow model Weder et al. (2020b) as shown in Fig-
ure 6. The workflow model can then be deployed to
a workflow engine, which orchestrates the quantum
and classical parts by invoking them in the specified
order and ensuring the required data flow Ellis (1999).
Thereby, the invocation of heterogeneous offerings,
as well as features such as data format transforma-
tion is provided by the workflow engine Leymann and
Roller (2000). While there exist workflow offerings
specifically targeting the quantum computing domain,
e.g., providing some pre-implemented quantum algo-
rithms, standardized workflow languages and corre-
sponding workflow engines can also be employed to
benefit from their maturity and rich feature sets.
Result: The classical code as well as the quantum
circuits required to realize a quantum application are
separated from the workflow model defining how
they are integrated. This increases modularity and en-
ables the reuse of existing code, decreasing develop-

ment time and cost. Furthermore, by using workflows,
quantum applications can benefit from the reliability,
scalability, and robustness of workflow engines Ley-
mann and Barzen (2021a). Finally, also the usage of
various heterogeneous quantum and classical cloud
offerings with different functionalities is supported.
However, the need to model orchestrations to enact
them on specialized middleware requires additional
expertise and may result in overhead for simple use
cases such as circuit design and testing.
Known Uses: Examples of standardized workflow
languages are Business Process Model and Nota-
tion (BPMN) Object Management Group (2010) or
Business Process Execution Language (BPEL) OA-
SIS (2007). For the execution of these workflow mod-
els, different workflow engines are available, e.g., the
Camunda BPMN engine Camunda Services (2023).

Furthermore, there exists a quantum-specific mod-
eling extension to ease the modeling of workflows
in the quantum computing domain Weder et al.
(2020b). Quantum-specific orchestration tools com-
prise Orquestra by Zapata Zapata (2022), which uses
a custom YAML-based language, and Covalent by
Agnostiq Agnostiq (2023), a quantum orchestration
platform that requires specifying control flow via a
Python-based domain-specific language.
Related Patterns: If multiple quantum circuits have
to be executed by the workflow, the PRIORITIZED
EXECUTION pattern can be used to reduce waiting
times. Further, this pattern can be applied to integrate
several distinct quantum applications made available
using the PRE-DEPLOYED EXECUTION pattern.

4 PATTERNS SUPPORT IN
QUANTUM OFFERINGS

This section provides an overview of existing quan-
tum cloud service offerings for which documentation
has been analyzed to extract the patterns introduced
in Section 3. To compile a list of cloud services rele-
vant for this work, we conducted a thorough search
of relevant literature Fingerhuth et al. (2018); Gill
et al. (2020), and related websites Dilmegani (2023);
PAT Research (2023); Quantum Computing Report
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Figure 6: Solution sketch for an orchestrated execution. Implemented quantum and classical parts are tasks that are executed
in the specified order and environment with the help of an orchestration middleware.
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Table 1: Patterns Support in Quantum Cloud Offerings: (✓) supported, (✗) not documented.

STANDALONE
CIRC. EXEC.

AD-HOC HYBRID
CODE EXEC.

PRE-DEPLOYED
EXECUTION

PRIORITIZED
EXECUTION

Hybrid
Runtime

Distributed
Deployment

Session
Reuse

Dedicated
Access

AWS (2023) ✓ ✓ ✓ ✓ ✓ ✗
Google (2023) ✓ ✓ ✗ ✓ ✗ ✗

IBM (2023a) ✓ ✓ ✓ ( ✓)1 ✓ ✓
IonQ, Inc. (2023) ✓ ✓ ✗ ✗ ✗ ✓
Microsoft (2023) ✓ ✓ ✓ ✓ ✗ ✗
Pasqal (2023) ✓ ✓ ✗ ✗ ✗ ✗
QC Ware (2023) ✓ ✓ ✗ ✗ ✗ ✗
Quantastica (2023) ✓ ✓ ✗ ✗ ✗ ✗
QuTech (2023) ✓ ✓ ✗ ✗ ✗ ✗

Rigetti (2023b) ( ✓)2 ✗ ( ✓)2 ✗ ✗ ( ✓)2

Xanadu (2023) ✓ ✓ ✗ ✗ ✗ ✓
1 Requires multi-cloud setup (classical and quantum services of the provider are separated)
2 Partially supported, similar experience is achieved via obligatory VPN connections

(2023). The resulting list encompasses a diverse range
of quantum cloud services, as well as various projects
and libraries that can be utilized for development pur-
poses. Additionally, we analyzed which cloud ser-
vices are used or supported by the initial list of the
identified projects and libraries to explore further
cloud services that were not initially identified in our
search. To identify cloud services’ support for the pat-
terns and their variants, we analyzed the documenta-
tion of the respective cloud services and explored the
services directly if publicly accessible.

Table 1 presents a summary of our findings. Un-
surprisingly, the STANDALONE CIRCUIT EXECU-
TION pattern (see Section 3.1) is supported by all
vendors. Typically, this is accomplished via public
API endpoints that receive quantum circuits. Some
cloud providers have integrated a graphical circuit
composer into their offering for this purpose. Besides
graphical circuit composers, which are also available
in countless variations as standalone SaaS services,
circuits can be constructed manually or using other
tools. Please, note that different cloud services expect
the circuits in different formats. The AD-HOC HY-
BRID CODE EXECUTION pattern (see Section 3.2) is
also supported by almost all cloud providers. Cloud
providers enable this type of execution by special
SDKs that can be used for programming and execu-
tion. While some cloud providers (e.g., AWS, IBM,
Microsoft) develop their own custom SDKs, other
hardware vendors (e.g., IonQ) provide plugins for
third-party SDKs through which their service offer-
ings can be used. For the PRE-DEPLOYED EXECU-
TION pattern (see Section 3.3), we analyzed quan-
tum service offerings with respect to their support

for both variants. The first variant is the Hybrid Run-
time, which is a specialized service that can exe-
cute both quantum and classical components that are
closely interconnected. The second variant is a de-
ployment on classical services, where the deployed
applications communicate with quantum-specific ser-
vices. Table 1 shows that the Hybrid Runtime is sup-
ported by four providers. For single-cloud deploy-
ments, the second variant is basically supported by
all cloud services that offer classical services, i.e.,
Microsoft Azure, Amazon Web Services, and IBM
cloud. Unlike the mentioned cloud providers, the rest
have only quantum-specific services in their portfo-
lio, which implies modeling multi-cloud deployments
and may result in extra integration requirements.

The PRIORITIZED EXECUTION pattern can help
to avoid long waiting times when executing multi-
ple quantum circuits by allowing users to prioritize
their requests. As discussed in Section 3.4, we have
identified two variants for this pattern: Session Reuse,
and Dedicated Access. Besides Rigetti QCS Rigetti
(2023b) which requires a VPN connection for deploy-
ment, Session Reuse is offered by the same providers
that also offer a Hybrid Runtime as it inherently en-
ables this type of prioritized execution. A minor part
of analyzed services offer a dedicated access to quan-
tum devices: To get this access, some providers need
to be contacted directly first, as there is often no pre-
defined booking action through interfaces.

The ORCHESTRATED EXECUTION pattern (see
Section 3.5) is enabled by quantum-specific work-
flow technologies which provide means for automat-
ing the execution of quantum and classical tasks. So-
lutions can be divided into two categories: standards-
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based and non-standards-based solutions. For exam-
ple, BPMN or BPEL can be used to model and exe-
cute quantum workflows Weder et al. (2020b). Non-
standards-based solutions include Orquestra Zapata
(2022) and Covalent Agnostiq (2023).

5 RELATED WORK

This section elaborates on the related research pub-
lications and aligns our contributions with respect
to them. The execution patterns for quantum ap-
plications presented in this work extend the exist-
ing quantum computing pattern language Leymann
(2019); Weigold et al. (2021a,b); Beisel et al. (2022).
Although there are other papers publishing patterns
for quantum computing Gilliam et al. (2019); Per-
drix (2007) and validating patterns in quantum cir-
cuits Huang and Martonosi (2019), they do not follow
the pattern format of Alexander et al. (1977). To the
best of our knowledge, there are no other works intro-
ducing patterns in the quantum computing domain.

The patterns presented in this work are not lim-
ited to concepts from the quantum computing do-
main, rather they are interdisciplinary, and also uti-
lize well-established concepts from other domains,
such as the cloud computing and application integra-
tion. Fehling et al. (2014b) present a pattern language
for cloud computing, describing solutions to com-
monly reoccurring problems of cloud applications.
For example, the quantum cloud offerings used in
this work are related to the PLATFORM AS A SER-
VICE and SOFTWARE AS A SERVICE patterns. Hohpe
and Woolf (2004) introduce the Enterprise Integration
Patterns (EIP), which support developers in building
distributed and integrated applications. The PROCESS
MANAGER pattern is part of the EIPs and is closely
related to the ORCHESTRATED EXECUTION pattern
introduced in this work, as both patterns describe how
a multitude of programs can be orchestrated by a cen-
tral unit. In contrast to the PROCESS MANAGER pat-
tern, the ORCHESTRATED EXECUTION pattern fo-
cuses on requirements imposed by the orchestration
and integration of quantum applications.

To facilitate the visualization of links between pat-
terns within a pattern language and advocate the inter-
connection of patterns across different domains, Ley-
mann and Barzen (2021b) introduce the Pattern Atlas.
The Pattern Atlas is a publicly available, cartography-
inspired tool PlanQK (2023), which enables the cre-
ation of new connections between different pattern
languages as well as Pattern Views, i.e., subsets of pat-
terns and connections from different languages.

Different research works introduce concepts

for executing and deploying quantum applications.
Nguyen et al. (2022) present a framework, which
enables the execution of quantum applications in a
serverless environment. Weder et al. (2022) provide
a concept to rewrite quantum workflows for the pre-
deployed execution in hybrid runtimes to increase
their efficiency. Leymann and Barzen (2021a) pro-
pose an approach for the orchestration and deploy-
ment of hybrid quantum applications using workflows
as well as deployment automation technologies.

6 SUMMARY AND OUTLOOK

Quantum devices and services evolve rapidly and
with them, real use-cases are in sight. In this work,
we captured different possibilities to use quantum
devices and documented them as five new patterns
which extend the quantum computing patterns lan-
guage. The proposed patterns capture alternatives on
how to execute quantum applications of different
granularity from atomic components like a quantum
circuit to fully orchestrated quantum workflows. We
also analyzed and discussed which service providers
support the execution methods documented in our
patterns. All listed quantum service providers sup-
port basic circuit executions described in the STAN-
DALONE CIRCUIT EXECUTION and the AD-HOC HY-
BRID CODE EXECUTION. Support for patterns such
as the PRE-DEPLOYED EXECUTION and PRIORI-
TIZED EXECUTION varies among the analyzed quan-
tum offerings. Additionally, we discuss several tools
for the orchestration of quantum applications en-
abling the ORCHESTRATED EXECUTION pattern.

Since patterns always evolve, we plan to continue
revising the introduced patterns and document new
execution alternatives that could appear in the future.
We also plan to enhance the patterns presented in
this work with more examples referencing concrete
use cases and to evaluate the advantages and disad-
vantages of applying the patterns in different scenar-
ios. Furthermore, we intend to incorporate the pro-
posed patterns in the pattern landscape within the Pat-
tern Atlas PlanQK (2023) and connect them to exist-
ing patterns that benefit from a certain style of ex-
ecution. Additionally, we plan to further extend the
quantum computing patterns language by analyzing
which best practices appear in quantum software en-
gineering. Another direction is to automate the de-
cision making process for selecting which execution
patterns fit best for a given scenario.
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