
Incremental Reliability Assessment of Large-Scale Software via
Theoretical Structure Reduction

Wenjing Liu1,2, Zhiwei Xu3, Limin Liu1 and Yunzhan Gong2

1College of Data Science and Application, Inner Mongolia University of Technology, Hohhot 100080, China
2State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications,

Beijing 100876, China
3Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China

Keywords: Large-Scale Software, Incremental Reliability Assessment, Structure Sequentialization, Theoretical
Reduction, Importance Sampling Based Reliability Assessment.

Abstract: Problems of software quality assurance and behavior prediction of large-scale software systems have high
importance due to the fact that software systems are getting more prevalent in almost all areas of human
activities, and always include an large number of modules. To continuously offer significant changes or major
improvements over the existing system, software upgrading is inevitable. This involves additional difficulty
to assess reliability and guarantee the quality assurance of the large-scale system. The existing reliability
assessment methods cannot continuously yet effectively assess the software reliability because the program
structure of the software is not taken into account to drive the assessment process. Thus, it is highly desired to
estimate the software reliability in an incremental way. This paper incorporates theoretical sequentialization
and reduction of the program structure into sampling-based software reliability evaluation. Specifically,
we leverage importance sampling to evaluate reliability rates of sequence structures, branch structures and
loop structures in the software, as well as transition probabilities among these structures. In addition, we
sequentialize program structures to support the aggregation of reliability assessment results corresponding to
different structures. Finally, a real-world case study is provided as a practical application of the proposed
incremental assessment model.

1 INTRODUCTION

Large-scale software is a term used in fields
including system engineering, computer science,
data science and artificial intelligence to refer to
software intensive systems with a large amounts of
hardware, lines of source code, numbers of users,
and volumes of data. The obstacles of large-scale
systems in defect discovery and reliability
assessment have become the crucial factors that
affect the application of modern software systems in
more fields. In October 2018 and March 2019, the
Boeing 737 Max 8 crashed twice due to the design
defects in its software system, causing 346 people
dead (TRAVIS, 2019). Similar system failures
caused by software defects always lead to serious
accidents that result in death, injury, and large
financial losses. To evaluate the risk of system
failures, software reliability is introduced and
represents the probability of software running

without failure in a given time and under given
conditions (Committee et al., 1990). During the
process of software development, reliability
assessment helps project managers to evaluate the
reliability level of the product, so as to make
scientific management decisions on the software
development. On the other hand, users can also have
a quantitative understanding about the quality-related
factors of software products. Therefore, the research
of software reliability assessment has important
theoretical and practical value. Without software
reliability assessment, the increasingly pervasive use
of software may bring about more frequent and more
serious accidents. Measuring and predicting software
reliability has become vital in software
engineering (Bistouni and Jahanshahi, 2020).

Reliability assessment solutions can be roughly
divided into black-box methods and white-box
methods (Goševa-Popstojanova and Trivedi, 2001).
Regard as a black-box, software is studied while only

Liu, W., Xu, Z., Liu, L. and Gong, Y.
Incremental Reliability Assessment of Large-Scale Software via Theoretical Structure Reduction.
DOI: 10.5220/0012052600003538
In Proceedings of the 18th International Conference on Software Technologies (ICSOFT 2023), pages 241-248
ISBN: 978-989-758-665-1; ISSN: 2184-2833
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

241



the interaction between the software and the external
environment is considered. These methods rely
heavily on the collection of test data and failure data.
In some safety-critical application fields, such as
aviation, aerospace, etc., failure data is scarce or
even non-existent, and thus it is impossible to
accurately estimate the reliability of such systems.
On the other hand, to assess the reliability of the
software in an accurate way, the white-box methods
combine the dynamic information of the software
structure with the failure behavior of the software.
These methods quantitatively analyze the degree of
dependence among modules and determine the
crucial parts in the software. Considering the
complex dependence among modules of a large-scale
software, the existing white-box reliability
assessment methods(Gokhale, 2007) still need to be
improved to enhance assessment efficiency.

To speed up reliability assessment of large-scale
software systems and discover the potential failure
risk before it gets too late, an incremental assessment
method is highly desired. The white-box evaluation
process relies on the run-time sequence of modules
or statement blocks, and this sequence is determined
by both of the program structure and the input data of
the software. In sight of this fundamental principle,
we study the essential structures of a software to
guide the reliability assessment process. In this way,
the reliability rates of software modules or statement
blocks are aggregated in terms of different run-time
sequences. Since this aggregation process is
performed according to a determined sequence, we
can update each part of the reliability assessment
result without any intervene of the others. The
primary contributions of this work are listed as
follows.
Contributions:

• Base on importance sampling, we propose a
scheme to efficiently estimate reliability unit
parameters (node reliability rate and transition
probability). In this way, it becomes feasible to
study software reliability in a modular way.

• We design a structural reduction and reliability
assessment model to aggregate unit parameters
with respect to three types of control structures.
Moreover, an incremental assessment updating
algorithm is developed to update the assessment
result without model reconstruction.

• The proposed method can effectively assess
software reliability in an incremental way (a
real-world software module is provided as a use
case in a technical report with the same title).

2 RELATED WORKS

Software reliability is an essential subject in the
development stage, which is a combination of
software engineering and reliability engineering, and
can be roughly divided into black-box methods and
white-box methods.

The black-box software reliability methods only
concern the functionality of software without an
attempt to understand its internal structure.
Generally, reliability analysis is conducted mainly
depending on failure data, assuming a parametric
model of failure data. In this way, the statistical
models (Pressman, 2005) and the software reliability
growth models(SRGM) (Stringfellow and Andrews,
2002) are proposed. Kumar et al. proposed an Ideal
solution for the selection of a suitable SRGM and
applied it for optimal selection and ranking of
SRGMs (Kumar et al., 2021). With considerations of
the phenomenon of imperfect debugging, varieties of
errors and change points during the testing period,
Huang et.al extend the practicability of
SRGMs (Huang et al., 2022). Black-box-based
models need to continuously collect run-time failure
data to estimate the software reliability in different
scenarios. Actually, a failure occurs when the user
perceives that the software has ceased to deliver the
expected result with respect to the specific input
values. Considering the complex structure of
large-scale systems, the presence of errors in the
large-scale systems does not always lead to system
failures. We have little or no opportunity to observe
such problems and collect failure data, and cannot
achieve an accurate estimation of software reliability
in practice.

White-box methods (Hsu and Huang, 2011;
Bistouni and Jahanshahi, 2020) are proposed and
leverage the hierarchical structure of modular
software systems to access software reliability. The
primary objective of white-box models has been
applied to obtain the software reliability among
modular interactions in large-scale systems.
Compared with the black-box-based software
reliability growth model, this type of
white-box-based method has two advantages: (1)
Considering the internal structure information of the
software, it can evaluate the system more reasonably
and accurately; (2) The system reliability can be
evaluated in the early stage of software development,
and errors can be found. Littlewood (Littlewood,
1979) constructed a software structure model
comprised of a finite number of states developed by a
semi-Markov process. Hsu (Hsu and Huang, 2011)
proposed an adaptive framework to incorporate path

ICSOFT 2023 - 18th International Conference on Software Technologies

242



testing into reliability estimation for software
systems. Though more accurate assessment has been
achieved, lacking of the structural parameter
reduction mechanism in terms of different basic
program units, the existing white-box-based
reliability methods need to reconstruct the model
from the very beginning to update the reliability
assessment result. To efficiently analyze and update
the reliability evaluation results of modern
large-scale software systems, an incremental
estimation method is highly desired.

3 PROBLEM FORMULATION

The software system can be deconstructed with
modules, and these modules may be further divided
into sub-modules. Exchanging of control among
modules is related to the hierarchical structure of the
logical module dependencies. Assuming the modules
and their sub-modules have their independent
functions, this type of dependencies can be modeled
as a Markov process (Cheung, 1980; Wang et al.,
2006). Thus, we assume that the software system can
be designed in a structural or modular way so that
composition or decomposition into its constituent
units is possible (Myers et al., 2011; Shooman, 1976;
Jorgensen, 2013). Due to the complex characteristics
of large-scale software systems, the reliability of
software systems depend on not only the failure
behavior of individual module but also the relations
among different modules. To formulate the impact of
these two facts, the related concepts are defined
below. First of all, the control flow graph is used to
model the dependencies of modules yet the overall
software system.

Definition 1 (Control flow graph). The control flow
graph of a unit (a function or a statement block) can
be represented as G =< N,E,N1,Nn >, where
N = {Ni|i = 1,2, . . . ,n} is a set of nodes, node Ni
corresponds to a unit in the software system.
E = {E(i, j)|i, j = 1,2, . . . ,n} is a set of directed
edges, and edge E(i, j) corresponds to the control
flow from node Ni to node N j, where N1 is the entry
node of software system, and Nn is the exit node of
the software system.

To enable reliability assessment based on a
control flow graph, parametric estimations of node
reliability and transition probability among nodes
should be performed in advance. Among them, node
reliability indicates the probability that a node
provides the correct output. Meanwhile, the
transition probability expresses the characteristics of

different branches in the software structure (Yacoub
et al., 2004).

Definition 2 (Node reliability rate). The reliability
rate of node Ni is Ri, which represents the probability
that node Ni performs the correct output, and
transfers to the next node N j, Ri ∈ (0,1].

Definition 3 (Transition probability). Edge E(i, j) ∈
G corresponds to a transition probability Pi, j between
node Ni and node N j. If Pi, j = 0, it is impossible that
node N j is performed after node Ni. Otherwise, Pi, j ∈
(0,1], and Ni is followed by node N j by probability
Pi, j. The sum of the transition probabilities regarding
to predecessor node Ni is 1, that is, ∑

i 6= j
Pi, j = 1.

In summary, our proposed method is based on the
following assumptions:

• All program units are physically independent of
each other. Modification of one unit has no
impact on others. This assumption implies that
we can independently design, implement, and
test each unit and module in a complex
system (Gokhale, 2007; Goševa-Popstojanova
and Trivedi, 2001; Gokhale and Trivedi, 2002).
Thus, the faults in each unit are also independent
from each other. Moreover, each discovered
defect can be easier to be isolated and fixed in a
specified module during the processes of defect
detection and correction.

• The transfer of control between units can be
described by a Markov process. The Markov
process depends on the structure of the software
system so that it is helpful in modeling the
execution between the functional units and
branching characteristics (Gokhale, 2007). This
assumption also indicates that the next unit to be
executed depends only on the present unit and is
independent of the past history. Without loss of
generality, in this paper we only focus on the
single-input and single-output program graph (Lo
et al., 2002; Lo et al., 2003; Lo et al., 2005).

4 INCREMENTAL SOFTWARE
RELIABILITY ASSESSMENT

To facilitate the incremental software reliability
assessment, we analyze software structures and
aggregate the reliability assessment results on
different structures of the software. It has been
proved by theory and practice that no matter how
complicated a software system is, it can be
deconstructed into three types of basic control

Incremental Reliability Assessment of Large-Scale Software via Theoretical Structure Reduction

243



Table 1: CMMI level and the corresponding defect number per thousand lines.

CMMI level level 1&others level 2 level 3 level 4 level 5
#Defects/KLOC 11.95 5.52 2.39 0.92 0.32

N1

Nn-1NiN2

Nn

P1,2 P1,n-1
P1,i

Pi,n

P2,n Pn-1,n

… …

N1 N1

N2 Ni Nn-1

N1

Nn Nn Nn

P1,2

P2,n

P1,i

Pi,n

P1,n-1

Pn-1,n

… …
Sequentialization

Seq[1] Seq[i] Seq[n-1]

R1

R1 R1 R1

Rn Rn Rn Rn

R2
R2

Ri
Ri

Rn-1
Rn-1

Figure 1: Sequentialization of the branch structure.

structures, i.e., sequence structure, branch structure
and loop structure. These structures regulate the
order in which node (i.e., program statements) in a
software are executed. Therefore, we analyze the
software reliability in terms of different control
structures. Specifically, we incorporate the control
flow graph of the software into this structural
analysis process to represent different structures.
Through traversing the control flow graph, the
parameters related to reliability assessment in terms
of different structures are marked in the the control
flow graph and aggregated to achieve the reliability
assessment result of the entire software. Ultimately,
if the statement block included in a node has been
upgraded, the reliability rate corresponding to this
node in a control structure should be updated.
Therefore, an incremental assessment process is
highly desired.

4.1 Node Reliability Rate and
Transition Probability

Nodes and edges are the essential elements of a
control flow graph, and correspondingly, the node
reliability and transition probability between nodes
are required for the reliability assessment process
based on the control flow graph. The node reliability
rate depends on the probability that this node can be
executed correctly to obtain the intended output.

Theorem 1 (Necessary Condition for Execution
Failure). ∀s is a node (statement block), X is the
input set of s. When a failure occurs, ∃x ∈ X, the
corresponding output of s, s(x), is not the same as
the intended output ŝ(x), that is s(x) 6= ŝ(x). This is a
necessary condition for execution failure.

The proof of Theorem 1 follows by inspection.
On the other hand, the transition probability

between two adjacent program nodes indicates the
probability that a successor node will be performed
after a predecessor node. The probability is equal to
”1” unless there exists a branch condition involved in
the predecessor node. In this case, the input domain
of the predecessor node should be taken into
consideration to determine which successor node
will be performed. It is in appearance that the
estimation of node reliability rates or transition
probabilities relies on the input domain of the
predecessor node. Considering the input domain is
always quite large and various, we leverage sampling
technology on the path-based test suite to approach
efficient estimation of node reliability rates and
transition probabilities.

Though the existing theories, e.g, Interval
arithmetic, etc., facilitate test data generation, all test
data for a specific node on the test path cannot be
completely determined. Therefore, their distribution
is under-determined. Since the data that can accuse a
failure is quite rare, most of sampling technology
cannot cover all possible test data and evaluate their
distribution comprehensively. If the focus is on a
problem related to system reliability, the probability
of rare events is better approximated with appropriate
proposals. Even if a large number of samples have
been drawn, it is possible that none of them will
accuse a failure or a jump to the branch determined
by a special condition. To tackle this problem, we
collect test data of every node (statement block), and
then leverage importance sampling to draw samples
from the collected test data. As a widely applied
system simulation technology, importance
sampling (Tokdar and Kass, 2010) estimates

ICSOFT 2023 - 18th International Conference on Software Technologies

244



N1

N2

Nn

N3

P1,2

P2,3

P3,n

P3,n

N1

N2

Nn

N3

N2

N3

N2

N3

0 1

P1,2

P2,3

P3,2

P3,2

P2,3

P2,3

P3,n

P3,n

…

2 2

1 1

…

N1

N2

Nn

N3

0

P1,2

P2,3

P3,2

P3,n

N1

N2

Nn

N3

N2

N3

P1,2

P2,3

P3,2

P2,3

P3,n

N1

N2

Nn

N3

N2

N3

P1,2

P2,3

P3,2

P2,3

P3,n

N2

N3

P2,3

P3,2

P3,2

Seq[0] Seq[1] Seq[2]

R1 R1 R1 R1

R1

Rn

Rn
Rn Rn Rn

R2

R2 R2 R2 R2

R2

R2

R2 R2

R2

R3

R3

R3

R3

R3 R3 R3

R3 R3

R3

Expansion Sequentialization

b. branch structurea. loop structure c. sequence structure

Figure 2: Sequentialization of the loop structure.

properties of a distribution, while only having less
samples generated from a proposal distribution than
the distribution of interest. Targeting to sampling
different types of test data comprehensively, a
proposal distribution is involved, with respect to
which among the test data are drawn as samples. The
density function of the proposal distribution is q(x).
According to importance sampling theory, q(x)
should dominate the density function of the
distribution of test data, p(x), and consequently, we
can cover the distribution of test data with less
samples. That means, q(x) = 0⇒ p(x) = 0.

To cover rare events during the sampling process,
we take a Poisson distribution, Pois(λ), as the
proposal distribution. λ is determined according to
the CMMI level of the software designer. The CMMI
model is used to assess the maturity of an designer’s
ability and to provide guidance on improving
processes, with a goal of the advanced software
systems. There is a relation between CMMI level l
and the corresponding defect number per thousand
lines of code, namely, dKLOC (see
Table 1) (CMMI-Institute, 2022). To dominate the
density of the distribution of test data, we configure λ

with a value lower than the corresponding dKLOC,
equal to

β× klDe f ects(l)×#statements (1)

where β is a constant less than 1, klDe f ects() is a
function to look up the defect number per thousand
lines of code, l is the CMMI level corresponding to
the software designer, and #statements is the number
of statements in this node.

The sampling process consists of four steps:

• Collect test data used to test a node (statement
block), and insert these data into a test suite X ,
until their distribution converge to a stable
density, p(X).

• Draw samples from X with respect to Pois(λ), n
samples and the density function values of these
samples are obtained, i.e., x1, . . . ,xn, and
q(x1), . . . ,q(xn).

• Weight the sample xi with w(xi) =
p(xi)
q(xi)

, i ∈ [1,n].

• Using the samples and weights, the reliability
rates and transition probabilities can be
approximated by a self-normalized estimator as

`=
1

nẐ

n

∑
k=1

wk f (xk), (2)

where Ẑ = (1/n)∑
n
k=1 wk is an unbiased estimator

of Z =
∫

X p(x)dx (Bugallo et al., 2017).
The detailed estimation process of node reliability

is formulated as the follows:

Ri = 1− 1
nẐ

n

∑
k=1

wkI(xk), (3)

where I(xk) is an indicator function that takes the
value 1 if the output of statement block s
corresponding to test data xk is not the same as the
intended output ŝ(xk), and 0 otherwise. Statement
block s constitute node Ni. That is

I(xk) =

{
1 s(xk) 6= ŝ(xk)
0 s(xk) = ŝ(xk)

Similarly, the transition probabilities from the i-th
node to the j-th node can be calculated as the

Incremental Reliability Assessment of Large-Scale Software via Theoretical Structure Reduction

245



following:

Pi, j =
1

nẐ

n

∑
k=1

wkIi, j(xk) (4)

Another indicator function Ii, j(xk) is used, which
outputs 1 if the satisfied condition of s indicates a
jump to the j-th node, and 0 otherwise.

4.2 Sequentialization and Reliability
Evaluation of Control Structures

To efficiently analyze the reliability of a large-scale
software system, we need to simplify its complex
structure. To achieve that, we traverse and
sequentialize program units by using a hierarchical
approach (Hsu and Huang, 2011). The sequence
structure is the basic control structure for a program.
The program units (statement blocks) are executed
according to their sequence. In a modular way, a
program can be written using the sequence
structures, and thus, with respect of the concepts
introduced in Section 3, its reliability rate can be
computed as the following,

R = R1×
n

∏
i=2

R
∏

i
j=2 Pj−1, j

i (5)

where Ri represents the reliability rate of the i− th
node (statement block), and Pi, j is the transition
probability between the i− th node and the j− th
node.

The other two types of control structures, branch
structures and loop structures.They also only have an
entry node N1 and an exit node Nn. Among them, the
branch structure determines the execution sequence
of different branches according to a condition. The
loop structure is an instruction that repeats until a
specified condition is reached. In order to simplify
these program structures, we sequentialize branch
structures and loop structures to sequence structures,
which is the preliminary work of structural reduction.

As shown in Fig. 1, each of these branch structures
can be transformed into a sequence structure through
sequentialization. Only if all branches are reliable, the
entire structure is reliable. Therefore, the reliability of
the branch structure is calculated by considering the
reliability rates of all branches.

RBran =
n−2

∏
i=1

RSeq[i] (6)

where RBran represents the reliability rate of the
branch structure, RSeq[i] represents the reliability rate
of the i− th sequence structure.

Algorithm 1: Structural reduction and
reliability assessment.

Input : control flow graph G
Output: reliability rate R

1 iterate(G,P) /* P is the probability
transiting to the module
corresponding to G. */

2 state = next(G); // A statement block
3 sstate = next(G); // Next statement block
4 while sstate belongs to a sequence structure

do
5 R = R×nr(state)P; /* Function nr is

used to estimate node reliability
rates */

6 P = P× t p(state,sstate);/* Function tp
is used to estimate transition
probabilities */

7 mark(state,P); /* Mark node
reliability rates & transition
probabilities */

8 state = sstate;
9 sstate = next(G);

10 R = R×nr(state)P;
11 pstate = state;
12 state = sstate;
13 sstate = next(G);
14 if state belongs to a branch structure then
15 foreach G

′
in seq(subGraph(G,state)) do

// Iterate sequentialization
results of the rest part of G

16 R = R× iterate(G
′
,P);

17 mark(state,P);

18 if state belongs to a loop structure then
19 mark(state,P);
20 P1 =

t p(pstate,state)
1−t p(state,sstate)t p(ssstate,state) ;

21 P2 =
t p(pstate,state)×t p(state,sstate)

1−t p(ssstate,state)t p(state,sstate) ;
22 R = R×nr(state)P1 ×

iterate(subGraph(G,state),P)P2 ;

23 return R

A loop structure executes iterative statements or
procedures, according to a condition or an iteration.
Whilst the condition is true or the iteration has not
stopped, the loop body will be carried out
repetitively. In sight of the run-time process of the
loop structure, a loop structure can be expanded into
a branch structure. For each branch of this structure,
the loop body is executed different number of times.
In this way, this loop structure is equivalent to one
branch structure. As illustrated in Fig. 2.b, when the

ICSOFT 2023 - 18th International Conference on Software Technologies

246



RLoop

= (R1×R2
1×P1,2 ×R3

1×P1,2×P2,3 ×Rn
1×P1,2×P2,3×P3,n)

× (R2
1×P1,2×P2,3×P3,2 ×R3

1×P1,2×P2,3×P3,2×P2,3 ×Rn
1×P1,2×P2,3×P3,2×P2,3×P3,n)

× (R2
1×P1,2×(P2,3×P3,2)

2 ×R3
1×P1,2×P2,3×(P3,2×P2,3)

2 ×Rn
1×P1,2×P2,3×(P3,2×P2,3)

2×P3,n)

× ...

× (R2
1×P1,2×(P2,3×P3,2)

m ×R3
1×P1,2×P2,3×(P3,2×P2,3)

m ×Rn
1×P1,2×P2,3×(P3,2×P2,3)

m×P3,n)

= R1×R2
∑

m
i=0 P1,2×(P2,3×P3,2)

i ×R3
∑

m
i=0 P1,2×P2,3×(P3,2×P2,3)

i ×Rn
∑

m
i=0 P1,2×P2,3×(P3,2×P2,3)

i×P3,n

m→∞
= R1×R2

P1,2
1−P2,3×P3,2 ×R3

P1,2×P2,3
1−P3,2×P2,3 ×Rn

P1,2×P2,3×P3,n
1−P3,2×P2,3 (7)

Algorithm 2: Incremental updating of the
assessment result.

Input : G, R, state, state
′

Output: R
1 < NR,NT P >= search(G,state);// Search

statement blocks in G

2 NR
′
= nr(state

′
);// Get the updated

reliability rate

3 R = R× (NR
′

NR )NT P;
4 return R

condition in node N3 becomes false, the exit node Nn
of the loop structure is executed, and the loop body
will not be executed again. Otherwise, loop body N2
will be executed repeatedly. The blue box and green
box indicate the node sequences for the first and
second time when the loop body is executed.
Ultimately, distinct sequence structures are obtained.
When the number of loop times approaches infinity,
the reliability of the loop structure can be executed as
follows:

4.3 Incremental Reliability Evaluation
with Structural Reduction

Based on the above sequentialization results, we can
incorporate the control flow graph of the software
into an incremental structural reduction and
reliability analysis process. Through traversing the
control flow graph, three basic program control
structures are identified and sequentialized.
Meanwhile, their reliability rates are evaluated (see
Section 4.2). The propsed incremental reliability
evaluation process includes 6 steps:

• The parameters (node reliability rates and
transition probabilities) related to reliability
assessment in terms of different structures are
estimated and marked on the control flow graph.

• Since the control flow graph accurately
represents the flow inside of nodes (statement
blocks), we traverse the control flow graph of the
software to look up control structures included in
the software.

• With respect to statement blocks included every
structure, their node reliability rates and
transition probabilities to the successors are
estimated through importance sampling and
marked in the the control flow graph.

• Sequentialize the statement blocks in every
structure in terms of the structure type (i.e.,
sequence, branch or loop), and aggregate the
node reliability rates of these blocks.

• Reduce different structures and obtain the
reliability assessment result of the software
(detailed in Algorithm 1).

• If the reliability rate of a node has changed, taking
advantage of the node parameters marked in the
control flow graph, the corresponding assessment
result can be updated according to Algorithm 2.

5 CONCLUSION

In this paper, a structure-based reliability assessment
model is proposed. We first take importance
sampling to evaluate reliability rates of three types of
control structures in a software, as well as transition
probabilities among these structures. Then, we
reduce these structures while aggregating their
reliability rates to the overall assessment result of the
software. With a case study on a elevator system, it is
shown that the proposed model can give a promising
estimation of software reliability. In summary, we
can conclude that in an incremental way, the
proposed incremental assessment model is viable for
estimating reliability of a large-scale software
system. There exist more open theoretical issues

Incremental Reliability Assessment of Large-Scale Software via Theoretical Structure Reduction

247



about Structure Reduction for future research. For
instance, dependent faults may occur if the data
exchanges among distributed sub-systems, this
increase complexity of structure-based reliability
assessment.

ACKNOWLEDGEMENTS

This work was supported by the Basic Scientific
Research Expenses Program of Universities directly
under Inner Mongolia Autonomous Region,
Grant/Award Number: JY20220273.

REFERENCES

Bistouni, F. and Jahanshahi, M. (2020). Evaluation
of reliability in component-based system using
architecture topology. Journal of the Institute of
Electronics and Computer, 2(1):57–71.

Bugallo, M. F., Elvira, V., Martino, L., Luengo, D., Miguez,
J., and Djuric, P. M. (2017). Adaptive importance
sampling: The past, the present, and the future. IEEE
Signal Processing Magazine, 34(4):60–79.

Cheung, R. C. (1980). A user-oriented software reliability
model. IEEE transactions on Software Engineering,
(2):118–125.

CMMI-Institute (2022). White papers. Last accessed 21
January 2022.

Committee, I. S. C. et al. (1990). Ieee standard glossary
of software engineering terminology (ieee std 610.12-
1990). los alamitos. CA: IEEE Computer Society,
169:132.

Gokhale, S. S. (2007). Architecture-based software
reliability analysis: Overview and limitations. IEEE
Transactions on dependable and secure computing,
4(1):32–40.

Gokhale, S. S. and Trivedi, K. S. (2002). Reliability
prediction and sensitivity analysis based on software
architecture. In 13th International Symposium on
Software Reliability Engineering, 2002. Proceedings.,
pages 64–75. IEEE.

Goševa-Popstojanova, K. and Trivedi, K. S. (2001).
Architecture-based approach to reliability assessment
of software systems. Performance Evaluation, 45(2-
3):179–204.

Hsu, C.-J. and Huang, C.-Y. (2011). An adaptive reliability
analysis using path testing for complex component-
based software systems. IEEE Transactions on
Reliability, 60(1):158–170.

Huang, Y.-S., Chiu, K.-C., and Chen, W.-M. (2022).
A software reliability growth model for imperfect
debugging. Journal of Systems and Software,
188:111267.

Jorgensen, P. C. (2013). Software testing: a craftsman’s
approach. Auerbach Publications.

Kumar, V., Saxena, P., and Garg, H. (2021). Selection
of optimal software reliability growth models using
an integrated entropy–technique for order preference
by similarity to an ideal solution (topsis) approach.
Mathematical Methods in the Applied Sciences.

Littlewood, B. (1979). Software reliability model for
modular program structure. IEEE Transactions on
Reliability, 28(3):241–246.

Lo, J.-H., Huang, C.-Y., Chen, Y., Kuo, S.-Y., and Lyu,
M. R. (2005). Reliability assessment and sensitivity
analysis of software reliability growth modeling based
on software module structure. Journal of systems and
software, 76(1):3–13.

Lo, J.-H., Huang, C.-Y., Kuo, S.-Y., and Lyu, M. R.
(2003). Sensitivity analysis of software reliability
for component-based software applications. In
Proceedings 27th Annual International Computer
Software and Applications Conference. COMPAC
2003, pages 500–505. IEEE.

Lo, J.-H., Kuo, S.-Y., Lyu, M. R., and Huang, C.-Y.
(2002). Optimal resource allocation and reliability
analysis for component-based software applications.
In Proceedings 26th Annual International Computer
Software and Applications, pages 7–12. IEEE.

Myers, G. J., Sandler, C., and Badgett, T. (2011). The art of
software testing. John Wiley & Sons.

Pressman, R. S. (2005). Software engineering: a
practitioner’s approach. Palgrave macmillan.

Shooman, M. L. (1976). Structural models for software
reliability prediction. In Proceedings of the 2nd
international conference on Software engineering,
pages 268–280.

Stringfellow, C. and Andrews, A. A. (2002). An
empirical method for selecting software reliability
growth models. Empirical Software Engineering,
7(4):319–343.

Tokdar, S. T. and Kass, R. E. (2010). Importance
sampling: a review. Wiley Interdisciplinary Reviews:
Computational Statistics, 2(1):54–60.

TRAVIS, G. (2019). How the boeing 737 max disaster looks
to a software developer. Last accessed 21 January
2022.

Wang, W.-L., Pan, D., and Chen, M.-H. (2006).
Architecture-based software reliability modeling.
Journal of Systems and Software, 79(1):132–146.

Yacoub, S., Cukic, B., and Ammar, H. H. (2004).
A scenario-based reliability analysis approach for
component-based software. IEEE transactions on
reliability, 53(4):465–480.

ICSOFT 2023 - 18th International Conference on Software Technologies

248


