
Towards Resolving Security Smells in Microservices, Model-Driven

Philip Wizenty3 a, Francisco Ponce2,4 b, Florian Rademacher3 c, Jacopo Soldani1 d,
Hernán Astudillo2,4 e, Antonio Brogi1 f and Sabine Sachweh3 g

1University of Pisa, Pisa, Italy
2Universidad Técnica Federico Santa María, Valparaíso, Chile

3IDiAL Institute, University of Applied Sciences and Arts Dortmund, Germany
4ITiSB, Universidad Andrés Bello, Viña del Mar, Chile

Keywords: Microservice Architecture, Model-Driven Engineering, Security, Bad Smells, Refactoring.

Abstract: Resolving security issues in microservice applications is crucial, as many IT companies rely on microservices
to deliver their core businesses. Security smells denote possible symptoms of such security issues. However,
detecting security smells and reasoning on how to resolve them through refactoring is complex and costly,
mainly because of the intrinsic complexity of microservice architectures. This paper presents the first idea
towards supporting a model-driven resolution of microservices’ security smell. The proposed method relies
on LEMMA to model microservice applications by suitably extending LEMMA itself to enable the modeling
of microservices’ security aspects. The proposed method then enables processing LEMMA models to auto-
matically detect security smells in modeled microservice applications and recommend the refactorings known
to resolve the identified security smells. To assess the feasibility of the proposed method, this paper also intro-
duces a proof-of-concept implementation of the proposed LEMMA-based, automated microservices’ security
smell detection and refactoring.

1 INTRODUCTION

Microservice Architecture (MSA) (Newman, 2015)
is becoming increasingly popular for building enter-
prise applications, with companies like Amazon, Net-
flix, and Twitter already relying on MSAs to deliver
their core businesses (Thönes, 2015). The popular-
ity of microservices is mainly due to their cloud-
native (Gannon et al., 2017) nature, which enables
microservice applications to fully exploit the poten-
tials of cloud computing, and to the fact that mi-
croservices natively align with the increasingly popu-
lar DevOps practices (Balalaie et al., 2016).

MSA is essentially service-oriented architecture,
adhering to an extended set of design principles that

a https://orcid.org/0000-0002-3588-5174
b https://orcid.org/0000-0002-6411-0511
c https://orcid.org/0000-0003-0784-9245
d https://orcid.org/0000-0002-2435-3543
e https://orcid.org/0000-0002-6487-5813
f https://orcid.org/0000-0003-2048-2468
g https://orcid.org/0000-0003-1343-3553

make microservice applications highly distributed,
dynamic, and fault-resilient (Zimmermann, 2017). As
a result, MSA inherits the traditional security con-
cerns and practices for service-oriented architectures
whilst also bringing up new security challenges, in-
cluding the so-called security smells, which were first
elicited in (Ponce et al., 2022b).

Microservice security smells are possible symp-
toms of (typically unintentional) bad design deci-
sions, which can negatively affect the overall appli-
cation’s security (Ponce et al., 2022b). The impact of
microservice security smells can be resolved by ap-
plying known refactorings to them, which contribute
to securing the application while obviously avoid-
ing altering the functionalities provided to clients.
Although refactoring security smells requires effort
from development teams, it can help to improve the
overall application quality (Bass et al., 2012).

However, detecting microservice security smells
and reasoning on how to refactor them is complex,
costly, and error-prone. This is mainly due to the in-
trinsic complexity of MSA itself, which typically re-
sults in applications comprising many interacting mi-

Wizenty, P., Ponce, F., Rademacher, F., Soldani, J., Astudillo, H., Brogi, A. and Sachweh, S.
Towards Resolving Security Smells in Microservices, Model-Driven.
DOI: 10.5220/0012049800003538
In Proceedings of the 18th International Conference on Software Technologies (ICSOFT 2023), pages 15-26
ISBN: 978-989-758-665-1; ISSN: 2184-2833
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

15



croservices (Ponce et al., 2022a). This paper aims to
pave the way toward automated detection and refac-
toring of microservices security smells, focusing on
the two most recognized smells according to (Ponce
et al., 2022b). More precisely, we investigate the po-
tential of Model-Driven Engineering (MDE) (Combe-
male et al., 2017) to this purpose by extending the
Language Ecosystem for Modeling Microservice Ar-
chitecture (LEMMA) (Rademacher, 2022), which has
been specifically designed to apply MDE in microser-
vices design, development, and operation.

The main contributions of this paper are:

• We introduce a first approach to MDE-based reso-
lution of microservice security smells. More pre-
cisely, we extend LEMMA to model security as-
pects of microservices and propose a method to
automatically process LEMMA models to detect
the two most recognized security smells and rec-
ommend refactorings to resolve their effects.

• We present and discuss the feasibility assessment
of our proposed method, which includes a proof-
of-concept implementation, and which shows that
our method facilitates the detection and refactor-
ing of microservice security issues in LEMMA
models of a third-party application.

The rest of this paper is as follows. Section 2 pro-
vides background on microservice security smells and
LEMMA. Section 3 presents a motivating example.
Section 4 introduces our method for detecting and
refactoring microservice security smells in LEMMA
models, whose proof-of-concept implementation is in
Section 5. Sections 6 to 8 provide a discussion of our
approach, present related work, and draw some con-
cluding remarks, respectively.

2 BACKGROUND

We hereafter provide the necessary background on
microservice security smells (Section 2.1) and on
LEMMA as a concrete approach towards viewpoint-
based modeling of microservices (Section 2.2).

2.1 Smells and Refactorings for
Microservice Security

In an application, a microservice security smell can
indicate a poor decision that may have been made un-
intentionally, potentially harming the overall security
of the application (Ponce et al., 2022b). The effects of
security smells can be resolved by refactoring the ap-
plication or the services therein without altering the

functionality provided to clients. Although this pro-
cess may require effort from development teams, it
can help to improve the overall quality of the applica-
tion (Bass et al., 2012).

We hereafter recall the two security smells for
microservices that are most recognized according to
(Ponce et al., 2022b), viz., Publicly Accessible Mi-
croservices and Insufficient Access Control. We also
recall the refactorings allowing to resolve such smells.
Publicly Accessible Microservices. The Publicly
Accessible Microservices security smell occurs when-
ever the microservices forming an application are di-
rectly accessible by external clients. Each publicly ac-
cessible microservice should enact authentication by
asking users to provide their full set of credentials.
The exposure increases the attack surface, raising the
risk of confidentiality violations, and reducing the ap-
plication’s overall maintainability and usability.

The suggested refactoring is to Add an API Gate-
way, which should be used as an entry point for
the application. The formerly exposed microservices
APIs can then be accessed through the gateway, and
authentication can be performed centrally, overall re-
ducing the application’s attack surface and simplify-
ing authentication auditing tasks. Development teams
can also exploit the gateway to secure an application
through a firewall, blocking all external requests to
the internal microservices.
Insufficient Access Control. The Insufficient Access
Control smell occurs when the microservices in an ap-
plication do not enforce access control. This may re-
sult in confidentiality violations, as attackers can trick
a service and violate data or business functions they
should be unable to access. In particular, microser-
vices can be vulnerable to the "confused deputy prob-
lem", where attackers deceive a service into reveal-
ing information or executing operations that should
rather be restricted. Traditional identity control mod-
els may also not be enough for microservice applica-
tions, where client permissions should be verified at
each level of the applications, and each microservice
must have a system to accept or reject any particular
request automatically.

The suggested refactoring is to Use OAuth 2.0 as
an access delegation framework that enables suitable
access control to the microservices forming an appli-
cation. OAuth 2.0 is indeed a token-based access con-
trol system that lets a resource owner grant a client
access to a particular resource on their behalf.

ICSOFT 2023 - 18th International Conference on Software Technologies

16



2.2 Viewpoint-Based Microservice
Modeling with LEMMA

MSA engineering is inherently complex, and en-
tails challenges in architecture design, implementa-
tion, and operation (Soldani et al., 2018), as well
as in development organization (Di Francesco et al.,
2018; Knoche and Hasselbring, 2019). For exam-
ple, the capabilities provided by microservices need
to be optimized so that they are distinct without be-
ing too fine-grained, thereby allowing targeted scal-
ing and preventing overly communication simultane-
ously (design challenge). On the other hand, given
microservices’ maximization of independence, devel-
opers, and software architects are concerned with
a potentially high degree of technology heterogene-
ity that increases maintainability costs and learn-
ing curves (implementation challenge). Additionally,
MSA adoption can only be successful by orienting the
structure of the development organization towards the
software architecture, which involves the alignment
of interaction relationships between MSA teams to
those of microservices intending to streamline knowl-
edge sharing (organizational challenge).

To tackle these challenges, researchers studied the
application of MDE (Combemale et al., 2017) to fa-
cilitate MSA engineering by a targeted abstraction
from complexity. The resulting modeling approaches
are however very heterogeneous, and the majority fo-
cuses on a single phase in MSA engineering, i.e., mi-
croservice design (Kapferer and Zimmermann, 2020;
Hassan et al., 2017), implementation (Terzić et al.,
2018; JHipster, 2023), or operation (Soldani et al.,
2021; JHipster, 2023). As a result, these approaches
neither allow an integrated, model-based expression
of concerns across different phases in MSA engineer-
ing, nor do they support a consistent sharing of knowl-
edge among MSA teams.

To cope with these drawbacks in model-driven
MSA engineering, the MDE ecosystem LEMMA was
conceived (Rademacher, 2022). LEMMA provides a
set of modeling languages to capture various concerns
in MSA engineering from stakeholder-oriented archi-
tecture viewpoints. MSA models constructed with
those languages can be integrated based on an im-
port mechanism that enables referencing between el-
ements of heterogeneous models to support reuse and
increase the information content of captured view-
points. The presented approach for security smell res-
olution in microservice architectures relies on the fol-
lowing LEMMA modeling languages.
Technology Modeling Language (TML). LEM-
MA’s TML targets the Technology Viewpoint on mi-
croservice architectures. That is, it allows for the

construction of technology models that capture tech-
nology decisions related to microservices and their
deployment, e.g., communication protocols and de-
ployment technologies. Additionally, the TML sup-
ports the definition of technology aspects that apply
to specific elements in LEMMA models, e.g., mod-
eled microservices and their interfaces, or infrastruc-
ture nodes. Given their flexibility, technology aspects
can also be exploited to enable subsequent augmenta-
tion of LEMMA models with additional metadata.
Service Modeling Language (SML). LEMMA’s
SML reifies the Service Viewpoint in MSA engi-
neering. To this end, it provides modeling concepts
to specify microservices, their interfaces, operations
and endpoints in service models. Among others, the
SML integrates with the TML so that LEMMA ser-
vice models can import LEMMA technology mod-
els to specify, e.g., protocol-dependent communica-
tion endpoints such as HTTP addresses together with
the available methods to operate on them.
Operation Modeling Language (OML). LEMMA’s
OML focuses on MSA’s Operation Viewpoint. Con-
sequently, the language supports the specification and
configuration of microservice containers and infras-
tructure nodes, e.g., for service discovery or load
balancing, in operation models. Similarly to the
SML, the OML integrates with the TML to cope with
MSA’s technology heterogeneity w.r.t. microservice
operation and deployment (Knoche and Hasselbring,
2019). More precisely, technologies for microservice
deployment and infrastructure usage can flexibly be
specified in technology models, making them refer-
enceable from operation models.

Besides model-based description of microservices
and their operation, LEMMA also anticipates model
processing, and has already been used to foster MSA
team integration by model transformation (Sorgalla
et al., 2021) and increase microservice development
efficiency by code generation (Rademacher et al.,
2020). In the following, we rely on LEMMA’s capa-
bilities in model processing to identify microservices’
security smells by static analysis of service and oper-
ation models, and suggest resolution actions by inter-
active model refactoring.

3 MOTIVATING EXAMPLE

This section introduces a motivating example to ex-
plain our approach toward model-driven microservice
security smell resolution. The example application
represents a widely-used fictional insurance company
called Lakeside Mutual. The application’s source

Towards Resolving Security Smells in Microservices, Model-Driven

17



Infrastructure Components

Logging
Service

Service
Discovery

Database

Customer
Management
Backend

Customer
Management
Frontend

Customer
Self-Service
Backend

Customer
Self-Service
Frontend

Policy
Management
Backend

Policy
Management
Frontend

Risk
Management

Client

Risk
Management

Server

Customer
Core

Message
Broker

http gRPC http

http

http

http / amqp
amqp http

http

Legend:

Infrastructure
Component Microservice Frontend Protocol /

Communication 
Direction

Databases

Figure 1: Lakeside Mutual MSA example architecture.

code is publicly accessible on Github1, and is a com-
mon example in MSA-based research (Kapferer and
Zimmermann, 2020; Panichella et al., 2021; Sorgalla
et al., 2021). Figure 1 depicts the underlying architec-
ture of the motivating example application, including
functional microservices, infrastructure components,
and frontend services.

Each functional microservice (i.e. Policy-
ManagementBackend, RiskManagementServer,
CustomerManagementBackend, and Customer-
SelfServiceBackend) features a standalone front-
end component for user interaction. Infrastructure
components, e.g., MessageBroker and Service-
Discovery, provide support functionalities for inter-
service communication using HTTP and AMQP for syn-
chronous and asynchronous requests, respectively.

Furthermore, the application data handling has
a dedicated Database per functional microservice
to foster loose coupling among services and enable
the independent development of the application’s mi-
croservices. Finally, the Logging Service pro-
vides monitoring and operational functionalities.

Being this a demonstrator application, not pre-
tending to be an engineered and production-ready sys-
tem, we may expect it to feature several security is-
sues. Indeed, if manually analyzing the application
in terms of design decisions, technologies used, and
security configurations, we may discover such issues,
which include the following two:

• The APIs of all functional microservices of the

1https://github.com/Microservice-API-Patterns/
LakesideMutual

Lakeside Mutual application are publicly ex-
posed. This exposure is an occurrence of the Pub-
licly Accessible Microservice smell, which de-
notes an increased security violation risk by ex-
tending the attack surface. Furthermore, the sepa-
rately exposed APIs of the microservices also re-
duce maintainability and usability.

• The Lakeside Mutual application also includes in-
stances of the Insufficient Access Control smell on
its API endpoints, which can be exploited for mis-
use, possibly leading to confidentiality violations
and data leaks.

By knowing this, we may consider implementing
the Add an API Gateway and Use OAuth 2.0 refac-
torings, which are known to resolve the above-listed
smells. However, with a complex and costly appli-
cation analysis, smell detection, and refactoring are
currently to be done manually. It would be better to
have support for automating the detection of security
smells and reasoning on how to refactor them, which
is precisely our goal in this paper.

4 MODEL-DRIVEN SECURITY
SMELL RESOLUTION

This section explores our approach towards model-
based microservice security smell resolution based
on the motivating example from Section 3 and the
identified deficiencies in the architecture design and
security configuration. Therefore, Section 4.1 pro-
vides insights into the aspect-oriented modeling of
security smells using LEMMA’s TML. Then, Sec-
tion 4.2 elaborates the detection possibilities of se-
curity smells in MSA depending on modeled secu-
rity aspects via LEMMA’s modeling languages, and
the potential refactoring strategies for resolving iden-
tified security smells. Finally, Section 4.3 describes
the user-guided refactoring process with LEMMA.

4.1 Modeling Microservice Security
Aspects

The modeling of microservice security configurations
leverages LEMMA’s TML aspect concept to incorpo-
rate meta-information into a LEMMA service- or op-
eration model, as discussed in Section 2.2. The pro-
cess of modeling security configurations in the form
of LEMMA aspects consists of four sequential activ-
ities (M.1 to M.4), which are depicted in an UML ac-
tivity diagram (OMG, 2017) in Figure 2.

The modeling process in LEMMA begins by se-
lecting a security smell (M.1-Figure 2), such as Pub-

ICSOFT 2023 - 18th International Conference on Software Technologies

18



Select Microservice
Security Smell

Use Existing LEMMA
Technology Model

Create LEMMA
Technology Model

LEMMA Security
Smell Model

Extend LEMMA Model
With Architecture

Information

Extended LEMMA
Security Smell Model

M.4

M.3a

M.1

M.3b

Modeling Microservice Security Smells
Security Smell Model: TML model with integrated security smells

M.2

Derive Architecture
Relevant Information
From Security Smell

[Smell Exists In Model ]

[Model Lacks Smell ]

Figure 2: Process of modeling microservices’ security aspects with LEMMA.

licly Accessible Microservices or Insufficient Access
Control. The next activity (M.2-Figure 2) involves an-
alyzing the smell to identify the underlying security or
architecture decision that gives rise to it. For example,
in the case of the Publicly Accessible Microservices
smell, the decision not to use an API gateway to ac-
cess all exposed microservices is the root cause of the
security smell (Richardson, 2019). Furthermore, an
analysis of the API gateway highlights that the corre-
sponding architecture pattern consists of the gateways
component, which is responsible for API composition
and routing functionalities, and the backend microser-
vices API exposure.

The subsequent activity employs the obtained ar-
chitecture information to model the security smell us-
ing LEMMA’s TML. This involves either selecting an
appropriate technology model (M.3a-Figure 2) or cre-
ating a new one (M.3b-Figure 2) that should be ex-
tended with the derived information.

Extending LEMMA’s technology model is part of
activity M.4-Figure 2, which involves modeling all
derived architecture information. The resulting model
can be used for automated tests to identify security
smells in LEMMA models. The model presented in
Listing 1 includes the modeled architecture informa-
tion derived from the security smells being consid-
ered, namely, Publicly Accessible Microservices and
Insufficient Access Control.

Listing 1 Line 1 defines SecurityAspects as
the name of the LEMMA technology model. The
subsequent Lines 2–10 contain service aspects
that could be applied to the microservice con-
cept of LEMMA’s SML. More precisely, the
usesApiGateway aspect explicitly models that the
microservices expose its interface via an API Gate-
way (Line 3). Line 4 instead introduces the aspect
Authorization to define a protocol for access del-
egation, and Line 7 models an aspect to enable role-
based access for microservices API endpoints.

Additionally, to model an API Gateway with

Listing 1: LEMMA technology model with derived security
smell architecture information for security smell publicly
accessible microservices and insufficient access control.

1 technology SecurityAspects {
2 service aspects{
3 aspect usesApiGateway for microservices;
4 aspect Authorization for microservices {
5 string protocolName;
6 }
7 aspect Secured for interfaces, operations {
8 string role;
9 }

10 }
11 operation aspects {
12 aspect ApiGateway for infrastructure;
13 }
14 }

LEMMA’s OML, Lines 11–13 of Listing 1 specify an
operation aspect named ApiGateway to identify
an infrastructure node in LEMMA’s operation models
as an API Gateway.

4.2 Detecting Security Smells

This section builds upon the previously created tech-
nology models (c.f. Section 4.1) as an indicator to de-
tect security smells in LEMMA’s service or operation
models for microservices. Figure 3 depicts the detec-
tion process and includes activities D.1 to D.3. Ac-
tivity D1 leverages the Extended LEMMA Security
Smell Model in association with additional LEMMA-
Technology Models, e.g., Spring2 or Java3 models
to specify the microservices’ API and dependencies
to other components of the systems.

For example, Listing 2 depicts a concrete
LEMMA service model from the motivating example
(c.f. Section 3) for the Customer Core microservice.
Lines 1 to 2 in listing 2 comprises LEMMA’s model
import functionality. In this case, the service model
imports the domain LEMMA domain data model
(Rademacher, 2022) for API specification. Addition-
ally, the spring and securityAspect LEMMA

2https://spring.io
3https://www.docker.com

Towards Resolving Security Smells in Microservices, Model-Driven

19



Extended LEMMA
Security Smell Model

Detecting Microservice Security Smells
Lemma Technology Models: LEMMA models with operation or service technologies
Security Smell Information: Detected security smells

Create LEMMA
Service Model

LEMMA Service
Model

Create LEMMA
Operation Model

LEMMA Technology
Models

LEMMA
Operation Model

Security Smell
Detection

Detected
Security Smells

D.3
D.2

D.1

Figure 3: Activities of detecting microservices’ security aspects with LEMMA.

Listing 2: LEMMA service model for the Customer Core
microservice from the motivating example.

1 import datatypes from "customerCore.data" as domain
2 import technology from "spring.technology" as spring
3
4 @technology(spring)
5 @spring::_aspects.ApplicationName("CustomerCore")
6 @spring::_aspects.Port(8080)
7 public functional microservice com.lakeside.CustomerCore {
8 @endpoints(java::_protocols.rest: "/cities";)
9 interface cityStaticDataHolder {

10 ---
11 Get the cities for a particular postal code.
12 @required postalCode the postal code
13 ---
14 @endpoints({spring::_protocols.rest: "/{code}";})
15 @spring::_aspects.GetMapping
16 getCitiesForPostalCode(
17 sync in code : string,
18 sync out cities : domain::customerCore
19 .CitiesResponseDto
20 );}
21 ...
22 }

technology model is included to enhance the service
model with technology and architecture-related infor-
mation, e.g., spring as a framework for the realiza-
tion of the Customer Core microservice in Line 4.

Lines 5–6 (listing 2) then define service-specific
properties, which relate to Spring-based configura-
tions for the microservice application name and op-
erating port. Line 7 specifies the fully qualified
name com.lakeside.CustomerCore of the mi-
croservice, including an excerpt of its API definition
in Lines 8–20. Specifying the microservices’ API by
defining the resource URI in Line 8 and the name in
Line 9.

The cityStaticDataHolder interface from
listing 2 specifies a single endpoint in Lines 10–20.
The specification begins with a comment describing
the endpoint’s general functionality and required pa-
rameters, followed by the endpoint-specific exten-
sion of the interfaces URI in Line 14 for the rest
over HTTP protocol. Line 15 then adds the Spring
framework-specific aspect GetMapping to the end-
point, indicating that the endpoint supports access via
the HTTP-method get. Lines 16 to 20 finally spec-
ify the body definition for the endpoint containing in-
coming and outgoing parameters, including their cor-

Listing 3: LEMMA operation model for the Customer Core
microservice from the motivating example.

1 import microservices from "customerCore.services"
2 as customerCore
3 import technology from "deploymentBase.technology"
4 as deploymentBase
5 import technology from "protocol.technology" as protocol
6 import nodes from "infrastructure.operation" as

infrastructure
7
8 @technology(deploymentBase)
9 @technology(protocol)

10 container CustomerCoreContainer
11 deployment technology deploymentBase::_deployment.Docker

12 deploys customerCore::com.lakeside.CustomerCore
13 depends on nodes
14 infrastructure::ServiceDiscovery,
15 infrastructure::H2Database {
16 default values {
17 basic endpoints { protocolTechnology::
18 _protocols.rest: "http://localhost:8110"; }
19 }
20 }

responding data types.
The next activity, D.2 (c.f. Figure 3), consists of

the operation model creation using LEMMA’s OML.
The operation model contains the deployment and
operation specifications. Listing 3 defines the op-
eration model for the Customer Core microservice
with dependencies to infrastructure components, e.g.,
databases or Service Discoveries. The listing begins
with an import of different LEMMA models from
Line 1 to 6. The first import consists of the Customer
Core service model (c.f. Listing 2) to specify the mi-
croservice deployment. Lines 3–5 contain the import
statements for the deploymentBase and protocol
technology models, with the technologies necessary
for deployment specification.

Listing 3 then continues with Lines 8–9 assigning
the imported technologies to the CustomerCore-
Container (Line 10) to enable their usage in the
deployment specification for the container. The con-
tainer in LEMMA’s OML is a component that encap-
sulates all relevant information for deploying a spe-
cific microservice. Therefore, in Line 11, the deploy-
ment technology docker is assigned to the container,
as well as the deployed CustomerCore microservice
(Line 12).

ICSOFT 2023 - 18th International Conference on Software Technologies

20



Detected Security
Smells

LEMMA
Operation Model

LEMMA Service
Model

Refactor
Operation Model

Refactor Service
Model

Select Security Smell 

Resolving Microservice Security Smells

LEMMA Models: LEMMA models containing API or deployment specifications

Detected Security Smells: List of Security Smells detected in LEMMA models

R.1a

R.1b

R.2 R.6R.4
R.5

Select Security Smell
Resolution Strategy

R.3

Mark Security Smells
As Intentionally

Ignored

Preview Selected
Refactoring

Results

Confirm
Refactored Model

Changes

Refactored LEMMA
Model

[Resolve Smell]

[Ignore 

Smell]

Figure 4: Activities of resolving microservices’ security aspects with LEMMA.

Runtime dependencies to infrastructural com-
ponents, such as databases or service discoveries,
needed for scalability and synchronous service com-
munication, are specified from Line 13 to 15. This in-
cludes dependencies to LEMMA infrastructure mod-
els, describing the deployment of a Eureka4 service
discovery and a H25 database.

The last part of the listing from Line 16 to 19 de-
fines default values, which are used for service
operation. In this case, the basic endpoint for
communication via HTTP and, therefore, as the be-
ginning of the URI extended by endpoint specification
of the service model (c.f. Listing 2).

Activity D.3 (c.f. Figure 3) consists of the detec-
tion process. For this purpose, the service and op-
eration model is analyzed via model-specific valida-
tors. The model validators for security smell can be
explicitly enabled in the Eclipse-based model editor
of LEMMA. According to the case that the validators
detect a security smell in the models, they display a
warning in the model editor stating the name of the
security smell and possible strategies for resolving it.

4.3 Resolving Security Smells

This section introduces the activities followed to re-
solve the detected security smells. It also presents
the user-guided process using the LEMMA’s model-
ing editor. The resolution process, depicted in Fig-
ure 4, begins with activity R.1a for service and R.1b
for operation models.

After selecting the model kind, the next activity
(R.2-Figure 4) involves choosing the security smell
that needs to be addressed in the refactoring process.
For each security smell, there are different strategies
for resolution (Ponce et al., 2022b) (activity R.3-
Figure 4). For instance, the Publicly Accessible Mi-
croservices security smell can be resolved by using

4https://github.com/Netflix/eureka
5https://www.h2database.com

Listing 4: Refactored LEMMA operation model for the
Customer Core microservice from the motivating example.

1 ...
2 @technology(deploymentBase)
3 @technology(protocolTechnology)
4 container CustomerCoreContainer ...
5 depends on nodes
6 infrastructure::ServiceDiscovery,
7 infrastructure::H2Database,
8 infrastructure::APIGateway
9 ...}

an API Gateway or by disabling the public exposure
of the service. It should be noted that exposing the mi-
croservice publicly can also be an intentional design
decision that should be marked intentionally (activ-
ity R.4-Figure 4). As part of the resolution process,
deliberately flagging a security smell as "ignored" is
a strategy used to notify the user of its presence and
acknowledge their design decisions.

Following the selection of the resolution strategy,
the next activity is to preview the refactoring results
specific to the chosen strategy. LEMMA’s modeling
editor provides a workflow to guide the user through
this process. Finally, the last activity involves con-
firming the model changes and applying the resolu-
tion strategy to the involved models. (activity R.6-
Figure 4).

To illustrate the results of resolving the Publicly
Accessible Microservices security smell using the
strategy of including an API Gateway for public mi-
croservice exposure, an excerpt of the refactored op-
eration model of the Customer Core service is shown
in Listing 4.

Generally, the operation model remains un-
changed except for adding Line 8. The line speci-
fies a depends on dependency to the infrastructural
component of an API Gateway. Due to the inclu-
sion of the API Gateway in the resolution strategy, a
corresponding operation model is also created in the
refactoring process of the Customer Core model.

Listing 5 specifies the deployment of the API
Gateway infrastructure component using Netflix Zuul

Towards Resolving Security Smells in Microservices, Model-Driven

21



Listing 5: LEMMA operation model for an API Gateway
using the Zuul technology.

1 import ...
2 @technology(Zuul)
3 APIGateway is Zuul::_infrastructure.Zuul
4 depends on nodes ServiceDiscovery
5 used by services coreService::com.lakeside.CustomerCore,

6 used by nodes coreContainer::CustomerCoreContainer {
7 default values {
8 hostname = "APIGateway"
9 port = 8080

10 apiUri = "eureka:8080"
11 }
12 }
13 ...

as a concrete technology. Lines 2–3 assign the Zuul
technology to the corresponding specification of an
APIGateway. The next line defines that the API
Gateway depends on a ServiceDiscovery to ful-
fill its functionalities. Additionally, the used by
specifications in Lines 5–6 define that the Customer
Core microservices API is exposed via the Gateway.
The remaining lines of the listing define default
values, e.g., the hostname or operation port.

5 PROOF OF CONCEPT
IMPLEMENTATION

This section presents the proof-of-concept implemen-
tation towards the MDE-based resolution of microser-
vices security smells using LEMMA. The proof-of-
concept is intended to demonstrate the practical fea-
sibility of model-driven security smell resolution pro-
cess for publicly accessible microservices (c.f. sec-
tion 2) described in Section 4, being this the first
step towards a full-fledged, validated support for
LEMMA-based resolution of security smells in mi-
croservice applications.

The proof-of-concept implementation has been
developed by suitably extending the current Eclipse-
based support for LEMMA. Figure 5 depicts
LEMMA’s Eclipse-based editor with the opened Cus-
tomer Core Operation model presented in Listing 3.
The figure displays a warning in the Eclipse editor
indicating that a Publicly Accessible Microservices
smell was detected in the model. Furthermore, by
hovering over the warning, LEMMA’s security smell
resolution functionality provides the option for re-
solving the security smell by leveraging the Eclipse
Quickfix6 function, addressing Activity R.2 of the
resolution process.

The selection of the quick fix option starts the res-
olution process by addressing activity R.3 (c.f. Fig-
ure 4) with the possibility to select a resolution strat-

6https://www.eclipse.org/Xtext/documentation/310_
eclipse_support.html#quick-fixes

Figure 5: LEMMA Eclipse editor presenting the Customer
Core operation model with security smell publicly accessi-
ble microservices.

Figure 6: Selection of the security smell-specific strategy
for resolving publicly accessible microservices.

egy. The strategies are security smell specific, and
Figure 6 depicts the option for resolving publicly ac-
cessible microservices.

Besides the selected option to resolve the secu-
rity smell via an API Gateway, there is also the op-
tion to mark the smell explicitly as to be ignored to
disable the warning by a design decision. Addition-
ally, configuring the Customer Core microservice as
internal is an option to resolve the security smell
by disabling public exposure.

The next steps of the process addressing activities
R.5 and R.6 consist of previewing and confirming
the proposed refactoring adaption of the service and
operation model kind. The LEMMA editor previews
every modified model during the security smell reso-
lution process to guide the user. Figure 7 depicts such
a preview for integrating an API Gateway. The pre-
view displays the infrastructure component of an API
Gateway that is included in the infrastructure opera-
tion model (c.f. Figure 7 (a.)) and the adaption of the
Customer Core operation model (c.f. Figure 7 (b.))

The final activity of LEMMA’s security smell res-
olution process is confirming the proposed changes.
In addition to the presented security smell resolution
functionality, LEMMA provides means towards code

ICSOFT 2023 - 18th International Conference on Software Technologies

22



(a) Preview of the extension with an API Gateway of the
infrastructure operation model.

(b) Preview of the adaption of the Customer Core
operation model with API Gateway dependency.

Figure 7: Refactoring previews of the Customer Core and
API Gateway operation model for resolving publicly acces-
sible microservices.

generation, e.g., the generation of infrastructure com-
ponents like API gateways and service discoveries.

The process for resolving Insufficient Access Con-
trol in microservices includes the same activities as
described for the Publicly Available Microservices se-
curity smell except for the resolution strategy. The
strategy depends on the proposed refactorings for
the corresponding microservice security smell (sec-
tion 2). One solution to resolve the issue of insuffi-
cient access control for microservices is to incorpo-
rate an authorization protocol such as OAuth2 (Ponce
et al., 2022a).

Section 4.2 introduces in listing 2 the Customer
Core LEMMA service model. Due to the lack of a
specification of an authorization protocol for the mi-
croservice, the security of the service suffers from in-
sufficient access control. Integrating the OAuth2 as
an authorization protocol resolves the security smell.
Listing 1 specifies a LEMMA technology model with
an Authorization and Secured aspect to specify
a protocol for role-based access control of microser-
vices. The following listing 6 shows the LEMMA
model for the CustomerCore microservice with the
resolved security smell. To resolve the insufficient ac-
cess control security, Line 3 imports the security-
Aspcet technology model and Line 5 applies the se-
curity technology to the specified microservice. Line
8 defines OAuth2 as an authorization protocol to the
Customer Core microservice. Additionally, to enable
role-based authorization at a microservice endpoint
granularity, Line 18 applies the Secured aspect to
the getCitiesForPostalCode endpoint.

6 DISCUSSION

Generating software system architecture models us-
ing LEMMAs is a manual process that can challenge
development teams. Furthermore, as the software sys-
tem evolves, the models must be updated to reflect the

Listing 6: LEMMA service model for the Customer Core
microservice from the motivating example.

1 ...
2 import technology from "securityAspects.technology"
3 as securityAspects
4 @technology(spring)
5 @technology(securityAspects)
6 @spring::_aspects.ApplicationName("CustomerCore")
7 @spring::_aspects.Port
8 @securityAspects::_aspects.Authorization(^protocol="OAuth2")

9 public functional microservice com.lakeside.CustomerCore {
10 @endpoints(java::_protocols.rest: "/cities";)
11 interface cityStaticDataHolder {
12 ---
13 Get the cities for a particular postal code.
14 @required postalCode the postal code
15 ---
16 @endpoints({spring::_protocols.rest: "/{postalCode}"

;})
17 @spring::_aspects.GetMapping
18 @securityAspects::_aspects.Secured("ROLE_USER")
19 getCitiesForPostalCode(...);}
20 ...
21 }

changes in the source code. To overcome this chal-
lenge, we plan to integrate Software Architecture Re-
construction (SAR) (Bass et al., 2013) into our ap-
proach to derive LEMMA models from source code
artifacts automatically. This will eliminate the need
for manual model generation and enable the models
to be updated automatically as the system evolves.

While our approach currently detects only two of
the microservices’ security smells identified in (Ponce
et al., 2022b), these two smells are among the three
most recognized in MSA. Nonetheless, one limita-
tion of our approach is that it does not yet cover all
the microservices’ security smells. However, we be-
lieve that the aspect-oriented modeling capabilities of
LEMMA show promising capabilities to detect addi-
tional security smells.

The current implementation of our approach fo-
cuses on resolving microservices’ security smells de-
tected in the LEMMA models, providing developers
with awareness of these security smells and offering
automated strategies for their resolution. The actual
process of resolving security smells in the source code
still requires manual intervention from software de-
velopers. However, by leveraging LEMMA’s code
generation functionalities in conjunction with the up-
dated model, it is possible to resolve selected security
smells at the implementation level as well.

7 RELATED WORK

Ponce et al. propose a set of microservice security
smells in (Ponce et al., 2022b), including refactor-
ings that resolve their effects. Automatically detect-
ing such smells in microservices and refactoring ap-
plications to resolve their effects is however still an
open issue. Indeed, to the best of our knowledge, the

Towards Resolving Security Smells in Microservices, Model-Driven

23



only available work in this direction is that by (Ponce
et al., 2022a), which assumes that smells have been
identified and proposes a trade-off analysis to decide
whether it is worth (or not) to apply a refactoring, de-
pending on how the security smell and refactoring im-
pact the overall application quality.

There are already some methods and tools for an-
alyzing microservices applications’ security, which
can also be used to detect other security smells.
For instance, (Rahman et al., 2019) proposes a
static analysis technique to detect security smells in
infrastructure-as-code (Morris, 2020) scripts. (Rah-
man et al., 2019) however,» differs from our proposal
in its objectives, as it focuses on detecting security
smells for infrastructure-as-code only, while we con-
sider the detection and refactoring microservice secu-
rity smells for different viewpoints, e.g., the service
or operation viewpoint.

Production-ready tools for security analysis, e.g.,
such as Kubesec.io,7 Checkov,8 OWASP Zed Appli-
cation Proxy (ZAP),9 and SonarQube.10 provide val-
idated solutions for vulnerability assessment and se-
curity weaknesses detection, which can also be used
for microservices applications. Our proposal com-
plements the analyses enacted by the above-listed
tools, enabling the detection and refactoring of the
microservice security smells in (Ponce et al., 2022b),
in addition to the vulnerabilities and security weak-
nesses they identify.

Additional existing approaches provide the possi-
bility to identify and resolve architectural smells for
microservices. (Pigazzini et al., 2020) and (Soldani
et al., 2021) propose two different solutions for de-
tecting architectural smells in microservice applica-
tions. They both share our baseline idea of starting
from smells identified with industry-driven reviews,
with (Pigazzini et al., 2020) picking those from (Taibi
and Lenarduzzi, 2018), while (Soldani et al., 2021)
picking those from (Neri et al., 2020). (Soldani et al.,
2021) actually also shares our baseline idea of using
MDE to detect and refactor smells. The main differ-
ence between (Pigazzini et al., 2020), (Soldani et al.,
2021), and our proposal relies on the considered types
of smells, with (Pigazzini et al., 2020) and (Soldani
et al., 2021) focusing on architectural smells. We
rather complement their results by enabling detection
and refactoring of microservice security smells from
(Ponce et al., 2022b).

Similar considerations apply to (Balalaie et al.,
2018) and (Haselböck et al., 2017), which both or-

7https://kubesec.io
8https://www.checkov.io
9https://owasp.org/www-project-zap/

10http://sonarqube.org/

ganize information retrieved from practitioners or
industry-scale projects into guidelines for designing
microservice applications while avoiding including
well-known architectural smells therein. We indeed
complement (Balalaie et al., 2018) and (Haselböck
et al., 2017) in their effort towards resolving smell oc-
currences in microservice applications by enabling to
detect microservices’ security smells and to refactor
them to resolve their possible effects.

Finally, it is also worth relating our microservice-
oriented proposal with existing solutions for detect-
ing smells in classical services. For instance, (Gar-
cia et al., 2009), (Arcelli et al., 2019) and (Sanchez
et al., 2015) present three different MDE approaches
to detect architectural smells in service, with (Garcia
et al., 2009) and (Arcelli et al., 2019) relying on UML
to model services, while (Sanchez et al., 2015) rely-
ing on Archery. (Arcelli Fontana et al., 2017) and
(Vidal et al., 2015) instead allow to analyze of the
source code of a service to detect the smells therein,
also supporting refactoring to resolve the occurrence
of identified smells. Similarly to the above-discussed
approaches, the difference between our proposal and
those in (Garcia et al., 2009), (Arcelli et al., 2019),
(Sanchez et al., 2015), (Arcelli Fontana et al., 2017),
and (Vidal et al., 2015) resides in the type of consid-
ered smells, with our proposal complementing their
results by enabling to detect and refactor security
smells in microservice applications.

8 CONCLUSIONS

We have introduced an approach for model-driven
resolution of microservices’ security smells based
on extending LEMMA to the purpose. Our ap-
proach process extended LEMMA functionalities to
detect the two most recognized microservices’ secu-
rity smells automatically and to recommend refactor-
ing strategies to resolve their effects.

To assess the feasibility of the proposed approach,
we have also presented its proof-of-concept imple-
mentation, also discussing how such implementation
enables detecting and refactoring microservice secu-
rity smells in the LEMMA model of an existing third-
party application. The presented approach introduced
a first step towards automated, MDE-based security
smell resolution.

For future work, we plan to follow the exact mod-
eling and analysis methodology to extend the cur-
rent implementation into a full-fledged prototype fea-
turing a model-driven resolution of security smells
occurring in MSA. Furthermore, we plan to include
software architecture reconstruction to automatically

ICSOFT 2023 - 18th International Conference on Software Technologies

24



derive security-aware LEMMA models based on the
current implementation of the software system to ease
the integration of our approach in MSA development.

We also plan to exploit the full-fledged prototype
to validate and evaluate our method on real-world ap-
plications, with the goal of demonstrating how our ap-
proach facilitates the development process of MSA by
providing means for security smell resolution.

In this perspective, we also plan to assist devel-
opers in deciding whether/how to refactor a secu-
rity smell detected in an MSA, e.g., by integrating
our full-fledged prototype with trade-off analyses and
code generation functionalities to automatically re-
solve the security smell also on the level of implemen-
tation. Additionally, we plan to extend our approach
to work with other microservice-related smells, e.g.,
architectural smells.

ACKNOWLEDGMENTS

This work was partially supported by ANID un-
der grant PIA/APOYO AFB180002, Instituto de
tecnología para la innovación en salud y bien-
estar, facultad de ingeniería (Universidad Andrés
Bello, Chile), and by the project hOlistic Sustain-
able Management of distributed softWARE systems
(OSMWARE, UNIPI PRA_2022_64), funded by the
University of Pisa, Italy.

REFERENCES

Arcelli, D., Cortellessa, V., and Pompeo, D. D. (2019). Au-
tomating performance antipattern detection and soft-
ware refactoring in UML models. In Wang, X., Lo,
D., and Shihab, E., editors, 2019 International Con-
ference on Software Analysis, Evolution and Reengi-
neering, , pages 639–643. SANER 2019, IEEE Com-
puter Society.

Arcelli Fontana, F., Pigazzini, I., Roveda, R., Tamburri, D.,
Zanoni, M., and Di Nitto, E. (2017). Arcan: A tool
for architectural smells detection. In Malavolta, I. and
Capilla, R., editors, 2017 IEEE International Con-
ference on Software Architecture Workshops, , pages
282–285. ICSA 2017 Workshops, IEEE Computer So-
ciety.

Balalaie, A., Heydarnoori, A., and Jamshidi, P. (2016). Mi-
croservices architecture enables devops: Migration to
a cloud-native architecture. IEEE Software, 33(3):42–
52.

Balalaie, A., Heydarnoori, A., Jamshidi, P., Tamburri,
D. A., and Lynn, T. (2018). Microservices migra-
tion patterns. Software: Practice and Experience,
48(11):2019–2042.

Bass, L., Clements, P., and Kazman, R. (2012). Soft-
ware Architecture in Practice. Addison-Wesley Pro-
fessional, 3rd edition.

Bass, L., Clements, P., and Kazman, R. (2013). Software
Architecture in Practice. Addison-Wesley, third edi-
tion.

Combemale, B., France, R. B., Jézéquel, J.-M., Rumpe, B.,
Steel, J., and Vojtisek, D. (2017). Engineering Mod-
eling Languages: Turning Domain Knowledge into
Tools. CRC Press, first edition.

Di Francesco, P., Lago, P., and Malavolta, I. (2018). Migrat-
ing towards microservice architectures: An industrial
survey. In 2018 IEEE International Conference on
Software Architecture (ICSA), pages 29–38. IEEE.

Gannon, D., Barga, R., and Sundaresan, N. (2017). Cloud-
native applications. IEEE Cloud Computing, 4(5):16–
21.

Garcia, J., Popescu, D., Edwards, G., and Medvidovic, N.
(2009). Identifying architectural bad smells. In Win-
ter, A., Ferenc, R., and Knodel, J., editors, Proceed-
ings of the 2009 European Conference on Software
Maintenance and Reengineering, , pages 255–258,
USA. CSMR 2009, IEEE Computer Society.

Haselböck, S., Weinreich, R., and Buchgeher, G. (2017).
Decision models for microservices: Design areas,
stakeholders, use cases, and requirements. In Lopes,
A. and de Lemos, R., editors, Software Architecture,
, pages 155–170, Cham. Springer International Pub-
lishing.

Hassan, S., Ali, N., and Bahsoon, R. (2017). Microservice
ambients: An architectural meta-modelling approach
for microservice granularity. In 2017 IEEE Interna-
tional Conference on Software Architecture (ICSA),
pages 1–10. IEEE.

JHipster (2023). JHipster Domain Language (JDL). https:
//www.jhipster.tech/ jdl/ intro.

Kapferer, S. and Zimmermann, O. (2020). Domain-driven
service design: Context modeling, model refactor-
ing and contract generation. In Service-Oriented
Computing: 14th Symposium and Summer School
on Service-Oriented Computing, SummerSOC 2020,
Crete, Greece, September 13-19, 2020 14, pages 189–
208. Springer.

Knoche, H. and Hasselbring, W. (2019). Drivers and barri-
ers for microservice adoption – a survey among pro-
fessionals in Germany. Enterprise Modelling and In-
formation Systems Architectures, 14(1):1–35. German
Informatics Society.

Morris, K. (2020). Infrastructure as code. O’Reilly Media.
Neri, D., Soldani, J., Zimmermann, O., and Brogi,

A. (2020). Design principles, architectural smells
and refactorings for microservices: a multivocal re-
view. SICS Software-Intensive Cyber-Physical Sys-
tems, 35(1):3–15.

Newman, S. (2015). Building Microservices: Designing
Fine-Grained Systems. O’Reilly.

OMG (2017). OMG Unified Modeling Language (OMG
UML) version 2.5.1. Standard formal/17-12-05, Ob-
ject Management Group.

Towards Resolving Security Smells in Microservices, Model-Driven

25



Panichella, S., Rahman, M. I., and Taibi, D. (2021). Struc-
tural coupling for microservices. arXiv preprint
arXiv:2103.04674.

Pigazzini, I., Fontana, F. A., Lenarduzzi, V., and Taibi, D.
(2020). Towards microservice smells detection. In
Proceedings of the 3rd International Conference on
Technical Debt, page 92–97, New York, NY, USA.
TechDebt 2020, Association for Computing Machin-
ery.

Ponce, F., Soldani, J., Astudillo, H., and Brogi, A. (2022a).
Should microservice security smells stay or be refac-
tored? towards a trade-off analysis. In Gerostathopou-
los, I. et al., editors, Software Architecture, pages 131–
139. Springer International Publishing.

Ponce, F., Soldani, J., Astudillo, H., and Brogi, A. (2022b).
Smells and refactorings for microservices security: A
multivocal literature review. Journal of Systems and
Software, 192:111393.

Rademacher, F. (2022). A Language Ecosystem for Model-
ing Microservice Architecture. PhD thesis, University
of Kassel.

Rademacher, F., Sachweh, S., and Zündorf, A. (2020). De-
riving microservice code from underspecified domain
models using DevOps-enabled modeling languages
and model transformations. In 2020 46th Euromicro
Conference on Software Engineering and Advanced
Applications (SEAA), pages 229–236. IEEE.

Rahman, A., Parnin, C., and Williams, L. (2019). The seven
sins: Security smells in infrastructure as code scripts.
In 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE), pages 164–175.

Richardson, C. (2019). Microservices Patterns. Manning
Publications.

Sanchez, A., Barbosa, L. S., and Madeira, A. (2015). Mod-
elling and verifying smell-free architectures with the
archery language. In Canal, C. and Idani, A., editors,
Software Engineering and Formal Methods, , pages
147–163, Cham. SEFM 2015, Springer International
Publishing.

Soldani, J., Muntoni, G., Neri, D., and Brogi, A. (2021).
The µtosca toolchain: Mining, analyzing, and refac-
toring microservice-based architectures. Software:
Practice and Experience, 51(7):1591–1621.

Soldani, J., Tamburri, D. A., and Heuvel, W.-J. V. D. (2018).
The pains and gains of microservices: A systematic
grey literature review. Journal of Systems and Soft-
ware, 146:215–232. Elsevier.

Sorgalla, J., Wizenty, P., Rademacher, F., Sachweh, S., and
Zündorf, A. (2021). Applying model-driven engineer-
ing to stimulate the adoption of devops processes in
small and medium-sized development organizations:
the case for microservice architecture. SN Computer
Science, 2(6):459.

Taibi, D. and Lenarduzzi, V. (2018). On the definition of
microservice bad smells. IEEE Software, 35(3):56–
62.

Terzić, B., Dimitrieski, V., Kordić, S., Milosavljević, G.,
and Luković, I. (2018). Development and evaluation
of MicroBuilder: a model-driven tool for the specifi-
cation of REST microservice software architectures.

Enterprise Information Systems, 12(8-9):1034–1057.
Taylor & Francis.

Thönes, J. (2015). Microservices. IEEE Software,
32(1):116–116.

Vidal, S., Vazquez, H., Diaz-Pace, J. A., Marcos, C., Gar-
cia, A., and Oizumi, W. (2015). JSpIRIT: A flexi-
ble tool for the analysis of code smells. In Marín, B.
and Soto, R., editors, 34th International Conference
of the Chilean Computer Science Society, , pages 1–
6. SCCC 2015, IEEE Computer Society.

Zimmermann, O. (2017). Microservices tenets. Computer
Science - Research and Development, 32(3):301–310.

ICSOFT 2023 - 18th International Conference on Software Technologies

26


