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Abstract: Identity Based Encryption (IBE) is a serious alternative of Public Key Infrastructure when considering 
distributed systems such as wireless sensors network, multi-site enterprise, manufacturing sites, and so on. In 
particular, Revocable Hierarchical IBE (RHIBE) provides all functionalities required for an operational 
cryptography deployment. This paper proposes a parameter analysis, and a software implementation of one 
of the most advanced post-quantum RHIBE. The objective is to quantify the performances in software and to 
provide a concrete set of parameters for a given level of security. For the best of our knowledge, this was not 
done from previous works that only provide order of magnitudes about parameters and instances sizes. 
Regarding applications and from today, post-quantum RHIBE lead to very large keys and ciphertext size, 
letting it difficult to consider such cryptosystems for constraint devices.  

1 INTRODUCTION  

Identity Based Encryption (IBE) is an alternate to 
Public Key Infrastructures (PKI) for deploying 
asymmetric cryptography. Based on centralized 
master public and master private keys, it avoids the 
use of certificates by using the identity directly (i.e. 
an identifier) of the recipient as a public key to 
encrypt messages. Public keys, secret keys and 
decryption keys are derived from the master keys 
through a hierarchal structure. Each node of the 
structure is able to enroll and revoke new devices 
belonging to its substructure. This appears useful to 
deploy cryptography in IoT-Cloud context, for 
example. IBE simplifies the deployment by avoiding 
need of certificates and by only requiring to the 
sender the knowledge of the receiver identifier.  

IBE state-of-the-art starts in 1984 with Shamir’s 
pioneer article (Shamir, 1984). First practical 
cryptosystems emerge in 2001 with Weil’s pairing 
(Boneh and Franklin, 2001) and residues (Cocks, 
2001). Then, several cryptosystems appear to include 
more functionalities such as delegation in 
Hierarchical IBE (HIBE) in (Gentry and Silverberg, 
2002) and Revocation (RIBE and RHIBE) in 
(Boldyreva and al., 2008). 

The emergence of the quantum threat, breaking 
asymmetric cryptography, hurry the NIST to engage 
a transition to quantum-resistant cryptography (NIST, 
2017). Cryptosystems standardized first around 2024 
will be key encapsulation mechanisms and the digital 
signatures. In continuity, other cryptosystems such as 
IBE are following this transition. However, the post-
quantum transition comes with its issues. The sizes of 
keys and ciphertexts of post-quantum (R)(H)IBE are 
significantly higher than classical schemes. 

From today, it exists quite light ideal-lattice-
based IBE (Ducas and al., 2014) compliant with IoT 
devices. However, such post-quantum IBE does not 
provide today the functionality of revocation and 
delegation.  On the other hand, post-quantum RHIBE 
are too heavy for constrained devices but have the 
required functionalities. However, they are compliant 
with cloud resources and it is interesting to have a 
better quantification of their performances, 
parameters setting and features (sizes of instances). 
From the authors' knowledge, only orders of 
magnitude are available regarding such post-quantum 
RHIBE. 

The purpose of this paper is to study one of the 
most advanced post-quantum RHIBE (Wang and al., 
2019) named WZH+ scheme from authors’ names. 
The objective is to provide concrete parameter sets 
and to deduce the sizes and the performances of the 
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scheme with a real implementation on a target 
dedicated to embedded applications. The results 
highlight the heavy aspect of the scheme that is today 
only applicable in a cloud context and cannot be 
deployed on IoT devices.  

The paper is organized in two sections. Section 2 
recalls some basics about IBE. A brief survey of post-
quantum schemes (R)(H)IBE is presented and 
highlights the WZH+ as the most efficient post-
quantum RHIBE. Section 3 introduces a software 
implementation of the WZH+ with an analysis of the 
parameters generation and performances. 

2 (R)(H)IBE: CONCEPT AND 
POST-QUANTUM SCHEMES 

A (H)IBE can be seen as a centralized system based 
on a master public key and a master secret key. PKG 
(Public Key Generator), also called KGC (Key 
Generator Center), generates a master key pair. From 
the master secret key, a secret key is derived level-by-
level for each user in the hierarchy. Furthermore, all 
users can encrypt a message with the identity of the 
recipient and the master public key. The hierarchical 
structure is fully dependent on the application 
(wireless sensor networks, multi-site enterprise, 
manufacturing site, etc.).  

A (H)IBE is composed of four primitives:  
• Setup for generating the master public key 𝐏𝐏 and the master private key 𝐌𝐊 
• Derive (sometimes call KeyGen for a 

simple IBE) for secret key generation 𝐒𝐊 
from the parent to the children.  

• Encrypt for ciphering a message from a user 
to another by using the identity of the 
recipient 

• Decrypt to decrypt a message using the 
secret key 𝐒𝐊.  

It is important to notice that a (H)IBE does not include 
the primitive managing the transmission of the derive 
secret key from the generator (the parent) to the user 
(the child). The (H)IBE avoids the use of certificates 
by dealing only with identity to encrypt messages. 
The constraints are mainly deferring on the PKG, 
which has to be strongly secure with respect to all 
known attacks.  

As for all centralized systems, a (H)IBE is not 
flexible when a user/an object has to be revoked. The 
first approach is to regenerate the entire master and 
users keys, except for revoking ones. This full 
regeneration of keys is not applicable in practice. In 
2008 (Boldyreva and al., 2008), introduce a 

mechanism allowing revocation for an IBE. Such 
cryptosystems are called R(H)IBE for Revocable 
(H)IBE. In practice, a R(H)IBE is composed of the 
four primitives composing a (H)IBE and three new 
primitives:  

• KeyUp to generate the update of the 
decryption key when a revocation occurs.   

• GenDK to update the decryption key which 
uses the secret key 𝐒𝐊  and the update 
KeyUp. 

• Revoke to update the revocation list 
RHIBE and PKI provide the same hierarchical and 
revocation features. However, RHIBE gives the 
simplest key management, which is balanced by key 
sizes.   

The security of a (R)HIBE relies on the following 
issues: the master public key must not leak 
information on the master private key,  the ciphertext 
confidentiality, and, the decryption key of a child 
node shall not leak information on the parent secret 
key. (Seo and Emura, 2013) introduced a new 
security notion: the resilience regarding decryption 
key exposure (DKER). This indicates that if a 
decryption key is corrupted at a given time and the 
associated users are revoked, this does not 
compromise future exchanges between unrevoked 
users.  

The ability for a (R)(H)IBE to satisfies all these 
conditions depends on assumptions of the underlying 
problems defining the scheme. There exists two types 
of models: the Standard model based on NP-Hard 
problems, and, the Random Oracle Model (ROM) 
where the security is based on the indistinguability of 
the output of a given function/oracle (a hash function 
in many cases) with a random uniform instance. 

In (Wang and al., 2019), the coexistence of two 
models (standard and ROM) is due to the confidence 
of the Standard Model is higher than the Random 
Oracle Model but this latter provides more efficient 
and compact IBE. In particular, for this work, we 
study the parameters setting and performances in 
software of the WZH+ in the ROM version.   

3 STUDY OF WZH+ SCHEME 

3.1 Basics on Lattices for (R)(H)IBE 

A lattice Λ of ℝ  is a discrete additive subgroup of ℝ.  Λ  is spanned over ℤ  by a set of 𝑚  vectors 𝒂, … , 𝒂ିଵ of ℝ, where 0 < 𝑚 ≤ 𝑛, and define a 
basis of Λ . Let 𝑨 ∈ ℝ×  be the matrix whose 
columns are vectors 𝒂, … , 𝒂ିଵ. By definition Λ(𝑨) 
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is the lattice of ℝ  spanned by the columns of 𝑨 . 
Many post-quantum (R)(H)IBE schemes use full rank 
lattices Λ(𝑨). 

Let 𝑞 an integer and 𝛽 > 0 a real, a trapdoor of a 
matrix 𝑨 is a non-zero vector 𝒙 ∈ ℤ such that 𝑨𝒙 =𝟎 mod 𝑞 and ห|𝒙|ห < 𝛽 whereห| . |ห is the Euclidean 
norm. For  some tuples (𝑛, 𝑚, 𝑞, 𝛽) , finding a 
trapdoor is a NP-complete problem. A strong 
trapdoor is a matrix 𝑻 ∈ ℤ×  such that 𝑨𝑻 =𝟎× mod 𝑞 and all vectors of 𝑻 have a norm lower 
than 𝛽. We denote by (𝑨, 𝑻) = 𝐓𝐫𝐚𝐩𝐆𝐞𝐧(𝑛, 𝑚, 𝑞, 𝛽) 
a primitive generating a random uniform matrix  𝑨 ∈ℤ× and a strong trapdoor 𝑻 of 𝑨. This primitive is 
common in lattice-based cryptography for generating 
a couple of public key (𝑨) / private key (𝑻). 

For a lattice-based HIBE, the delegation relies on 
generating a random and strong trapdoor 𝑻′  for a 
children node from the strong trapdoor 𝑻  of the 
parent node. In the ROM, 𝑻  and 𝑻′  are related to 
matrices  𝑨  and 𝑨. 𝑹 , respectively, where 𝑨  is a 
random uniform matrix and 𝑹  is a pseudo-random 
uniform matrix depending on the identity of the node. 
The generation of 𝑹 uses the ROM. The primitive 
generating 𝑻′  knowing 𝑻 ,  𝑨  and 𝑹 , is commonly 
called BasisDel (Agrawal and al., 2010).  

Two other important notions in lattice-based IBE 
are the Hermite Normal Form (HNF) (Micciancio and 
Goldwasser, 2002) and the Gram-Schmidt 
Orthogonalization (GSO).  

For two given matrices 𝑩  and 𝑺  it exists an 
algorithm 𝑨 = 𝐓𝐨𝐁𝐚𝐬𝐢𝐬(𝑩, 𝑺)that computes a basis 𝑨 of Λ(𝑩) such that ฮ𝑨෩ฮୋୗ ≤ ฮ𝑺෨ฮୋୗ. This algorithm 
allows generating basis of a lattice with a controlled 
Gram-Schmidt norm. This is fundamental for 
Gaussian sampling as introduced in the next 
paragraphs.  

By definition, the discrete Gaussian distribution 𝐷ఙ,𝒄,ஃ  on a lattice Λ, with standard deviation 𝜎 > 0 
and center 𝒄 ∈ ℝ  is defined as  𝐷ఙ,𝒄,ஃ(𝒙): =𝜌ఙ,𝒄(𝒙)/𝜌ఙ,(Λ)  for all 𝒙 ∈ Λ  with 𝜌ఙ,(𝒙): =exp(−𝜋‖𝒙 − 𝒄‖ଶ/𝜎ଶ), and 𝜌ఙ,(Λ): = ∑ 𝜌ఙ,(𝒙) 𝒙∈ஃ . 
We will note 𝒙 ← 𝐷ఙ,𝒄,ஃ  a variable of distribution 𝐷ఙ,𝒄,ஃ. Discrete Gaussian distribution is widely used 
in lattice-based cryptography to define the LWE.  

A strong property of discrete Gaussian vector 𝒙 ∈Λ  is the control of the norm: the probability that ‖𝒙 − 𝒄‖ < 𝜎√𝑛  writes 1 − 𝜖(𝑛)  where 𝜖(𝑛)  is a 
negligible function with respect to 𝑛. 

A Gaussian sampler is a primitive 𝒙 =𝐒𝐚𝐦𝐩𝐥𝐞𝐆(𝑩, 𝜎, 𝒄) where  𝒙 ← 𝐷ఙ,𝒄,ஃ and where 𝑩 is 
a basis of Λ. In this work, we use the GPV sampler 
(Gentry, 2008) that requires a condition on 𝜎  and 

‖𝑩‖ୋୗ  to converge:  𝜎 ≥ ‖𝑩‖ୋୗ 𝜂ఢᇱ (ℤ)  with:  𝜀 =2ିఒ/(2𝑛) , 𝑛 the dimension of lattice 𝛬(𝑩), 2ିఒ the 
statistical distance between 𝐷ఙ,,ஃ and the distribution 
obtained from the sampler and 𝜂ఢᇱ (ℤ) proportional to 
the smoothing parameter of ℤ.  

A pre-image of a vector 𝒖 ∈ ℤ  by a matrix 𝑨 ∈ℤ×  is a vector 𝒆 ∈ ℤ  such that 𝑨𝒆 = 𝒖 mod 𝑞 . 
We denote by 𝒆 = 𝐒𝐚𝐦𝐩𝐥𝐞𝐏𝐫𝐞(𝑨, 𝑻, 𝒖, 𝜎)  the 
primitive generating a random pre-image of 𝑨 and 𝒖 
with distribution 𝐷ఙ,𝟎,ஃ(𝑻) and using a trapdoor 𝑻 of 𝑨. 

Finally, we introduce the LWE (Learning With 
Error) problem mainly used in IBE for the encryption 
primitive. A LWE instance is based on an uniform 
random public matrix 𝑨 ∈ ℤ×  where 𝑚,  𝑛  and 𝑞 
are strictly positive public integers, a random uniform 
secret vector 𝒔 ∈ ℤ , a random discrete Gaussian 
(error) vector 𝒆 ∈ ℤ of known standard deviation 𝛼 
and the public vector 𝒕 = 𝑨 𝒔 + 𝒆 ∈ ℤ. LWE is NP-
hard if 𝛼𝑞 > 2 √𝑛 (Regev, 2009). It is important to 
know that the concrete security (i.e., computational 
complexity to solve a LWE instance) of LWE can be 
evaluated from dedicated programs such as LWE-
Estimator (Albrecht, 2015, and dedicated website).  

3.2 Parametrization of the WZH+  

The WZH+ studied in this paper is a lattice-based, 
RHIBE in the ROM (Wang and al., 2019).  

WZH+ scheme is parameterized by: 
• 𝝀:  level of security, specific to the 

application 
• 𝒅 : maximum depth of the hierarchal 

structure, specific to the application 
• 𝒏 : number of rows of the public key, 

strongly related to the level of security 𝜆. 
• 𝒒: arithmetic modulus  
• 𝜶: standard deviation of discrete Gaussian 

variables in LWE instances 
• 𝒎 : determines the private key size and 

parameter for TrapGen  
• (𝝈𝒊)𝒊ୀ𝟎,…𝒅 : standard deviations for the 

discrete Gaussian variables 
• 𝑵: maximum of child nodes for one parent 

node 
In a complement, we denote 𝜏ℓ: =𝜎ℓ√𝑚𝜔(ඥlog(𝑚)) , the standard deviation used to 

sample Gaussian secret vectors.  
The parameters of a cryptosystem are constrained 

in four ways: the application, functionality, level of 
security and performances. For the WZH+ the 
parameters setting needs a specific care to fulfill all 
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requirements. Note that (Wang and al., 2019) only 
gives an order of magnitude to set the parameters. In 
this section, we provide concrete values for the 
parameters of WZH+ for two commonly used levels 
of security. The five conditions driving the 
parameters constraints are as follows:  

1. Achieving a given level of security λ.  
2. Be in the conditions where LWE is NP-hard 
3. Having a low decryption failure rate 
4. Ensuring the convergence of SampleG  
5. Ensuring the functionality of TrapGen 

About condition 1, the level of security 𝜆 is related to 
parameters 𝑛, 𝛼  and 𝑞 . 𝜆  is the computational 
complexity to solve LWE instances parametrized by 𝑛, 𝛼  and 𝑞 . This writes 𝜆 =  𝐋𝐖𝐄_𝐄𝐬𝐭(𝑛, 𝛼, 𝛼𝑞) 
where 𝐋𝐖𝐄_𝐄𝐬𝐭  is the best known algorithm for 
solving LWE. 𝑛, 𝛼  and 𝑞  has to be to choose to 
achieve a level of security greater or equal to 𝜆 . 
Furthermore, they are constraints by the inequality 𝛼𝑞 ≥ 2√𝑛 ensuring that LWE can be reduced to the 
NP-hard problem SVP (condition 2). Condition 3 
involves parameters used in a Gaussian sampler and 
writes 𝛼[1 + 𝑚(𝜏 + 2 ∑ 𝜏ିଵୀଵ… )] < 1/5  with 𝜏 = 𝜎√𝑚log (𝑚)  In addition, the convergence of 
Gaussian sampler (condition 4) is verified with 𝜎ℓ =𝑚ଵ.ହℓାଵ.ହlog(𝑛)ଶℓାଶ.ହ . Finally, parameters 𝑚, 𝑛  and 𝑞 are strongly linked by the condition ensuring the 
functionality of TrapGen from (Micciancio and 
Peikert, 2012) 𝑚 = 2𝑘𝑛 ceil[log(𝑞)]  where 𝑘  is an 
arbitrary strictly positive integer. This corresponds to 
condition 5.  

From the conditions recalled above, it is easy to 
see that setting all parameters is highly constrained. 
We develop a configuration setting software 
providing parameters set for a given level of security 𝜆 and depth 𝑑. The used degrees of freedom are 𝑛, 𝛼 
and 𝛿. This latter, introduced in (Wang and al., 2019) 
is such that 𝑚ᇱ = 6𝑛ଵାఋ and 𝑚 the closest integer of 𝑚ᇱ satisfying condition 5 (equation 4)  with the same 𝑞  used for 𝑚 . Precisely and firstly, 𝑞  is set at 𝑞 =2𝛼ିଵ√𝑛 ensuring condition 2. Then, a value of  𝑛 and 𝛿 are chosen arbitrarily (in practice, the use of LWE 
estimator allows initializing the first values). 𝑚  is 
initialized to 6𝑛ଵାఋ  and 𝛼  such that inequality of 
condition 3 is equality. This is possible because the 𝜎 
only depend on 𝑚, 𝑛 and 𝑞 which are determined. If 
the level of security is not achieved, we increase 𝑛 
until achieving it. Then, we decrease 𝛿  and 𝛼  to 
ensure that condition 3 is still valid. Then, we find 
integer 𝑘  verifying that 2𝑘𝑛log(𝑞) is the closest to 𝑚 = 6𝑛ଵାఋ . Then, we modify 𝑚 = 2𝑘𝑛log(𝑞) and 
check those conditions 3 and 4 are still valid. If it is 

not the case, variations on  𝛿 and 𝛼 have to be done 
until satisfying all conditions.  

Below, we first give two practical parameters set 
(i.e., respecting conditions listed above) for two 
security levels 𝜆. In table 2, we provide instances size. 
This table reveals that for security level that is 
commonly used in applications, the sizes of instances 
are high. They cannot be considered for embedded 
applications but they are compliant with resources 
used for cloud computing.  

Table 1. 𝒏 =  𝟒𝟎𝟗𝟔, 𝑳 =  𝟐, 𝝀 = 𝟏𝟎𝟓, 𝒌 = 𝟒 𝑚 =  2752512 𝜎  =  [2277964473455.1304,               1497970532864220383412224,               985052990719398563678057032830681088] 𝜏  =  [80848020546021168,             53164987351470310553961889792,              34960854464866698234190555100447493849088] 𝛼 =  4.0108458310149454𝑒 − 49 log(𝑞) =  168  𝑞 = 31913467979797562669220565259669898554220729         2834747 
 𝒏 = 𝟖𝟏𝟗𝟐,        𝑳 =  𝟐,          𝝀 = 𝟐𝟗𝟗,        𝒌 = 𝟔  𝑚 =  8847360 𝜎  =  [16035367938144.068,              71315869687241918377885696,       317170974115877910165520524985791152128] 𝜏  =  [1100681478931855232,              4895182774817576965287012466688,            217708890878450861416777359785350168188026              88 ] 𝛼 =  2.0261448549063876𝑒 − 52 log(𝑞) =  180  𝑞 =  8716268720886410993567486135302925431631690            55281512793 

Table 2: Sizes for a given security level.  

  
Size in bytes 

𝐿 =  2, 𝑛 =  4096, 𝜆 =  105 

𝐿 = 2,  𝑛 =  8192,  𝜆 = 299 𝐏𝐏 (2𝑚 + 1)𝑛log(𝑞) 5.4 𝑒ଵଵ 3.3 𝑒ଵଶ𝐌𝐊 2𝑚ଶ 2.5 𝑒ଵଶ 2.0 𝑒ଵଷ 𝐒𝐊𝐈𝐃 (2𝑚 + log(𝑁))𝑚 2.5 𝑒ଵଶ 2.0 𝑒ଵଷ𝐊𝐔𝐈𝐃,𝐭 (2𝑑 + log(𝑁))𝑚 2.0 𝑒 5.6 𝑒 𝐃𝐊𝐈𝐃,𝐭 (2𝑑 + 1)𝑚 2.0 𝑒 5.6 𝑒 
CT (2𝑑 + 1)𝑚log(𝑞) 3.3 𝑒଼ 1.0 𝑒ଽ

3.3 Implementation   

The objective of this implementation of the WZH+ is 
to quantify the performances in software and to 
highlight implementation issues.  

The implementation is in Python and we are using 
different libraries:  

• Cypari2 for linear algebra, such as the 
HNF (Cypari2, 2022). 
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• Numpy for random continuous gaussian 
sampling (Numpy, 1995).  

• Anytree for the revocation module 
(Anytree, 2020).  

• Hashlib for hash primitives (Hashlib, 
2001) 

Our implementation has 256 bits of precision by 
default for basic operations such that scalar product 
or Euclidean norm computation. However, as 
explained below, the precision needs to be strongly 
increased within GSO due to numerical instabilities. 
Table 3 summarizes the main primitives used for the 
implementation. 

3.3.1 SampleGaussian 

For Gaussian sampling we use the GPV Sampler 
(Gentry and al., 2008) instead of other samplers for 
general lattices (Peikert, 2009) and (Micciancio and 
Peikert, 2012). This sampler is easy to implement and 
the convergence condition is part of the parameters 
setting (Wang and al., 2019). A specific analysis is 
required for two primitives called by the sampler: 
GSO and SampleZ. This latter is the Gaussian 
sampling in one dimension i.e., when the lattice is ℤ.  

To deal with SampleZ and high value of the 
standard deviations and centers, we used the Peikert 
sampler (Peikert, 2009) applied in dimension 1. This 
sampler remains on rounding a continuous Gaussian 
random variable: if 𝑥 ~ 𝑁(0,1)  then 𝑐 + 𝜎 ×round(𝑥)~𝐷ℤ,,ఙ  where  round(𝑥) = round( 𝑥/𝑟) × 𝑟 with 𝑥, 𝑟 real. The convergence condition of 
this sampler writes: 𝜎ଶ > 𝑟ଶ = 1. It is verified thanks 
to the high standard deviations 𝜎 used in the scheme. 
Using higher 𝑟 > 1 for rounding is possible for an 
optimized implementation.  

The rounding is realized with primitive floor of 
Cypari requiring to maintain at a high level the 
accuracy during the computation.  

The GSO presents strong numerical instabilities. 
During implementation tests, it was detected through 
the Gaussian sampling which provides vectors with 
norms that do not satisfy the expected bound because 
of the instability of the GSO. This is a well-known 
problem and is due to the iterative structure of the 
computation. It has been shown in (Giraud and al., 
2005) that applying twice the GSO to a matrix 
optimized for the stability of the computation. 
However, this is not enough to stabilize the GSO 
computation because of the high modulus 𝑞 involved 
in the scheme (the size of the matrix is not a main 
parameter rather than the size of numbers in the 
matrix).  

A lack of precision in GSO leads to instability in 
the Gaussian sampler SampleGaussian, especially 
when it is used in a primitive SamplePre with a non-
zero mean. The stability of primitive 
SampleGaussian depends on precision within the 
GSO of the use basis. When basis coefficients are 
bigger, its GSO need to be computed with even more 
precision to guarantee stability Gaussian sampler. In 
our implementation of the WZH+ with a depth of 2, 
we used precision of 2048 bits in the GSO 
computation for first-level Derive and KeyUp of 
KGC, 3000 bits for second-level Derive and first-
level KeyUp and 4096 bits for second-level DKGen. 

3.3.2 BasisDel  

For BasisDel, we use the procedure described in 
(Agrawal and al., 2010). Implementation of primitive 
ToBasis follows original construction in lemma 7.1 
of (Micciancio and Goldwasser, 2002). This 
algorithm performs matrix calculations in ℤ. It uses 
SolveRight primitive that find an integer matrix 𝑿 
satisfying the linear system 𝑻𝑿 =  𝑺 where 𝑻 and 𝑺 
are known square matrix. Cypari didn’t provide such 
a primitive so we implemented SolveRight from 
method written in (Hung and Rom, 1990).  

Table 3: Summary of all primitives. 

Primitive Implementation 
Linear Algebra 

HNF Cypari 
GSO Self-implemented 
SolveRight mod 
q

Cypari 

SolveRight in ℤ Hung and Rom, 1990 
MatrixInversion Cypari

Lattice-Cryptography 
SampleZ Peikert, 2009 
SampleGaussian Gentry, 2008 
TrapGen Miccianci and Peikert, 2012 
BasisDel Agrawal and al., 2010 
ToBasis Micciancio and Goldwasser, 2002 
RandBasis Cash and al., 2010 
SamplePre Gentry, 2008 

General-Cryptography 
Seed generation TRNG
Seed extension SHAKE-256 
Random Oracle SHAKE-128 

Tree 
CS.Setup Anytree 
CS.Assign Anytree 
CS.Path Anytree 
CS.Cover Anytree 
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Primitive RandBasis, introduced in (Cash and 
al., 2010), is used to randomizes basis output by 
ToBasis avoiding deterministic construction of 
trapdoors. RandBasis outputs, from a given basis, a 
new basis that is random with discrete Gaussian 
random vectors. It relies on several (but bounded with 𝜎√(𝑚)) calls to Gaussian sampling until generating 
a set of linearly independent vectors. 

3.4 Performances Analysis  

The main feature analyzed for performance analysis 
is the timing of each primitive. Due to the huge size 
of instances and the global computational complexity, 
the performances are computed for a non-practical 
(i.e., very low) security level (< 20 bits) with: 𝑑 =  2,𝑛 = 2 , 𝑘 = 2 , 𝑚 = 288  and 𝑞 =79466497377483581 . Illustrations for security 
level > 80 bits leads to unpractical computational time 
and memory sizes. The implementation run on an 
Intel(R) Xeon(R) Platinum 8168 CPU @ 2.70GHz. 
To get execution time, we took the average of the 
times recorded on 50 executions for each primitive. 
Table 4 below provides the execution time of all 
primitives of the scheme. The primitives Derive, 
KeyUp and DKGen are highly time consuming. 
However, in real deployment, these primitives are 
called sparsely during the operating lifetime of the 
application. To highlight the bottlenecks leading to 
such time performances, a specific look to Derive, 
KeyUp, DKGen primitives shall be done.  

Table 4: Execution of the main primitive of the scheme for 
the security level of (< 20 bits) and 2 hierarchical levels. 

Primitives Execution time
Setup 5s 

Derive 𝑑 = 1 5min17 
Derive 𝑑 = 2 10min19 
KeyUp KGC 1min50 

KeyUp 𝑑 =  1 6min44 
DKGen 𝑑 =  2 5min11 

Encrypt  15 ms 
Decrypt 0.65 ms 

 

For DKGen at the second level ( 𝑑 =  2 ), it 
appears that the main bottlenecks are the following 
(linear algebra and lattices) primitives: Inverse matrix 
(25%), GSO (14.3%), HNF (42%) and Trapdoor 
Generation (15.7%). By doing the same analysis on 
other primitives such as KeyUp and Derive, GSO and 
HNF also appears as the main and common 
bottlenecks.  

4 CONCLUSIONS  

Post-quantum RHIBE are still heavy schemes, hard to 
exploit except is some contexts such as cloud 
computing. The proposed implementation provides a 
complete parametrization strategy of a complex 
scheme, the WZH+ in the ROM model, which is the 
most efficient and compact post-quantum RHIBE 
from today. The bottleneck (HNF) and critical 
operations (such as GSO) require a specific attention 
for performance issues. It exists acceleration strategy 
that does not avoid the main issue regarding lattice-
based IBE: the size of the instances.  
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