
ODRL-Based Resource Definition in Business Processes

Zakaria Maamar1 a, Amel Benna2 b, Minglin Li3, Huiru Huang3 and Yang Xu3 c

1College of Computing and IT, University of Doha for Science and Technology, Doha, Qatar
2Department of Multimedia and Information Systems, CERIST, Algiers, Algeria

3School of Computer Science, Fudan University, Shanghai, China

Keywords: Asset, Business Process, ODRL, Resource, Service.

Abstract: Despite the popularity of Resource-as-a-Service (RaaS) model, it falls short of providing low-level, flexible
control over resources in terms of which category of users can use them, when and where users can use them,
and how much users need to pay for them. To provide such a control, this paper presents 2 intermediary models
between resources and services referred to as Resource-as-an-Asset (RaaA) and Asset-as-a-Service (AaaS),
respectively. First, resource-related constructs are mapped onto asset-related constructs and then, the same
asset-related constructs are mapped onto service-related constructs. A projection operator is developed to
support construct mappings based on a set of pre-defined rules. To illustrate asset-related constructs, the paper
resorts to the Open Digital Rights Language (ODRL) defining what is permitted, forbidden, or obliged over
an asset. A system implementing construct mappings is presented in the paper as well.

1 INTRODUCTION

In the literature, a Business Process (BP) is a set of
activities/tasks connected together based on a process
model that specifies who does what, where, when, and
why. A plethora of BPs exist ranging from product
procurement to loan approval and claim processing.

In addition to process model specification, BPs’
owners proceed with identifying (processing, storage,
and communication) resources that these BPs would
use at run-time. Because resources are valuable as-
sets, frequently costly, and limited (Arias et al., 2018),
providers could be selective when provisioning their
resources using criteria like urgency of demands and
best offers. As a result, BPs’ owners need to respond
to changes of resources by avoiding for instance, to
be locked into particular providers (i.e., BP-resource
strong coupling). A widely adopted solution to ad-
dress the lock-into concern is to abstract resources
into services leading into what the ICT commu-
nity refers to as Anything-as-a-Service (XaaS) model.
Cloud computing has been an excellent showcase of
the benefits of XaaS through SaaS, PaaS, and IaaS
models. However, this abstraction does not offer

a https://orcid.org/0000-0003-4462-8337
b https://orcid.org/0000-0002-9076-5001
c https://orcid.org/0000-0002-0958-8547

providers the means nor the guidelines of how to ei-
ther permit or prohibit the use of their resources to a
specific category of users, a specific period of time, a
specific location, etc. To address this lack of means
and guidelines, we resort to the Open Digital Rights
Language (ODRL, (W3C, 2018)) first, to elevate re-
source to the level asset and second, to specify the
policies that would either permit or prohibit the use
of assets abstracting resources.

Thanks to ODRL, we achieve XaaS over 2 stages
where first, a resource is exposed as an asset requir-
ing the development of Resource-as-an-Asset (RaaA)
model, and second, an asset is exposed as a ser-
vice also requiring the development of Asset-as-a-
Service (AaaS) model. An immediate benefit of the
RaaA model is the possibility of specifying ahead of
time the context in which the use of a resource would
be either permitted or prohibited without questioning
this resource’s availabilities at run time nor jeopardiz-
ing the execution of BPs. This would give providers
full control of their resources by for instance, desig-
nating particular users of resources, e.g., BPs’ own-
ers, and even rectifying the prohibited uses of re-
sources. Mire benefits of the RaaA model are con-
straining the use of resources with parameters like
maximum capacity and allocated time. AaaS model
would also achieve other benefits like hiding the
intrinsic characteristics of resources exposed as as-

Maamar, Z., Benna, A., Li, M., Huang, H. and Xu, Y.
ODRL-Based Resource Definition in Business Processes.
DOI: 10.5220/0012047500003538
In Proceedings of the 18th International Conference on Software Technologies (ICSOFT 2023), pages 225-232
ISBN: 978-989-758-665-1; ISSN: 2184-2833
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

225



sets and then, services, and allowing a platform-
independent control of these resources. Section 2 de-
fines resource and ODRL, and suggests a running ex-
ample. Section 3 presents resource, asset, and service
models and their mappings. Section 4 implements
these mappings. Section 5 concludes the paper and
discusses future work.

2 BACKGROUND

This section presents briefly resource and ODRL and
then, suggests a running example.

2.1 Resource in Brief

The concept of resource is not new in the litera-
ture and has been adopted in different domains like
distributed artificial intelligence, cloud computing,
and service computing. From a broader perspec-
tive, Baker et al. specialize resource into compu-
tational, consumed, and produced, associating each
type with a separate lifecycle that would stress out
this type’s unique characteristics (Baker et al., 2018).
Lucchim et al. consider resources as “directly-
accessible components handled through a standard
common interface” (Lucchim et al., 2008). Finally,
Hofman adopts everything-as-a-resource as a base
for building seamless interoperable platforms in the
IoT world (Hofman, 2015). To enforce the relation-
ship between consumers of resources and providers of
resources, Maamar et al. define 5 consumption prop-
erties referred to as unlimited, shareable, limited, lim-
ited but-extensible, and non-shareable (Maamar et al.,
2016). Each property has a lifecycle consisting of
states depicting each the respective actions that con-
sumers and providers are expected to perform. By
analogy with these properties, Pufahl et al. in (Pu-
fahl et al., 2021) mention attributes that describe a re-
source in terms of capabilities, capacities, and avail-
ability at a given point in time, and decompose re-
sources into active and passive.

2.2 ODRL in Brief

ODRL is an example of rights expression languages
providing a flexible and interoperable information
model, vocabulary, and encoding mechanisms to rep-
resent statements about the usage of assets. An asset
is an identifiable resource (or collection of resources)
such as data, media, applications, and services. Fig. 1
is an excerpt of ODRL information-model.

Policy could include one to many permission, pro-
hibition, or duty rules. Permission allows an action

over an asset if all constraints are satisfied and if all
duties are fulfilled. Prohibition disallows an action
over an asset if all constraints are satisfied. And, duty
is to exercise an action that can be over an asset or
not. It is fulfilled when all constraints are satisfied.

Party is an entity or collection of entities that
could correspond to a person, group of persons, or-
ganisation, or agent. A party can fulfill different roles
including assigner (issuer of the rule), assignee (re-
cipient of the rule), and tracked party (indicating who
is being traced).

Constraint is used to refine the specification of an
action and a party/asset collection or to declare con-
ditions applicable to a rule.

2.3 Running Example

It is about John who is visiting Melissa in Paris. They
agree to meet in a coffee shop next to Melissa’s of-
fice. John can either ride a taxi or take a bus to reach
the coffee shop. It starts when John invokes an on-
line program for itinerary planning so that he would
approximately know how long it would take to reach
the coffee shop. The program is integrated into a Web
site. Prior to deciding on the transportation means,
John checks the weather forecast by invoking another
program that interacts with a dedicated database. Fi-
nally, he accesses the coffee shop’s Web site deployed
on a virtual server to submit a reservation.

In compliance with the RaaS model, existing
practices would bind BPs to on-premise and in-the-
cloud resources through services. However, this bind-
ing would not allow a low-level, flexible control of
these resources. For instance, while databases support
concurrency, identifying particular tasks that would
be eligible for concurrent access as well as the author-
ity that would approve this eligibility is not doable.
Contrarily, ODRL constructs like assignee and as-
signer would help target these tasks and specify this
authority. Another example is how to enforce specific
time slots or locations. Contrarily, ODRL constructs
like refinement/constraint would achieve this enforce-
ment. Finally, while payment covers a resource as a
whole, paying for specific operations using a resource
as well as handling the consequences of not fulfilling
a payment are not possible. Contrarily, ODRL con-
structs like duty and action with refinement/constraint
would help achieve this targeted payment.

3 CONNECTING CONCEPTS

This section presents the mappings of RaaA onto
AaaS and the operator supporting these mappings.

ICSOFT 2023 - 18th International Conference on Software Technologies

226



Figure 1: Excerpt of ODRL information model diagram.

3.1 Overview

Resource


Service


ex
po

se
d


as
 a




(a) Current

Resource


Asset


ex
po

se
d


as
 a

n


Service


ex
po

se
d


as
 a




(b) Future

Figure 2: From RaaS to RaaA and then, AaaS.

Fig. 2 (a) is the current practice of concretizing the
RaaS model. Contrarily, Fig. 2 (b) is the future prac-
tice that implements first, the RaaA model and then,
the AaaS model. We proceed in Section 3.2 with de-
veloping and/or adopting resource, asset, and service
models. Then, we do the same in Section 3.3 by creat-
ing 3 separate layers, one per model, in a way that the
layers would be semantically connected together us-
ing a specific operator that would project a construct
from one model to another. Having the AaaS model
on top of the RaaA model addresses some of the
RaaS model’s shortcomings like lack of means for
resource use. Contrarily, the AaaS model accommo-
dates these means using policies that could integrate
permission, prohibition, and obligation rules.

3.2 Model Development

Resource Model. In Fig. 3, Resource as a core class
is connected to Provider class and is described with
a set of functional characteristics captured through a
relevant class. These characteristics depict the pur-
pose of using a resource in terms of processing, stor-
ing, or communicating. Resource is also connected
to another class that is Interface acting as an entry
point (Hintsch et al., 2015) to a particular instantiated
resource at run-time. Practically speaking, an entry
point directs a particular demand of use to a resource
and consists of a set of operations identified with Op-
eration class. To have a controlled use over instanti-
ated resources at run-time, both Interface and Oper-
ation classes are connected to Non Functional Char-
acteristic class depicting by whom/how/when/where
an instantiated resource is used. Examples of non-
functional characteristics are reported in Table 1.

Table 1: Examples of non-functional characteristics.

Non-functional characteristic Concerned

Name Description Interface Operation

Occurrence single use/multiple uses X

Payment with fees/without fees X

Availability unlimited/limited/... use X X

Chronology specific order/random order X

Asset Model. We adopt the asset-model diagram de-
picted in Fig. 1 and explained in Section 2.2. Worth
mentioning, in compliance with Fig. 2 (b), the role of
Action class in first, identifying what is permitted/pro-
hibited/obliged over an asset and second, setting the

ODRL-Based Resource Definition in Business Processes

227



Figure 3: Representation of the resource-model diagram.

stage of exposing an asset as a service.
Service Model. In Fig. 4, Service as a core class has
a provider identified with Provider class, is described
with a set of non-functional characteristics captured
with QoS class, and is associated with several Ser-
vice Level Agreements (SLA) that track the instanti-
ated services’ ongoing provisioning levels to users at
run-time. These users are identified with Consumer
class. To frame the interactions between consumers
of services and providers of services, SLA are estab-
lished referring to specific non-functional characteris-
tics. Finally, in Fig. 4, Operation class refers to how
an instantiated service is performed at run time.

3.3 Model Overlay

To achieve the transition from the RaaA model to the
AaaS model as per Fig. 2 (b), we associate this tran-
sition with a projection operator (σ). This operator
would permit in a bottom-up way to semantically cor-
respond a construct, either class or relation along with
their relevant attributes, in a source model into an-
other either a simple or a complex construct in a desti-
nation model. First, simple construct would be either
class or relation along with their relevant attributes.
Second, complex construct would be a set of classes
and relations connecting these classes together. In the
following, C , R , and A stand for class, relation, and
attribute constructs, respectively.

Prior to proceeding with the different projections,
the following points are worth mentioning:
1. When rule class is used, it encompasses permis-

sion, prohibition, and duty classes.
2. When rel(A,B) is used, rel as a relation has A class

as source and B class as destination. The connec-
tion between the 2 classes is set by having rel in-
cluded as an attribute of B datatype in A class.

3. Because party class has a dual role being as-
signer and assignee, this role is differentiated us-
ing function attribute that could be set to either
assigner or assignee. In addition, during the pro-
jection of the asset model’s constructs, party class
appears twice because of the dual role.

Projecting Resources Onto Assets. The resource
model (res) is the source and asset model (ass) is the
destination. Applying σ to the resource model’s con-
structs, i.e., classes, attributes, and relations, would
lead to the following semantic correspondences in the
asset model’s constructs:

1. σ(res:C .Provider)→ ass:C .Party allowing to indi-
cate those provisioning resources.

(a) Party.uid ← Provider.uid allowing to uniquely
link the provider to a party.

(b) Party.function← “assigner” allowing to set the
role of the party using an ODRL-predefined
value that is “assigner”.

2. σ(res:C .Resource) → φ allowing to hide a re-
source from any potential uses.

3. σ(res:C .Interface) → ass:C .Asset allowing to
treat an interface as an asset, which means con-
trolling the use of a resource through its different
interfaces.

(a) Asset.uid← Interface.uid allowing to uniquely
link the interface to an asset.

(b) Asset.relation ← ”target” allowing to confirm
the control of the interface using an ODRL-
predefined value that is “target”.

4. σ(res:C .Operation) → ass:C .Action allowing to
treat an interface’s operation as an asset’s action.

(a) Action.name ← any uid allowing to set the
name of the action with either a prede-
fined value in compliance with ODRL core-
vocabulary or a new value in compliance with
ODRL profile mechanism.

5. σ(res:C .Functional Characteristic)→ φ. The lack
of corresponding constructs is justified by the fact
that ODRL does not “focus” on assets’ functional
characteristics like what assets are meant for.

6. σ(res:C .Non Functional Characteristic) →
ass:C .Constraint allowing to treat a non-
functional characteristic as a constraint.

(a) Constraint.leftOperand ← any uid allowing to
set the name of the constraint with either a pre-

ICSOFT 2023 - 18th International Conference on Software Technologies

228



Figure 4: Representation of the service-model diagram.

defined value in compliance with ODRL core-
vocabulary or a new value in compliance with
ODRL profile mechanism. This name should
semantically correspond to the non-functional
characteristic’s name to be used as an uid.

(b) Constraint.operator ← “eq” ⊕ “gt” ⊕ ·· · al-
lowing to select an operator function that will
set the constraint’s condition to satisfy using an
ODRL-predefined value.

(c) Constraint.rightOperand ←
Non Functional Characteristic.value allow-
ing to set the constraint’s value that will be
compared to the leftOperand.

(d) Constraint.unit ←
Non Functional Characteristic.dataType al-
lowing to adopt the data type of the value of
the non-functional characteristic.

The projection of the resource model’s afore-
mentioned classes onto the asset model’s classes
results into a partial overlay of this asset model’s
constructs. Indeed, many classes, of which some
are mandatory1 are missing. To consider ODRL
information-model’s mandatory classes and their at-
tributes and to achieve a complete overlay, Policy,
Rule, and Party2 classes are considered with focus on
updating their attributes as follows:

1. Policy.uid← any uid allowing to set the identifier
of the policy that will integrate the necessary rules
that will control the use of an asset related to an
interface.

2. Policy.type ← ”Agreement”⊕ “Offer” ⊕ ·· · al-
lowing to set the type of the policy that will
integrate the necessary rules using an ODRL-
predefined value like “Agreement” and “Offer”.

1Using “should” and ”may” to describe ODRL con-
structs, we label them as either mandatory or optional.

2Though Party is included in the first round of pro-
jection as “assigner”, it is included again to identify “as-
signee”.

3. Rule.uid ← any uid allowing to set the identifier
of a rule.

4. Party.uid ← any uid allowing to indicate those
who will be either granted or denied using re-
sources in contrast to those provisioning re-
sources. This assumes that users, referred to
as party, of resources are considered as a non-
functional characteristic.

5. Party.function ← “assignee” allowing to set the
role of the party that will be either granted or de-
nied the use of a resource exposed as an inter-
face using an ODRL-predefined value that is “as-
signee”. This assumes that the party is considered
as a non-functional characteristic.

After examining the different classes, we now
project the relations in the resource model onto the
relevant constructs in the asset model.

1. σ(res:R .provider(C .Resource,C .Provider)) → φ

allowing to hide the relation that exists between
a resource and its provider.

2. σ(res:R .interface(C .Resource,C .Interface)) → φ

allowing to hide the relation that exists between
a resource and its interface.

3. σ(res:R .operation(C .Interface,C .Operation)) →
ass:R .action(C .Rule,C .Action) ∪
ass:R .asset(C .Rule,C .Asset) allows to link an
action corresponding to an operation to an asset
corresponding to an interface through a rule.

(a) Rule.action ← Action allowing to include the
reference of the action in a rule.

(b) Rule.asset← Asset allowing to include the ref-
erence of the asset in a rule.

4. σ(res:R .functional char(C .Resource,
C .Functional Characteristic)) → φ allowing
to hide the relation that exists between a resource
and its functional characteristics.

5. σ(res:R .non functional char(C .Operation,
C .Non Functional Characteristic))→

ODRL-Based Resource Definition in Business Processes

229



ass:R .refinement(C .Action,C .Constraint)) al-
lowing to link a constraint corresponding to
a non-functional characteristic to an action
corresponding to an operation.

(a) Action.refinement ← Constraint allowing to in-
clude the reference of the constraint in an ac-
tion.

6. σ(res:R .non functional char(C .Interface,
C .Non Functional Characteristic))→
ass:R .constraint(C .Rule,C .Constraint) ∪
ass:R .asset(C .Rule,C .Asset) allowing to link
a constraint corresponding to a non-functional
characteristic to an asset corresponding to an
interface through rules.

(a) Rule.constraint ← Constraint allowing to in-
clude the reference of the constraint in a rule.

(b) Rule.asset← Asset allowing to include the ref-
erence of the asset in a rule.

By analogy with the partial overlay of the asset
model due to the absence of some classes, we proceed
with the same by considering more relations, permis-
sion, prohibition, obligation, and party, with focus on
updating their attributes as follows:

1. Policy.permission ← Permission allowing to in-
clude the reference of the permission rule in a pol-
icy. This reference corresponds to the relation per-
mission(Policy,Permission).

2. Policy.prohibition ← Prohibition allowing to in-
clude the reference of the prohibition rule in a
policy. This reference corresponds to the relation
prohibition(Policy,Prohibition).

3. Policy.obligation ← Duty allowing to include the
reference of the duty rule in a policy. This
reference corresponds to the relation obliga-
tion(Policy,Duty).

4. Policy.asset ← Asset allowing to include the ref-
erence of the asset in a policy. This reference cor-
responds to the relation asset(Policy,Asset). In-
deed, as asset is common to all rules belonging
to the same policy, we associate it with the Policy
and not Rule construct.

5. Policy.party ← Party allowing to include the ref-
erence of the party in a policy. This reference cor-
responds to the relation party(Policy,Party) where
the party is set as assigner.

6. Rule.party← Party allowing to include the refer-
ence of the party in a rule. This reference corre-
sponds to the relation party(Rule,Party) where the
party is set as assignee and considered as a non-
functional characteristic.

Projecting Assets Onto Services. After completing
the projection of the resource model’s constructs onto
the asset model’s constructs, we now project these as-
set model’s constructs onto the service model’s con-
structs. Thus, the asset model (ass) is the source and
service model (ser) is the destination. Applying σ

to the asset model’s constructs, i.e., first, classes, at-
tributes, and relations, would lead to the following se-
mantic correspondences in the service model’s con-
structs:
1. σ(ass:C .Asset) → ser:C .Service allowing to ex-

pose an asset as a service, which means “shield-
ing” future users from any technical specifications
related to the asset.

(a) Service.uid ← Asset.uid allowing to uniquely
link the asset to a service.

2. σ(ass:C .Party) → ser:C .Provider subject that
Party.function is set to “assigner”. This projection
allows to expose the party as a provider.

(a) Provider.uid ← Party.uid allows to uniquely
identify the provider of a service.

3. σ(ass:C .Party) → ser:C .Consumer subject that
Party.function is set to “assignee”. This projec-
tion allows to expose the party as a consumer.

(a) Consumer.uid ← Party.uid allows to uniquely
identify the consumer that will be either granted
or denied the invocation of a service.

4. σ(ass:C .Policy) → ser:C .SLA allowing to define
under the guidance of a service provider the nec-
essary clauses of an agreement between this ser-
vice and a future consumer.

(a) SLA.uid← Policy.uid allowing to uniquely link
a policy to an agreement.

5. σ(ass:C .Rule) → φ. The lack of corresponding
constructs is justified by the fact that the service
model does not put any restrictions on for in-
stance, when and where SLAs should be permit-
ted, prohibited, or enforced.

6. σ(ass:C .Action) → ser:C .Operation allowing to
associate an action with a particular operation for
invoking a service.

(a) Operation.uid ← Action.name where name
would be used as the operation’s id.

7. σ(ass:C .Constraint)→ ser:C .QoS allowing to de-
velop the non-functional characteristics featuring
the quality-of-service of a service.

(a) QoS.name ← Constraint.leftOperand allowing
to set the non-functional characteristic’s name.

(b) QoS.value ← Constraint.rightOperand allow-
ing to set the non-functional characteristic’s
value.

ICSOFT 2023 - 18th International Conference on Software Technologies

230



(c) QoS.operator ← Constraint.operator allowing
to set the condition to satisfy the non-functional
characteristic’s value.

(d) QoS.unit ← Constraint.unit allowing to set the
unit used for the value of the non-functional
characteristic.

After examining the different classes, we now
project the relations in the asset model onto the rele-
vant constructs in the service model.

1. σ(ass:R .permission(C .Policy,C .Permission)) →
φ. The lack of corresponding constructs con-
firms that SLAs are free of any permissions per-
mitting their enablement. The same applies to
σ(ass:R .prohibition(C .Policy,C .Prohibition)) and
σ(ass:R .obligation(C .Policy,C .Duty)).

2. σ(ass:R .asset (C .Policy,C .Asset)) →
ser:R .sla(C .Service,C .SLA) allowing to link
a SLA corresponding to a policy to a service
corresponding to an asset.

(a) Service.sla← SLA allowing to include the ref-
erence of the SLA in a service.

3. σ(ass:R .party(C .Policy,C .Party)) →
ser:R .provider(C .SLA,C .Provider) ∪
ser:R .provider(C .Service,C .Provider) allowing to
ensure that the provider that sets a service’s SLAs
corresponding to an assigner will be referenced in
both the SLAs and service associated with these
agreements.

(a) SLA.provider ← Provider allowing to include
the reference of the provider in a SLA.

(b) Service.provider ← Provider allowing to in-
clude the reference of the provider in a service.

4. σ(ass:R .party(C .Rule,C .Party)) → φ allows to
hide the relation that exists between the rule and
party, where Party.function is set to “assignee”.

5. σ(ass:R .constraint(C .Rule,C .Constraint))→ φ al-
lowing to hide the relation that exists between the
rule and constraint.

6. σ(ass:R .action(C .Rule,C .Action)) → φ allowing
to hide the relation that exists between the rule
and action.

7. σ(ass:R .refinement(C .Action,C .Constraint)) → φ

allowing to hide the relation that exists between
the action and constraint.

8. σ(ass:R .permission(C .Policy,C .Permission)) →
φ allowing to hide the relation that exists between
the policy and permission.

9. σ(ass:R .prohibition(C .Policy,C .Prohibition)) → φ

allowing to hide the relation that exists between
the policy and prohibition.

10. σ(ass:R .obligation(C .Policy,C .Duty)) → φ allow-
ing to hide the relation that exists between the pol-
icy and permission.

(a) SLA.consumer ← Consumer allowing to
include the reference of a consumer cor-
responding to an assignee in a SLA.
This reference corresponds to the relation
R .consumer(C .SLA,C .Consumer)

(b) Service.operation← Operation allowing to in-
clude the reference of an operation in a ser-
vice. This reference corresponds to the relation
R .operation(C .Service,C .Operation)

(c) Service.qos ← QoS allowing to include the
reference of quality of service in a service.
This reference corresponds to the relation
R .qos(C .Service,C .QoS)

(d) SLA.qos ← Qos allowing to include the
reference of quality of service in a SLA.
This reference corresponds to the relation
R .qos(C .SLA,C .Qos)

4 PROTOTYPE

Developed in Python 3.0 along with using sys, json,
and pyqt5 libraries, the system implementing the pro-
jection operator σ consists of 5 modules, instantia-
tion, R-A projection, A-S projection, A-storage, and
S-storage, and 5 repositories, resources, R-A projec-
tion rules, A-S projection rules, assets, and services.
resource instance, asset instances, and service in-
stances are the system’s outcomes.

To demonstrate how the system is put into action,
we adopt coffee-shop-database as a resource from the
running example. This resource includes many inter-
faces with focus here on DBaccess that implements
read, update, delete, and save operations (Fig. 5’s left
panel). As per Fig. 3, on top of an interface’s non-
functional characteristics like concurrency for DBac-
cess, an operation can also have non-functional char-
acteristics like interactability and availability.

Following resource specification through a dedi-
cated editor, R-A projection module is initiated to map
resources specified in JSON files onto assets. Fig. 5’s
center panel partially shows the outcome of projecting
the coffee-shop-database resource into ODRL con-
structs such as asset, action, and rule. Among these
constructs that could be set manually, we mention for
instance, a permission rule to read concurrently the
database, a prohibition rule to proscribe updating the
database concurrently and during a specific period of
time, and an obligation rule to backup the database us-
ing the archive action. Finally, A-S projection mod-

ODRL-Based Resource Definition in Business Processes

231



Figure 5: Screenshots of resource-asset-service projections.

ule is initiated to project assets into services as per
Fig. 5’s right panel. Here, DBAccess asset has be-
come a service having in compliance with Fig. 4 a
provider, an operation, and a sla, for example. While
some details during A-S projection to specify services
are set automatically because of the pre-defined rules,
the rest like reference to a particular consumer and
QoS are set manually by the end-user.

5 CONCLUSION

This paper presented a customized low-level control
over resources that BPs execution would use at run-
time. We elevated resource to the level of asset and
then, specified policies that would either permit or
prohibit the use of resources exposed as assets and
afterward, as services. We resorted to ODRL to spec-
ify these policies. We also presented how the double
exposure of resource into asset and then, service was
achieved by developing 2 models, RaaA and AaaS.
A projector operator achieved the double exposure
whose technical doability was verified based on an in-
house system. In term of future work, we would like
to apply the system to more case studies along with
checking the soundness of RaaA and AaaS models.

REFERENCES

Arias, M., Saavedra, R., Marques Samary, M., Munoz-
Gama, J., and Sepulveda, M. (2018). Human Re-
source Allocation in Business Process Management
and Process Mining: A Systematic Mapping Study.
Management Decision, 56.

Baker, T., Ugljanin, E., Faci, N., Sellami, M., Maamar,
Z., and Kajan, E. (2018). Everything as a Re-
source: Foundations and Illustration through Internet-
of-Things. Computers in Industry, 94.

Hintsch, J., Schrödl, H., Scheruhn, H., and Turowski, K.
(2015). Industrialization in Cloud Computing with
Enterprise Systems: Order-to-Cash Automation for
SaaS Products. In Proceedings of WI’2015, Os-
nabrück, Germany.

Hofman, W. (2015). Towards a Federated Infrastructure for
the Global Data Pipeline. In Proceedings of I3E’2015,
Delft,The Netherlands.

Lucchim, R., Millot, M., and Elfers, C. (2008). Resource
oriented Architecture and REST: Assessment of Im-
pact and Advantage on INSPIRE. JRC Scientific and
Technical Reports EUR 23397 EN - 2008, JRC Euro-
pean Commission.

Maamar, Z., Faci, N., Sakr, S., Boukhebouze, M., and Bar-
nawi, A. (2016). Network-based Social coordination
of Business Processes. Information Systems, 58.

Pufahl, L., Ihde, S., Stiehle, F., Weske, M., and Weber,
I. (2021). Automatic resource allocation in business
processes: A systematic literature survey. CoRR,
abs/2107.07264.

W3C (2018). ODRL Information Model 2.2. https://www.
w3.org/TR/2018/REC-odrl-model-20180215/. (Vis-
ited January 2021).

ICSOFT 2023 - 18th International Conference on Software Technologies

232


