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Gestures can be a suitable way of supporting communication for people with communication difficulties,

especially in the bedroom scenario. In the scope of the AAL APH-ALARM project, we previously proposed
a gesture-based communication solution for the bedroom context, which relies on a smartwatch for gesture
recognition. In this contribution, our main aim is to explore better wearable alternatives to the smartwatch
regarding the form factor and comfort of use, as well as cost. We compare a smartwatch and a simpler,
smaller, less expensive wearable device from MbientLab, both integrating an accelerometer and a gyroscope,
in terms of gesture classification performance. The results obtained based on data acquired from six subjects
and the support vector machines algorithm show that, overall, both explored devices lead to a model with
promising and similar results (mean accuracy and F1 score of 98%, and mean false positive rate of 2%), being
thus possible to rely on a smaller and lower cost wearable device, such as the MbientLab sensor module, for

recognizing the considered arm gestures.

1 INTRODUCTION

Verbal communication plays an important role in our
lives, allowing us to express ourselves to others (Love
and Brumm, 2012). Therefore, when the ability to use
language is affected, such as when a person acquires a
language disorder (e.g., resulting from brain damage
due to a stroke or a neurological disease) (Love and
Brumm, 2012), it has a considerable negative impact
on the person’s life, leading for example to a loss of
independence and sense of safety.

Communication is especially important in some
daily life scenarios, such as the in-bed scenario (i.e.,
person lying in bed). In this scenario, which moti-
vates the present research, a person with communi-
cation difficulties may be alone and need to ask for
immediate help if they suddenly fell unwell. Further-
more, people that acquired a language disorder (e.g.,
due to a stroke or Parkinson’s disease), may need help
with more common situations, such as getting up from
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bed to go to the bathroom during the night, due to the
fear of falling.

Although a large offer of augmentative and alter-
native communication (AAC) solutions is currently
available for aiding people with communication diffi-
culties, many of them rely on applications for mobile
devices with touchscreens, in which the user selects
words or sentences represented by pictograms and/or
text to generate sentences which are transmitted to
others using synthesized speech (Elsahar et al., 2019).
Moreover, research on assistive communication has
also focused mainly on mobile applications (Allen
et al., 2007; Kane et al., 2012; Laxmidas et al., 2021;
Obiorah et al., 2021).

While this type of solution may be adequate in
many daily life situations, they may prove less practi-
cal for the in-bed scenario, since they require the user
to move around to reach for the device or having to
hold it in an uncomfortable way while lying down.
Furthermore, touch input and the need to choose from
several images/pictograms may not be the most ade-
quate in more stressful situations (e.g., when the user
is feeling unwell and wants to ask for help immedi-
ately). Other types of inputs, such as breathing (El-
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sahar et al., 2021; Wang et al., 2022) and brain sig-
nals (Peterson et al., 2020; Luo et al., 2022), present
other limitations, including the need to wear intrusive
sensors, being cumbersome to use especially while ly-
ing in bed, and/or requiring a considerable amount of
initial training effort. There is thus a need to develop
a solution for supporting communication that is ade-
quate for use while in bed (both day and night), being
as unobtrusive as possible, and that is also low-cost.

A solution based on the use of gestures can be a
suitable option, since it does not require the direct
physical use of a device, requiring only the user to
carry out movements with a part of the body, such as
the arm. In the context of human-human communi-
cation, a Personal Gesture Communication Assistant
has been proposed, which recognizes gestures using
a camera and machine learning (Ascari et al., 2019).
However, no solution has been found that relies on
gestures to enable remote two-way communication
between a person with communication impairments
and a caregiver, in the context of the in-bed scenario,
besides previous work by our group (Guimaraes,
2021; Guimaraes et al., 2021; Rocha et al., 2022; San-
tana, 2021; Santana et al., 2022).

Concerning gesture recognition, it typically relies
on the data provided by one or more types of sensors,
such as ambient (e.g., cameras, radars) or wearable
(e.g., smartwatch). Although these sensors/devices
are suitable for the target scenario, they usually have a
non-negligible cost. The cameras have the additional
disadvantage of commonly raising privacy issues for
the users, even if RGB images are not used, especially
in sensitive home divisions, such as the bedroom.

In the scope of the AAL APH-ALARM project!,
we previously carried out studies with both a smart-
watch and a radar for gesture recognition while in bed.
However, the radar work is still exploratory (San-
tana, 2021; Santana et al., 2022) and better re-
sults were achieved with the smartwatch (Guimaraes
et al., 2021; Guimaraes, 2021). Nonetheless, smart-
watches have more features than what is needed for
our proposal (only the accelerometer and gyroscope
are used). Moreover, they have relatively large dimen-
sions and weight, which make them uncomfortable to
use, especially during prolonged use, including dur-
ing sleep. Therefore, the main objective of this con-
tribution is to improve on the proposed smartwatch-
based communication support system, by exploring
wearable alternatives to the smartwatch that are sim-
pler and less expensive, with a better form factor, be-
ing thus more comfortable to use.

The use of an affordable and small size wearable
has already been explored before (Zhao et al., 2019),
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but the authors did not compare it with a larger, more
expensive wearable device. Some works compared
different wearables, but they were placed at different
body parts (e.g., finger and arm (Kurz et al., 2021))
or they included different sensor types (Kefer et al.,
2017). Others compared only the sensors integrated
in the same device (Le et al., 2019). To the best of our
knowledge, there are no contributions comparing two
types of wearable devices with the same sensors, used
at the wrist.

To achieve our objective, we evaluated two al-
ternatives regarding the wearable sensors used for
gesture classification in our proposed system: a
smartwatch (Oppo Watch) and a MbientLab module
(MMR). This involved the evaluation of the perfor-
mance of two models built with sensor data provided
by each device, based on arm gesture data acquired
from six different subjects while lying down.

2 SENSOR-BASED
COMMUNICATION SUPPORT
SOLUTION: OVERVIEW

For context, this section begins by giving an overview
of the proposal for a communication support solution
based on gestures that our group has been working
on (Guimaraes et al., 2021; Guimaraes, 2021; Rocha
et al., 2022). Then, it presents the set of gestures se-
lected for the current study, as well as the two variants
of the solution that will be evaluated.

The target scenario of the system is the in-bed sce-
nario, where a person with communication difficul-
ties is lying in bed alone and may want to commu-
nicate with another person (e.g., caregiver, relative,
friend) who is in a different division of the home, or
even outside the home. The target primary users are
people with communication difficulties, but without
severe understanding difficulties and retaining motor
function in at least one of the arms. The secondary
users are the persons the primary user wants to com-
municate with.

2.1 Proposed Solution

An overview of the solution we propose is illustrated
in Figure la. This solution relies on the use of arm
gestures by the primary user to generate simple mes-
sages that are sent to the secondary user. To enable
gesture input, the solution includes a corresponding
modality (its main components are illustrated in Fig-
ure 1b), which relies on data sent by sensors worn by
the primary user to decide on the gesture being per-
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Figure 1: Overview of the proposed solution for communi-
cation support, including the users, sensors/devices, and in-
teraction components (a), and main components of the ges-
ture input modality (b).

formed and therefore the message to be sent.

The message constructed based on the gesture(s)
is sent to the secondary user’s smartphone through
an Interaction Manager (IM), who is responsible for
managing the exchange of information between the
different modalities and applications of the system.
After receiving a message, the secondary user can
choose to send a message back, including pre-defined
questions, to which the primary user can answer also
using gestures. The information sent to the primary
user is presented by one or more output modalities
using a display and/or speakers in the bedroom.

2.2 Gesture Set

The selection of gestures for supporting communica-
tion took into account both the target scenario and the
target primary users. Firstly, the gestures should be
easy to execute while lying in bed and may rely on
the ambient (in this case, the bed or mattress). Sec-
ondly, they should be easy to explain and understand,

but also remember. Therefore, it should be possible
to associate each of them with a specific meaning that
makes sense in the considered context. To ensure the
suitability of the gestures, the final choice resulted
from the feedback obtained during discussion involv-
ing speech and language therapists with experience
with people that have communication difficulties.

The set of arm gestures explored in this contribu-
tion is described in Table 1. These are the same ges-
tures considered in previous work (Guimaraes et al.,
2021; Guimaraes, 2021), with the exception of one
(clockwise circle with the hand in the air), which was
excluded since we considered it can be more difficult
to execute by some users (e.g., older adults).

2.3 Two Variants

We implemented two variants of the solution de-
scribed above, by implementing two different ver-
sions of the gesture input modality. This modality in-
cludes a data acquisition, feature extraction, gesture
classification, and decision modules (Figure 1). Ges-
ture classification relies on a model that recognizes
the current gesture, which is trained using machine
learning and features extracted from sensor data ac-
quired from a set of subjects.

The two variants use two different wearable de-
vices: a smartwatch and a simpler, more affordable
sensor. More concretely, the devices were a Wear
OS smartwatch, namely a Oppo Watch, and a module
from MbientLab, more specifically the MMR mod-
ule. Both include a 3-D accelerometer, gyroscope,
and magnetometer.

The Oppo Watch had a launch price of over 200
dollars/euros, in 2020. Its body dimensions (height x
width x depth) are 46 x 39 x 13 mm or 42 x 37 x 13
mm (both with heart rate monitor), and it weighs 40 or
30 g, respectively (Oppo, 2021). On the other hand,
the MMR module was selling for 80 dollars (Mbi-
entLab, Inc., 2022), and its dimensions (without case)
are 29 x 18 x 6 mm and its weightis 6 g.

Concerning the mentioned sensors, although the

Table 1: Set of gestures considered for the proposed system, including the description and also the possible meaning of each

gesture.
Gesture Description Meaning
Twist Twist the wrist from left to right and vice-versa, preferably with an  Ask for immediate help (e.g., feel-

angle between 0 an 45 degrees between the bed and forearm.
Move the forearm towards the arm until a 45-degree angle is formed
between the arm and forearm, as if calling for someone.

Come (to me)

ing unwell)
Ask for not so urgent help (e.g.,
help getting up from bed)

Knock Knock with the hand on the mattress, while keeping the arm close  Affirmative meaning (yes), when
to the body. answering a question
Clean Move the hand and arm from left to right and vice-versa, with the = Negative meaning (no), when an-

hand in contact with the mattress.

swering a question

67



ICT4AWE 2023 - 9th International Conference on Information and Communication Technologies for Ageing Well and e-Health

differences among different sensors of the same type
may not be as considerable as they used to be in the
past, there are still some disparities for the two studied
devices, as can be seen in Figure 2. Although some
differences can be due to the placement of the sensors,
we can see that the the output of the smartwatch (SW)
shows a more clear pattern for the accelerometer’s z-
axis and the gyroscope’s y-axis, when compared with
the MbientLab module (MB).

3 COMPARATIVE EVALUATION
OF THE TWO VARIANTS

Evaluation focused on the gesture recognition per-
formance of the two variants of the proposed solu-
tion. Sensor data provided by the devices used in
the two variants were acquired from six volunteers,
all male students at the Department of Electronics,
Telecommunication, and Informatics of the Univer-
sity of Aveiro. They were all right-handed and 20
or 21 years old (mean =+ standard deviation of 21.7
4 0.5). All participants read and signed an informed
consent.

MB Accelerometer

Acceleration (m/s?)

— xacc
—— y-acc
-10 4 — zacc

T T T T T
300 400 500 600 700
Sample Number

SW Accelerometer

Acceleration (myfs?)

T T T T T
300 400 500 600 700
Sample Number

3.1 Setup and Protocol

For each participant, the wearable devices were at-
tached to the wrist of the dominant arm, next to each
other, as shown in Figure 3. The MbientLab device
was placed inside a case and attached to the wrist us-
ing a Velcro strap. Both devices were always placed
in a similar way for all participants, to ensure that
the orientation of their coordinate systems was sim-
ilar among devices and participants.

Figure 3: Setup used for the wearable devices attached to
the wrist.

The experiment was carried out at a room of our
institute, where a “bed” was set up using two tables

MB Gyroscope

Angular velocity (rad/s)
o

-2

T T T T T
300 400 500 600 700
Sample Number

SW Gyroscope

Angular velocity (rad/s)
o

T T T T T
300 400 500 600 700
Sample Number

Figure 2: Example of the 3-D signals for the accelerometer and gyroscope of both explored devices (smartwatch — SW, and
MbientLab module — MB), for several repetition of a given gesture by a given subject.
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and six cushions from sofas tied together using rib-
bons as the mattress. A bench was also placed next
to the “bed” to simulate the floor, having a height be-
tween them that is similar to a typical height between
a bed and the floor.

Since the main objective is to compare the results
obtained with the two devices, it was also necessary
to ensure that their signals were synchronized. To
achieve this, each performed data recording included
a single execution of specific movement. For simplic-
ity, we used one of the defined arm gestures, in this
case, the “come” gesture.

For each subject and arm gesture included in Ta-
ble 1, the following experimental protocol was carried
out by the participant: (1) begin by lying still; (2) af-
ter the recording is started, perform the synchronizing
gesture a single time; (3) lie still for around 3 seconds;
(4) perform the indicated gesture repeatedly until the
end of the recording.

Since other movements are expected to be car-
ried out by a person in the bed scenario, other ges-
tures/activities were additionally included in the pro-
tocol, namely lying down without moving, rotating
the body to the left and/or right, lying to standing up
next to bed, standing next to bed to lying, and any
other movement while lying down (chosen by the par-
ticipant).

A sequence with the set of gestures and other
movements was performed and recorded twice per
participant. The order of execution was randomly
chosen for each participant and sequence.

3.2 Data Acquisition and
Pre-Processing

For both devices, the data were acquired at an approx-
imate rate of 50 Hz for all sensors. The only excep-
tion was the MbientLab module’s magnetometer, for
which a rate of 25 Hz was selected, since 50 Hz was
not available.

For each recording, the signals from the two
devices were synchronized based on the cross-
correlation between the signals corresponding to the
sum of the gyroscope values for the three axes. After
synchronization, the original signals were segmented
by selecting only the data corresponding to the ges-
ture repetitions.

This segmentation was carried out automatically
based on the MbientLab module’s gyroscope signals.
Firstly, the gesture used for synchronization was ig-
nored by performing the following procedure for each
axis: (1) find the first frame for which the absolute
value is higher than 2 rad/s; (2) starting at that frame,
count the number of frames for which the absolute

value is lower than 0.7 rad/s; and (3) find the frame
for which the previous count is higher than 45 frames.
All data before this last frame were discarded. For
the remaining data, and for each axis, the beginning
of the gesture repetition was defined by finding the
first frame for which the absolute value is higher than
0.5 rad/s. The ending of the gesture repetition interval
was also found using the same threshold, but starting
at the end and going backwards. Finally, the signals
were segmented based on the minimum initial frame
number and the maximum final frame number, when
taking into account the three axes. All threshold val-
ues were chosen empirically.

Successful synchronization and segmentation was
verified based on visual observation for all record-
ings. Besides synchronization/segmentation, no fur-
ther processing of the raw signals, such as filtering,
was carried out.

Several time-domain features were then computed
over the accelerometer and gyroscope signals only.
The magnetometer was not used, since visual obser-
vation of the raw signals from the two different de-
vices for the same recording showed considerable dif-
ferences between them, most likely due to the lack of
proper calibration for one or both devices.

The features, which are listed and described in Ta-
ble 2, were selected based on previous work with the
smartwatch (Guimaraes, 2021) and expanded with the
following: range without outliers, interquartile range
(IQR), root mean square (RMS), and median abso-
lute deviation (MAD). All features were computed for
each sensor and axis, except for the Pearson’s correla-
tion coefficient, which was computed for each sensor
and axes pair (Xy, yz, and xz), as well as considering
all axes combinations between the two sensors. This
resulted in 93 features.

Since some of the defined arm gestures (e.g.,
“clean” and “knock”) have more movement on a
given 2D plane, similar features were computed for
the signals corresponding to the magnitude of the vec-
tor on each plane, using (1) for xy-plane and a similar
equation for the other two planes. In (1), s is the 2D
vector, and s, and sy correspond the value of s in the
x- and y-axis, respectively.

Isll = /2 +53 M

The features were extracted considering a window
of 2 s. This duration was chosen based on our previ-
ous results with the smartwatch (Guimaraes, 2021).
Since the evaluation will consider the recognition re-
sult for each window separately, an overlap of 99%
between consecutive windows was used for the eval-
uation to obtain the largest number of examples pos-
sible.

69



ICT4AWE 2023 - 9th International Conference on Information and Communication Technologies for Ageing Well and e-Health

Table 2: Features extracted from the sensor data. All features were computed for each sensor and axis/plane, with the
exception of the Pearson’s correlation coefficient, which was calculated for each pair of axes/planes within the same sensor

and also between the two sensors.

Name Description
Mean Mean considering all samples
Median Median considering all samples

Mean-median difference
Standard Deviation

Difference between the mean and median value
Standard deviation considering all samples

Variance Variance considering all samples
Range Difference between maximum and minimum values of the signal
IQR Interquartile range, i.e., the difference between the third quartile (Q3) and the first

quartile (Q1) considering all samples

Range without outliers

Range excluding outliers, where an outlier is any value above Q3 or below Q1.

RMS Root mean square considering all samples

MAD
sample and the median

Median absolute deviation, i.e., the median of the absolute differences between each

Measure of asymmetry of the probability distribution of the signal about its mean
Measure of the “tailedness” of the probability distribution of the signal

Skewness

Kurtosis

Integral Area under the curve
Correlation Pearson’s correlation coefficient

Finally, the features were scaled using the “Ro-
bustScaler” provided by Python’s “scikit-learn” pack-
age (Pedregosa et al., 2011).

3.3 Datasets

The resulting dataset used for evaluation was simi-
lar for both wearable devices. Each dataset includes
186 features. The class corresponds to the name of
the gesture performed by the user, with the other
movements being considered as a single class named
“other”.

Since the datasets were not balanced in terms
of classes (gestures) and groups (subjects), for each
dataset, the same number of examples was randomly
selected per gesture and participant, with that num-
ber corresponding to the minimum number of exam-
ples when considering each gesture/participant com-
bination. For each device, the resulting balanced
dataset included 15,600 examples (2,600 per subject
and 3,120 per gesture).

3.4 C(lassifier

The classifier selection was also based on our previ-
ous results (Guimaraes, 2021). The best classifier for
the subject independent solution was the support vec-
tor machines (SVM) algorithm, with a linear kernel.
For subject-dependent, the best algorithm was the ran-
dom forest followed by the SVM, but both led to a
similar performance. Therefore, in the current work,
the SVM is used in both cases.

The model evaluation was performed using
Python’s “scikit-learn” package (Pedregosa et al.,
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2011). The default values for the SVM’s hyperpa-
rameters were used, except for the kernel, which was
the linear kernel.

3.5 Evaluation Approach

Besides comparing the two devices, we also wanted
to compare two different solutions — subject depen-
dent and subject independent — to investigate if it is
possible to train a single model that can be used with
never-seen users (subject independent), or if it is nec-
essary to train a model for each new user (subject de-
pendent).

For the subject dependent case, we applied the
stratified 10-fold cross-validation approach to the data
of each subject separately. This approach consists of
dividing the considered dataset into 10 sub-samples
with the same size, in a random way, but ensuring
that the number of examples from each class are ap-
proximately the same for each sub-sample. Then, 10
iterations are performed. For each iteration, one of the
sub-samples is used for testing, while the remaining 9
sub-samples are used for training the model. The test
set is always different for each iteration.

As the subject independent solution consists of us-
ing data from a group of subjects to train the model
and then using the resulting model to classify ex-
amples from new subjects, in this case, we applied
the leave-one-subject-out cross-validation (LOSO-
CV) approach to the whole dataset. This approach
involves as many iterations as the total number of sub-
jects in the dataset. In each iteration, the data corre-
sponding to all subjects except one is used for train-
ing, while the data of the remaining subject is used
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for testing. A different subject is used as the test set
in each iteration. To obtain more than one result per
subject, for each LOSO-CYV iteration, we further used
an adapted stratified 10-fold CV approach, where 10
iterations are further carried out. For each inner iter-
ation, 9 sub-samples from the training set are used to
train the model, while 1 sub-sample from the test set
is used for testing. The used sub-samples are always
different for each inner iteration.

In both subject dependent and independent cases,
the following metrics were computed: overall accu-
racy; class F1 score, i.e., the F1 score for each consid-
ered class or gesture type; and overall F1 score (mean
of all class F1 scores). The false positive rate (FPR)
considering all arm gestures as the positive class and
“other” as the negative class was also computed.

4 RESULTS

This section presents the results obtained for the sub-
ject dependent and independent solutions.

4.1 Subject Dependent

For the subject dependent solution, the model clas-
sified all examples correctly, for all subjects and CV
iterations, and for both explored devices.

These results are in line with the results ob-
tained previously by our group for the smart-
watch (Guimaraes, 2021). Furthermore, they show
that, in this case, not only both devices can be used
interchangeably, but are also suitable for recognizing
gestures in bed. Nevertheless, it is important to note
that the considered gesture set is relatively small, and
the number of different “other” gestures/activities is
limited. Moreover, the number of participants is also
small and represent a very specific subject group.

Although the subject dependent solution has a
very good performance, it has the disadvantage of re-
quiring the collection of data from each new subject
before they can start using the system.

4.2 Subject Independent

The subject independent solution does not have that
disadvantage. On the other hand, it is more challeng-
ing to achieve a good performance, since it is usu-
ally more difficult to classify gestures for a never-seen
subject using a model trained with data from a group
of other subjects. The results obtained for this case
are reported and discussed below.

4.2.1 Overall

Table 3 shows the overall results achieved for each de-
vice, considering all subjects and gestures, as well as
for the difference between them. The results include
the mean, standard deviation, median, minimum, and
maximum values. As the obtained results are very
similar for both wearables, to better compare them,
the device differences are presented in Figure 4.

Table 3: Mean, standard deviation (Std), mean, mini-
mum (Min), and maximum (Max) values achieved with the
smartwatch (SW) and MbientLab module (MB), when con-
sidering all subjects and gestures, for each considered met-
ric (accuracy, F1 score, and false positive rate — FPR), in the
case of the subject independent solution. The results for the
device differences are also included (SW-MB).

Metric Statistic SW MB SW-MB
Mean 98.4 98.4 0.0

Std 1.7 1.8 0.8

Accuracy (%) Median 98.8 994 0.0
Min 93.8 94.2 2.7

Max 100.0  100.0 1.5

Mean 98.4 98.4 0.0

Std 1.7 1.8 0.8

F1score (%) Median 98.8 99.4 0.0
Min 93.9 94.3 2.8

Max 100.0  100.0 1.5

Mean 2.0 1.5 0.5

Std 3.7 3.0 33

FPR (%) Median 0.0 0.0 0.0
Min 0.0 0.0 -5.8

Max 154 11.5 13.5

User-independent, all subjects, all gestures
¢

12.54

10.0 A

7.59

5.0

> © o o

2.54

0.0 : L : ] O

SW-MB (%)
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R €
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-

—2.51

-5.01

Accuracy F1 FPR
Metric

Figure 4: Boxplot of the device differences for the accuracy,
F1 score, and false positive rate (FPR), considering all sub-
ject and gestures. MB and SW stand for MbientLab module
and smartwatch, respectively. The circle indicates the mean
value.

The performance for each device is worse com-
paring with the subject-dependent case, as expected.
However, it is only slightly worse, with mean and me-
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dian values of 98% for accuracy and F1 score, and
<2% for FPR, and low standard deviation, for both
devices.

In addition, the results are better than those we
achieved previously with the smartwatch (Guimaraes,
2021), but it is necessary to consider that the current
work explored 4 instead of 5 arm gestures, and a much
larger number of features was used.

From Figure 4, we can see that there are some
cases where one of the devices outperforms the other.
However, for accuracy and F1 score, the absolute dif-
ference is always lower than 3%. For FPR, the de-
vice difference values vary more, ranging between -
6% and 14%. Nevertheless, the values different from
0% are all outliers.

To verify if the differences between devices are
statistically significant, we carried out the Wilcoxon
signed-rank test over the device differences, sepa-
rately for each considered metric. A non-parametric
test was chosen since the result of the Shapiro-Wilk
test does not indicate that the data have a normal dis-
tribution (p-value<0.05). Both tests were performed
using Python’s “scipy” package. The Wilcoxon test
results showed that the device differences are not sig-
nificant (p-value>0.05).

4.2.2 Subject Effect

To better understand if this is also true when analyz-
ing each subject individually, we further investigated
the results per participant, considering all gestures,
which are shown in Figure 5.

We can see that there is a variation between the
different subjects, with some presenting a higher de-
vice difference variability than others. For the accu-
racy and F1 score, Participant 3 has the highest vari-
ability, but with both positive and negative values. For
Participants 2 and 5, the differences are always >0%,
while the opposite happens for Participant 4 (<0%).
The other two participants show very small or no vari-
ability (median and mean of 0.0% or 0.1%). When
considering the FPR metric, variability is very small
for all participants, except Participant 2 (best overall
performance for SW) and Participant 4 (best overall
performance for MB).

The results of the Wilcoxon signed-rank test for
each subject show that, for accuracy and F1 score,
there is no significant difference between the two de-
vices for Participant 1, 3 and 6 (p-value>0.05). On
the other hand, the difference is significant for Partic-
ipants 2, 4 and 5 (p-value<0.05). For FPR, there is
a significant difference only for Participants 2 and 4.
Therefore, considering all three metrics, device per-
formance is similar for half of the participants, while
one of the devices outperforms the other for half of
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Figure 5: Boxplot of the device difference results for the (a)
accuracy, (b) F1 score, and (c) false positive rate (FPR), for
each subject, considering all gestures. MB and SW stand
for MbientLab module and smartwatch, respectively. The
circle indicates the mean value.

the participants. The SW performs better than the MB
for two participants, and the opposite is observed for
one participant. Nevertheless, it is worth noting that
the maximum absolute difference for accuracy and F1
score is always lower than 3%.
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4.2.3 Gesture Effect

Focusing on the different gesture types, the F1 score
results per gesture, presented in Figure 6, show that
the performance is the same for both devices in most
cases (apart from some outliers) for all gestures, ex-
cept “other”. For “other”, variability is higher when
excluding the outliers (-1.5 to 2.5%), but both the
mean and median are of 0%.
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Figure 6: Boxplot of the device difference results for the F1
score of each gesture, considering all subjects. MB and SW
stand for MbientLab module and smartwatch, respectively.
The circle indicates the mean value.

Nevertheless, there is some asymmetry in the
results for some gestures, with the results of the
Wilcoxon signed-rank test for each gesture showing
that there is a significant difference (p-value<0.05)
between devices for “knock”, “twist”, and “come”. In
the case of “knock”, the best device is SW, while the
best performance for “twist” and “come” is achieved
with the MB device. However, despite a statistically
significant difference, it is still relatively small, with
a maximum absolute difference value of 8%.

5 CONCLUSION

The main aim of this work was to evaluate two wear-
able alternatives, with different dimensions and costs,
for recognizing gestures to be used in a communica-
tion support solution. The context of this study was
the bedroom scenario, where a person with communi-
cation difficulties is lying in bed alone and uses ges-
tures to communicate remotely with another person,
such as a caregiver, family member, or friend.
Accelerometer and gyroscope data provided by
two different devices (MbientLab module and smart-
watch) were collected from six subjects while they
performed four relevant arm gestures, as well as other
gestures or movements. Several features were ex-

tracted from the synchronized signals. For each wear-
able, we then evaluated a model built using those fea-
tures and the support vector machines algorithm.

For a subject dependent solution, the model was
able to correctly classify all examples, using any of
the two devices. For the subject independent case,
which is more challenging, the performance was still
quite good for both wearables (mean accuracy and F1
score of 98%, and false positive rate of 2%). When
considering each subject and each gesture, there were
some cases where one of the devices outperformed the
other, but the best device varied. When taking into
account all subjects and gestures, there was no sig-
nificant differences between the smartwatch and the
MbientLab module.

We can conclude that, overall, both alternatives
provided promising and similar results, being possi-
ble to rely on a simpler wearable with lower cost and
smaller size for recognizing the arm gestures consid-
ered for supporting communication in the bedroom
scenario.

6 FUTURE WORK

A limitation of this study is that the participants are
healthy young adults. Although communication dif-
ficulties can result from different problems and thus
affect people of different ages, the volunteers of this
study do not represent for example older people, who
may also have slower or more restricted movements
as a consequence of aging. Another limitation is the
fact that data were acquired while the subjects were
are lying in a specific posture, i.e., lying on their back,
and only one of the arms was used for gesture execu-
tion.

In the future, the results of this study should be
confirmed with data from a greater number of sub-
jects with more varied ages, including older subjects.
It would also be important to explore other postures in
bed (e.g., lying on the side) and outside the bed (e.g.,
sitting on a sofa), and both arms for executing the ges-
tures. A greater variety of “other” gestures/activities
should also be included in the dataset. Since the num-
ber of features used in this study was relatively high,
another interesting aspect to investigate is if similar
results can be obtained with a smaller set of features.
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