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Abstract: Software Question-Answer (SQA) sites such as Stack Overflow (SO) comprise a significant portion of a 
developer’s resource for knowledge sharing. Owing to their mass popularity, these SQA sites require an 
appropriate tagging mechanism to better facilitate discussion among users. An intrinsic part of predicting 
these tags is predicting programming languages of the code segments associated with the questions. Usually, 
state of art models such as BERT and embedding-based algorithms such as word2vec are preferred for the 
text classification task, however, in the case of code snippets that are different from natural language in both 
syntactic as well as semantic composition, embedding techniques might not yield as precise results as 
traditional methods. To this predicament, we propose a regex-based tf-idf vectorization approach followed by 
chi-square feature reduction over an ANN classifier. Our method achieves an accuracy of 85% over a corpus 
of 232,727 stack overflow code snippets which surpasses several baselines.

1 INTRODUCTION 

In the software engineering domain, dedicated forums 
like Stack Overflow (SO) play a significant role in 
knowledge sharing. 

The potent ability of these Software Question-
Answer (SQA) sites to facilitate discussion between 
so many developers on such a colossal scale has led 
to their rapid growth and popularity. As a result, they 
witness huge traffic on a daily basis and SO alone 
comprises of around 23 million questions till date. 
Further, since the queries are vastly diverse, SQA 
sites encourage users to tag their questions 
appropriately and adequately. These tags play a 
crucial role as they make the context of the question 
more concise, thus making it easier for potential 
experts to find relevant queries of their domain. 

However, the quality of tags is often associated 
with the questioner's expertise, proficiency in 
English, writing styles, bias, and so on. Since these 
factors vary among developers, keeping the tags 
consistent becomes challenging and gives rise to 
issues such as tag synonyms and tag explosion (Barua 
et al., 2014). Such complications point to the need for 
a mechanized approach to tag recommendation that 
can predict tags for unseen posts based on historical 
data or generate tags based on the post's content. 

Recently, NLP and ML based techniques have 
shown promising results in the domain of 
programming language identification and similar 
tasks such as code completion, code comment 
generation and source code summary generation etc.  

Applying ML and NLP based techniques on large 
samples allow the models to extract many features, 
however, the same task becomes more challenging in 
the context of a code snippet as snippets are relatively 
very short in size with respect to a complete code file. 

For our work, we have gathered code snippets 
from a corpus of stack overflow posts shared by 
(Alreshedy et al., 2020). Since, SO code snippets are 
quite unstructured, it further makes the classification 
task a non-trivial one. 

In general, text classification tasks involves 
working on raw text which is often unstructured, 
inconsistent and of variable length, and thus it 
becomes important to adequately pre-process the text 
and apply suitable vectorization method. Again, the 
method for text vectorization has to be chosen 
carefully as the quality of text vectorization directly 
impacts the task at hand.  

Traditional methods for text vectorization include 
bag of words and Tf-Idf, whereas, more recent ones 
comprise of embedding based algorithms such as 
Word2Vec (Mikolov et al., 2013), GloVe 
(Pennington et al., 2014) etc. However, these pre-
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trained models are trained on general purpose corpus 
such as Wikipedia or newspaper text, and therefore 
fine tuning them for source code classification task 
might not yield accurate results. 

To this reasoning, in this work, we employ a regex 
based tf-idf approach where regex patterns are used 
for creating the tokens followed by tf-idf 
vectorization. Since the tf-idf vectorization yields 
huge sparse matrices containing lots of zeros, we 
devise chi square test to reduce the dimensionality of 
the feature matrices. This significantly reduces our 
computational time as well. Finally, the reduced 
subset of features are fed to a suitable classifier. 
Simultaneously, we also run the experiment on distil-
Bert (Sanh et al., 2020) and Word2Vec methods to 
investigate the role of semantics in source code 
classification.  

Rest of the paper is structured as follows: we start 
with literature survey in section 2. In section 3, we 
describe all the tools and methodologies adopted in 
the experiments. We present our results in section 4 
along with the comparative analysis with existing 
baselines. Finally, section 5 concludes the work along 
with future scope. 

2 RELATED WORK 

SQA sites are pretty diverse and involve a vast span 
of topics. Since it is difficult to accurately capture the 
semantics of a post based on a single model alone, 
different researchers approach the task in different 
ways.  

Many authors predict the tags based on the post's 
title and description while neglecting the post's 
snippet. 

One of the earliest works in this connection is 
attributed to (Kuo, 2011) who classified SO posts 
with the help of a KNN classifier. Similarly, (Stanley 
and Byrne, 2013) made use of a Bayesian 
probabilistic model to classify the tag of the SO posts. 
(Kavuk and Tosum, 2020) also classified the body 
and title of the SO posts with the help of a multi tag 
classifier based on latent dirichlet allocation. Few 
more works which considered only title as the input 
include (Saha et al., 2013; Jain and Lodhavia, 2020; 
Swaraj and Kumar, 2022). 

On the other hand, some works consider snippets 
vital in discerning the tag correctly since the queries 
are closely related to the attached code snippets (Cao 
et al., 2021).  

Apart from predicting tags in SQA sites, source 
code classification in itself has been a topic of rising 
interest for developers. 

In this connection, (Klein et al., 2011) trained 
their model on a corpus of 41,000 files gathered from 
github. However, their classifier based on selection of 
intelligent statistical features could achieve only 48% 
accuracy. 

Similarly, (Khasnabish et al., 2014), gathered 
around 20,000 files from multiple github repositories. 
They employed Bayesian classifier to predict ten sets 
of languages yielding around 93.48% accuracy. 

(Van Dam et al., 2016) also proposed a method 
based on statistical language model to classify source 
code files taken from github varying across 19 
different languages giving an accuracy of around 
97%. Another work by (Gilda, 2017) made use of 
convolutional neural networks to classify 60 
programming languages taken from github 
repositories with a decent accuracy of 97%.  

However, all these works have considered github 
repositories as their training dataset. Since a large 
source code file contains many distinguishing 
features, it is relatively easy for the classifier to 
predict the programming language as evident in the 
case of (Van Dam et al., 2016) and (Gilda, 2017).  On 
the other hand, detection of programming language in 
a code segment on SQA sites is relatively much 
difficult. 

In this connection, (Rekha et al., 2014) presented 
a hybrid model based on multinomial naïve bayes 
algorithm which automatically classifies the code 
snippets of SO posts with an accuracy of 72%. 

On similar lines, (Baquero et al., 2017) detected 
programming language in 18000 code segments 
gathered from SO. However, their classifier based on 
support vector machine achieved very low accuracy 
of 44.6%. (Saini and Tripathi, 2018) in their work 
included SO snippets along with the post title and 
description and achieved an accuracy of 65%. 

More recently, (Alrashedy et al., 2020) presented 
a method SCC, where they generated tags for their 
corpus of SO posts with a Random Forrest and XG 
boost classifier. They achieved an accuracy of 78% 
when they tried to predict the tags on the basis of 
snippets alone. However, combining the features of 
snippets with title and body significantly increased 
the overall performance which goes to show the 
crucial role of utilizing code snippets while 
classifying the posts. 

3 METHODOLOGY 

The overall flow of our approach is presented in 
figure 1. It comprises of 4 steps, namely – data 
collection, pre-processing (tokenization), 
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vectorization, dimensionality reduction, and 
classification. 

 
Figure 1: Overview of our proposed approach. 

3.1 Data Pre-Processing 

Stack overflow is typically a discussion forum where 
users often ask queries in a specific context and 
therefore the code snippets associated with the 
question can appear incoherent and unstructured if 
analysed independent of the title and description of 
the respective post. Some snippets are as small as 
having less than two lines of code, while some 
contain noise in terms of large comments and empty 
lines. To this predicament, we start by removing those 
anomalies followed by deletion of duplicate rows, 

NaN values and unnecessary stop words which don’t 
add any relevant information to the model. 

3.2 Regex Based Tokenization 

Machine learning classifiers operate on numerical 
feature vectors and therefore it is necessary to 
transform the code snippets into feature vectors 
before they can be classified. However, prior to 
vectorization, we need to tokenize our data that would 
comprise the vocabulary of our model. 

Earlier works have treated code snippets as 
regular text and simply removed white spaces and 
punctuation. However, since source code is different 
from regular language, we chose to customize 
Sklearn’s tokenizer to better complement our 
requirements. 

To describe the pattern of a token, we make use of 
regular expressions on three sub levels, i.e., for 
identifying the keywords, the operators and braces. 
Table 1 demonstrate one set of all the three 
corresponding regex. 

Table 1: Regex patterns and their corresponding target 
keywords with example. 

Pattern Correspondi
ng target

Sample Expected 
tokens

[A-Za-
z_]\w*\b 

  Keywords, 
identifiers, 

variables etc. 

import 
matplotlib.p
yplot as plt 

['import', 
'matplotlib'

, '.', 
'pyplot', 
'as', 'plt']

[@\#\&\\
\*\+^_\-
\.$%\/<=
\|\~!\:>\?]

+

Operators 'x-= 7-5' ['-=', '-'] 

[\)\,;\{\}\
[\]`t\("'] 

Spaces, 
Braces and 

Tabs

plt.show(); ['(',  ')', ';'] 

3.3 Vectorization 

Post tokenization, we are left with a vocabulary of 
size ‘N’, where N denotes the total number of unique 
tokens comprising our code snippet corpus. Next, we 
align a particular index to all the tokens by 
transforming each snippet into an array of size N. 
Figure 2 depicts the process of vectorization on a 
sample snippet. 
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Figure 2: Tokenization followed by vectorization on a 
sample code snippet. 

For our work, we choose Term Frequency – 
Inverse Document Frequency (TF-IDF) vectorizer to 
assign indices to all the respective tokens present in 
the snippet. The main idea of TF-IDF is to measure 
the relevance of specific word in proportion to the 
frequency of its appearance in the entire corpus. This 
potent ability of tf-idf to identify distinguishable 
words in a corpus makes it suitable for our code 
classification task as various keywords and identifiers 
can be easily recognized which can aid the classifier 
in segregating SO posts. 

Equation (1 – 3) respectively depict the formula 
used for calculating tf and idf score of a word in a 
document followed by the combined tf-idf factor:  

Tf(k,i) = ௨௧ (ௐೖ,)∑ೕ ௨௧ (ௐೖ,) (1)
 

Idf(wi) = log |||{|ௐ€ೕ| (2)
 

Tf-dif(k,i) = tf(k,i) * idf(wk,i) (3)

Here, ‘D’ represents the entire corpus while Dj, 
denotes the jth snippet in the corpus. Wi donates the ith 

word of the vocabulary based on tokenization, and |{𝑗|𝑊€𝐷|  represents the total count of sample 
snippets containing the word Wi. Wk,i denotes the ith 
frequency of the vocabulary in the Kth text. The count 
of the ith word in the Kth text is denoted by 𝐶𝑜𝑢𝑛𝑡 (𝑊,)  and ∑ 𝐶𝑜𝑢𝑛𝑡 (𝑊,)  represents the 

summation of the word frequencies of all words in the 

vocabulary in the kth sample snippet. Finally, equation 
(3) is used for calculating the tf-idf factor of each 
token. 

3.4 Dimensionality Reduction 

Since our experiment subject is vast and diverse, the 
generated features are expected to be similarly huge 
as well. However, many a times, the feature matrix is 
occupied by irrelevant tokens that don’t add up in the 
classification process in true sense. To this 
predicament, we make use of ‘chi-square’ or ‘chi2’ 
feature selection method (McHugh and Mary, 2013) 
to filter our impertinent data. 

The chi2 technique aims to measure the degree of 
independence between a specific feature (tokens of 
the snippet in our case) and its respective class 
(programming language in our case). 

After performing the chi-squared test, we keep 
only selective features having a certain p-value. 

3.5 Model Selection 

After performing the chi-squared test, we are left with 
the subset of distinguishable features which would be 
fed to a suitable classifier. 

Based on previous studies, we selected two 
prominent ML based classifiers for our work, namely 
- Random Forrest (Breiman, 2001) and XG Boost 
(Chen et al., 2016) to better compare with the existing 
baseline.  

We also employ neural networks as an alternative 
to our ML classifiers. Although, in terms of structure, 
logistic regression can be regarded as a basic neural 
network with no hidden layer, still we wish to 
investigate if neural networks could make a 
significant difference or not. 

Finally, for our comparative analysis, we train our 
corpus on word2vec and distil Bert as separate tasks. 

4 RESULTS AND COMPARITIVE 
ANALYSIS 

4.1 Dataset 

We gather the snippets for our experiment from the 
SO post corpus gathered by (Alreshedy et al., 2020). 
The corpus consisted of a total 232,727 questions 
varying across 21 different programming languages. 
These languages which include - Python, Objective-
C, Bash, Ruby, Perl,  C++, Lua, CSS, Markdown, 
Java, HTML, , C#,  Scala, JavaScript, PHP, C, R, 
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SQL, , VB.Net, Swift and Haskell comprise 80% of 
questions on SO (Developer, 2017). 

4.2 System Settings 

We employ Intel(R) Xeon(R) CPU E5-1650 v3 @ 
3.50GHz   3.50 GHz with 32 GB Ram and 2GB 
NVIDIA Quadro K620 GPU with running OS of 
windows 10 for all the experiments. 

We implement our model on keras framework 
with Tensorflow backend on a Jupyter notebook. For 
implementing distil-Bert, we make use of python 
library transformers made available through Hugging 
Face Corporation (Wolf et al., 2019). 

4.3 Experimentation 

In this subsection, we would elaborate on the various 
steps carried out during the experiment. 

As fig 1 depicted the methodology, the first step 
is to pre-process the data. We start with our 
customized tokenization based on regular 
expressions.  

Once the corpus is transformed into individual 
tokens, we apply tf-idf vectorization on them. We 
limit the maximum number of features up to 5000 
tokens based on the frequency of their appearance in 
the corpus. 

Further, to select the subset of relevant features, 
we perform the chi-squared test with p value of 0.95 
that reduced the number of features to 3150. Some of 
the most statistically pertinent keywords are listed in 
table 2. The final filtered features are then passed out 
to the ML and Neural Network classifiers. 

Earlier works have shown the efficacy of Random 
Forrest and XG Boost algorithms for this task. To 
have a better comparative analysis with the existing 
baselines, we decided to compete both these models. 

For this purpose, we employ Sklearn’s 
GridSearchCV and pipeline method to select the best 
estimators and hyper parameters (Pedregosa et al., 
2011). To keep the computational cost low, we 
perform grid search over 25% of our dataset. 

Finally, we deploy our winner classifier by 
unpacking the best parameters tuned through grid 
search, which in our case was Random Forrest which 
is in line with earlier work of (Alreshedy et al., 2020) 
as well. 

Additionally, we also implement artificial neural 
network with 10,000 nodes in the input layer, 64 in 
the hidden layer and then 21 dense layers followed by 
a sigmoid function for classification. We make use of 
ADAM optimizer which is an optimized version of 

‘RMSProp’ and ‘momentum’ combined followed by 
categorical cross entropy for fitting the model. 

Table 2: Top keywords filtered after chi-square test. 

Languages Top features 
bash bin bash, then, grep, sh, fi, 

awk, done, sed, bash, echo
C fopen, gcc, malloc, define, 

int, sizeof, struct, char, void, 
printf, 

C# get set, using, ilist, 
assembly, private void, 

typeof, ienumerable, 
foreach, public, new

C++ operator, endl, int, 
push_back, const, cpp, 
boost, void, std, cout

Css width, moz, hover, border, 
style, webkit, margin, div, 

background, css
haskell io, haskell, ghc, xs, cabal, 

hs, do, otherwise, where, let,
java inputstream, synchronized, 

javax, jsp, system out, 
public, public void, extends, 

new, java 
Java_script settimeout, new date, 

document, javascript, js, 
prototype, onclick, alert, 

function, var 
lua torch, require, nil, function, 

lua_state, print, then, end, 
local, lua, 

We keep the train-test split ratio to 75-25 percent 
for an optimum analysis.  

Since neural networks cannot handle sparse data 
straight away, we convert the tf-idf vectors into dense 
array. However, owing to the huge size of the dataset, 
we pass the data in batches by creating an iterable 
generator object. 

Further, we manually fine tune the hyper 
parameters such as changing the learning rate, 
increasing the number of hidden nodes, adding a drop 
out layer and so on for an optimized result. 

4.4 Results of Proposed Methodology 

After the posts are classified through respective ML 
and NN classifiers, we plot the confusion matrix and 
evaluate the performance. While Random Forrest 
outperformed other ML classifiers in grid search, NN 
even performed better than RF. However, the 
computational time of NN was slightly more than the 
RF classifier, so in a sense the trade-off was 
comparable. Still, for performance considerations, we 
chose to proceed with our ANN classifier. 
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We evaluate the performance for all the languages 
individually as well as collectively based on four 
metrics, namely accuracy, precision, recall and F1 
score. The confusion matrix of the ANN classifier 
along with the individual prediction performance can 
be found in supplementary information on the 
following link - https://tinyurl.com/2p9b4bhb. 

Table 3: Overall performance of the classifier. 

Classifier/Metric ANN RF 
Precision 85.60% 83.40%

Recall 81.90% 80.20%
F1 Score 82.50% 81.30%
Accuracy 85.04% 83.80%

4.5 Comparative Analysis 

In this subsection, we compare our model’s 
performance with earlier existing baselines and also 
investigate whether embedding based techniques and 
state of art models like Bert can perform better on 
source code or not. 

Most of the earlier works have either considered 
snippets insignificant to be included or have merged 
their features with the features extracted from body 
and description of the post. However, we can still 
make an overall comparison keeping in view the aim 
of achieving the end goal to classify the programming 
language of code snippets. 

However, identifying the language in large source 
code files is very much different from classifying 
snippets and therefore an equivalent comparison can’t 
be made between the two. 

Table 4 shows the overall comparison of similar 
works in the domain. Although (Alreshedy et al., 
2018; 2020) in their work achieve better performance 
overall, but it is to be noted that when applied on the 
snippets alone, their accuracy dropped and our model 
surpasses their work. To combine the effect of textual 
part of the body and description is our future work. 
Table 5 further draws comparison between the work 
of (Alreshedy et al., 2020) and our work on individual 
programming language level. 

Besides, our investigation concerning the 
performance of embedding based approaches and 
pre-trained models are also presented in table 6. The 
training-validation curve diagram regarding the same 
can be found at https://tinyurl.com/2p9b4bhb. 

 
 
 
 
 
 

Table 4: Comparative analysis of our approach against 
existing baselines for identifying tags in SO posts. 

Study Dataset based on Acc, Pr, Rc, F1 
(Kuo, 2011) Title and 

Description 
47% 

(Saha et al., 
2013) 

Only Title 68% 

(Stanley et 
al., 2013) 

Title and 
Description 

65% 

(Baquero, 
2017) 

Title and 
Description 

60.8%, 68%, 60%, 
and 60% 

(Alreshedy 
et al., 2018) 

Title and 
Description 

 
Title, Description 
and code Snippet 

 
Only code Snippets 

81%, 83%  81%, 
and 0.81%; 

 
91.1%, 91%, 91% 

and 91% 
 

73%, 72%, 72%, 
72% 

(Saini and 
Tripathi, 

2018)

Title, Description 
and code Snippet 

65%, 59%, 36%, 
and 42% 

(Jain and 
Lodhavia, 

2020)

Only Title 75%, F1 Score- 
81% 

(Kavuk and 
Tosum, 
2020)

Title and 
Description 

75%, 62%, 55% 
and 39% 

(Alreshedy 
et al., 2020) 

Title and 
Description 

 
Title, Description 
and code Snippet 

 
Only code Snippets 

78.9%,  81%, 79% 
and 79% 

 
88.9%, 88%, 88% 

and 88% 
 

79.9%, 80%, 80%, 
80% 

Our work Only Code 
Snippets 

85%, 85%, 81% 
and 82% 

4.6 Discussion 

The significant performance improvement of our tf-
idf approach over existing works can be attributed to 
the decisive pre-processing of the corpus based on 
regular expressions and feature reduction technique. 
Neural network classifier further outperforming ML 
based classifiers also adds to the boost of 
performance. 

Further, from table 4 and 6, we can see that out of 
all the 21 languages, HTML and Markdown 
performed worst. While Markdown had only 1300 
snippets as compared to 12000 snippets of other 20 
languages which very much explains it low 
performance due to lack of training data, the reason 
for bad performance of HTML could be attributed to 
the ambiguity of HTML snippets which 
simultaneously contain CSS and JavaScript code  
 

Programming Language Identification in Stack Overflow Post Snippets with Regex Based Tf-Idf Vectorization over ANN

653



Table 5: Comparative analysis of F1 score of our approach 
against existing baselines for individual programming 
languages (all results in percentage). 

Classifier/ 
Model 

PLI 
(PLI 
tool, 

2018) 

SCC 
(Alresh
edy et 

al., 
2018) 

SCC+ 
(Alresh
edy et 

al., 
2020) 

Our 
Work 

lua 50 84 70 92
C 56 76 81 84

ruby 43 70 72 89 
C# 51 79 78 80 

C++ 65 51 73 84
python 69 88 79 87

R 72 77 78 88
Css 30 86 77 80

Vb.net 60 83 77 91 
swift 54 84 89 96 

haskell 67 89 78 93
Html 35 54 55 53
Sql 50 65 79 83

Java 46 70 76 81 
markdown 28 76 91 32

bash 67 76 85 82
objectivec 77 57 88 93

Perl 69 74 41 90
PhP 62 74 88 85

Scala 72 76 81 94 
Javascript 48 78 74 75

Table 6: Comparative analysis of our approach against 
Word2Vec and Distil-Bert. 

Classifier/
Metric 

Tf-Idf 
+ANN 

Word2Vec 
over Bi-
LSTM 

Distil-
Bert 

Accuracy 85.04% 68.30% 61.2%
Time taken 139.4s 3936.6s 36996s 

per step

segments which leads to miss-classification. One 
possible solution to fixing this anomaly could be to 
increase the training data for Markdown and to 
generate multiple tags for HTML snippets and not 
consider the miss-classification count of JavaScript 
and CSS tags. 

Elsewhere, the performance of tf-idf approach 
excelling the embedding based approaches can be 
attributed to the fact that code classification is very 
much independent of semantic association of words 
as compared to regular text.  

One may argue that recent advances that have 
transpired codebert (Feng et al., 2020), which is 
specifically trained on code corpus comprising six 
languages can outperform traditional methods. In this 
regard, we wish to point out that the computational 
time needed for distil bert only was around 1000 

times more than that of tf-idf approach with a RF 
classifier, and distil bert is the most preliminary 
version of the Bert series. Therefore, keeping the 
basis of performance and computational time trade-
off, we can safely argue that traditional approaches 
are more suited for code classification purposes.  

However, a proper in-depth investigation in this 
regard can hold a promising future work. 

5 CONCLUSION 

Stack Overflow is one of the foremost resources for 
developers to seek technical assistance. The site 
receives massive traffic on a daily basis and thus 
needs a proper mechanism for post segregation. 
Earlier works have focused mainly on classification 
of large source code files from github repositories. 
Since prediction of programming languages in stack 
overflow posts is relatively much challenging task, 
we have proposed our model trained on regex-based 
tf-idf vectorizer over an ANN classifier. We achieve 
decent accuracy of 85% which excels several 
baselines in the task of code snippet classification. 

Further, we also investigate the utility of 
embedding based algorithms such as word2vec and 
pre-trained models such as distil-bert. Our 
investigation shows that traditional approaches are 
much suited for source code classification tasks 
owing to the lack of semantic dependence in code 
scripts.  
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