
Programming Language Identification in Stack Overflow Post
Snippets with Regex Based Tf-Idf Vectorization over ANN

Aman Swaraj and Sandeep Kumar
Indian Institute of Technology- Roorkee, India

Keywords: Tf-Idf, BERT, Word2Vec, Regex, Stack Overflow, Programming Language Classification.

Abstract: Software Question-Answer (SQA) sites such as Stack Overflow (SO) comprise a significant portion of a
developer’s resource for knowledge sharing. Owing to their mass popularity, these SQA sites require an
appropriate tagging mechanism to better facilitate discussion among users. An intrinsic part of predicting
these tags is predicting programming languages of the code segments associated with the questions. Usually,
state of art models such as BERT and embedding-based algorithms such as word2vec are preferred for the
text classification task, however, in the case of code snippets that are different from natural language in both
syntactic as well as semantic composition, embedding techniques might not yield as precise results as
traditional methods. To this predicament, we propose a regex-based tf-idf vectorization approach followed by
chi-square feature reduction over an ANN classifier. Our method achieves an accuracy of 85% over a corpus
of 232,727 stack overflow code snippets which surpasses several baselines.

1 INTRODUCTION

In the software engineering domain, dedicated forums
like Stack Overflow (SO) play a significant role in
knowledge sharing.

The potent ability of these Software Question-
Answer (SQA) sites to facilitate discussion between
so many developers on such a colossal scale has led
to their rapid growth and popularity. As a result, they
witness huge traffic on a daily basis and SO alone
comprises of around 23 million questions till date.
Further, since the queries are vastly diverse, SQA
sites encourage users to tag their questions
appropriately and adequately. These tags play a
crucial role as they make the context of the question
more concise, thus making it easier for potential
experts to find relevant queries of their domain.

However, the quality of tags is often associated
with the questioner's expertise, proficiency in
English, writing styles, bias, and so on. Since these
factors vary among developers, keeping the tags
consistent becomes challenging and gives rise to
issues such as tag synonyms and tag explosion (Barua
et al., 2014). Such complications point to the need for
a mechanized approach to tag recommendation that
can predict tags for unseen posts based on historical
data or generate tags based on the post's content.

Recently, NLP and ML based techniques have
shown promising results in the domain of
programming language identification and similar
tasks such as code completion, code comment
generation and source code summary generation etc.

Applying ML and NLP based techniques on large
samples allow the models to extract many features,
however, the same task becomes more challenging in
the context of a code snippet as snippets are relatively
very short in size with respect to a complete code file.

For our work, we have gathered code snippets
from a corpus of stack overflow posts shared by
(Alreshedy et al., 2020). Since, SO code snippets are
quite unstructured, it further makes the classification
task a non-trivial one.

In general, text classification tasks involves
working on raw text which is often unstructured,
inconsistent and of variable length, and thus it
becomes important to adequately pre-process the text
and apply suitable vectorization method. Again, the
method for text vectorization has to be chosen
carefully as the quality of text vectorization directly
impacts the task at hand.

Traditional methods for text vectorization include
bag of words and Tf-Idf, whereas, more recent ones
comprise of embedding based algorithms such as
Word2Vec (Mikolov et al., 2013), GloVe
(Pennington et al., 2014) etc. However, these pre-

648
Swaraj, A. and Kumar, S.
Programming Language Identification in Stack Overflow Post Snippets with Regex Based Tf-Idf Vectorization over ANN.
DOI: 10.5220/0011989600003464
In Proceedings of the 18th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2023), pages 648-655
ISBN: 978-989-758-647-7; ISSN: 2184-4895
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

trained models are trained on general purpose corpus
such as Wikipedia or newspaper text, and therefore
fine tuning them for source code classification task
might not yield accurate results.

To this reasoning, in this work, we employ a regex
based tf-idf approach where regex patterns are used
for creating the tokens followed by tf-idf
vectorization. Since the tf-idf vectorization yields
huge sparse matrices containing lots of zeros, we
devise chi square test to reduce the dimensionality of
the feature matrices. This significantly reduces our
computational time as well. Finally, the reduced
subset of features are fed to a suitable classifier.
Simultaneously, we also run the experiment on distil-
Bert (Sanh et al., 2020) and Word2Vec methods to
investigate the role of semantics in source code
classification.

Rest of the paper is structured as follows: we start
with literature survey in section 2. In section 3, we
describe all the tools and methodologies adopted in
the experiments. We present our results in section 4
along with the comparative analysis with existing
baselines. Finally, section 5 concludes the work along
with future scope.

2 RELATED WORK

SQA sites are pretty diverse and involve a vast span
of topics. Since it is difficult to accurately capture the
semantics of a post based on a single model alone,
different researchers approach the task in different
ways.

Many authors predict the tags based on the post's
title and description while neglecting the post's
snippet.

One of the earliest works in this connection is
attributed to (Kuo, 2011) who classified SO posts
with the help of a KNN classifier. Similarly, (Stanley
and Byrne, 2013) made use of a Bayesian
probabilistic model to classify the tag of the SO posts.
(Kavuk and Tosum, 2020) also classified the body
and title of the SO posts with the help of a multi tag
classifier based on latent dirichlet allocation. Few
more works which considered only title as the input
include (Saha et al., 2013; Jain and Lodhavia, 2020;
Swaraj and Kumar, 2022).

On the other hand, some works consider snippets
vital in discerning the tag correctly since the queries
are closely related to the attached code snippets (Cao
et al., 2021).

Apart from predicting tags in SQA sites, source
code classification in itself has been a topic of rising
interest for developers.

In this connection, (Klein et al., 2011) trained
their model on a corpus of 41,000 files gathered from
github. However, their classifier based on selection of
intelligent statistical features could achieve only 48%
accuracy.

Similarly, (Khasnabish et al., 2014), gathered
around 20,000 files from multiple github repositories.
They employed Bayesian classifier to predict ten sets
of languages yielding around 93.48% accuracy.

(Van Dam et al., 2016) also proposed a method
based on statistical language model to classify source
code files taken from github varying across 19
different languages giving an accuracy of around
97%. Another work by (Gilda, 2017) made use of
convolutional neural networks to classify 60
programming languages taken from github
repositories with a decent accuracy of 97%.

However, all these works have considered github
repositories as their training dataset. Since a large
source code file contains many distinguishing
features, it is relatively easy for the classifier to
predict the programming language as evident in the
case of (Van Dam et al., 2016) and (Gilda, 2017). On
the other hand, detection of programming language in
a code segment on SQA sites is relatively much
difficult.

In this connection, (Rekha et al., 2014) presented
a hybrid model based on multinomial naïve bayes
algorithm which automatically classifies the code
snippets of SO posts with an accuracy of 72%.

On similar lines, (Baquero et al., 2017) detected
programming language in 18000 code segments
gathered from SO. However, their classifier based on
support vector machine achieved very low accuracy
of 44.6%. (Saini and Tripathi, 2018) in their work
included SO snippets along with the post title and
description and achieved an accuracy of 65%.

More recently, (Alrashedy et al., 2020) presented
a method SCC, where they generated tags for their
corpus of SO posts with a Random Forrest and XG
boost classifier. They achieved an accuracy of 78%
when they tried to predict the tags on the basis of
snippets alone. However, combining the features of
snippets with title and body significantly increased
the overall performance which goes to show the
crucial role of utilizing code snippets while
classifying the posts.

3 METHODOLOGY

The overall flow of our approach is presented in
figure 1. It comprises of 4 steps, namely – data
collection, pre-processing (tokenization),

Programming Language Identification in Stack Overflow Post Snippets with Regex Based Tf-Idf Vectorization over ANN

649

vectorization, dimensionality reduction, and
classification.

Figure 1: Overview of our proposed approach.

3.1 Data Pre-Processing

Stack overflow is typically a discussion forum where
users often ask queries in a specific context and
therefore the code snippets associated with the
question can appear incoherent and unstructured if
analysed independent of the title and description of
the respective post. Some snippets are as small as
having less than two lines of code, while some
contain noise in terms of large comments and empty
lines. To this predicament, we start by removing those
anomalies followed by deletion of duplicate rows,

NaN values and unnecessary stop words which don’t
add any relevant information to the model.

3.2 Regex Based Tokenization

Machine learning classifiers operate on numerical
feature vectors and therefore it is necessary to
transform the code snippets into feature vectors
before they can be classified. However, prior to
vectorization, we need to tokenize our data that would
comprise the vocabulary of our model.

Earlier works have treated code snippets as
regular text and simply removed white spaces and
punctuation. However, since source code is different
from regular language, we chose to customize
Sklearn’s tokenizer to better complement our
requirements.

To describe the pattern of a token, we make use of
regular expressions on three sub levels, i.e., for
identifying the keywords, the operators and braces.
Table 1 demonstrate one set of all the three
corresponding regex.

Table 1: Regex patterns and their corresponding target
keywords with example.

Pattern Correspondi
ng target

Sample Expected
tokens

[A-Za-
z_]\w*\b

 Keywords,
identifiers,

variables etc.

import
matplotlib.p
yplot as plt

['import',
'matplotlib'

, '.',
'pyplot',
'as', 'plt']

[@\#\&\\
*\+^_\-
\.$%\/<=
\|\~!\:>\?]

+

Operators 'x-= 7-5' ['-=', '-']

[\)\,;\{\}\
[\]`t\("']

Spaces,
Braces and

Tabs

plt.show(); ['(', ')', ';']

3.3 Vectorization

Post tokenization, we are left with a vocabulary of
size ‘N’, where N denotes the total number of unique
tokens comprising our code snippet corpus. Next, we
align a particular index to all the tokens by
transforming each snippet into an array of size N.
Figure 2 depicts the process of vectorization on a
sample snippet.

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

650

Figure 2: Tokenization followed by vectorization on a
sample code snippet.

For our work, we choose Term Frequency –
Inverse Document Frequency (TF-IDF) vectorizer to
assign indices to all the respective tokens present in
the snippet. The main idea of TF-IDF is to measure
the relevance of specific word in proportion to the
frequency of its appearance in the entire corpus. This
potent ability of tf-idf to identify distinguishable
words in a corpus makes it suitable for our code
classification task as various keywords and identifiers
can be easily recognized which can aid the classifier
in segregating SO posts.

Equation (1 – 3) respectively depict the formula
used for calculating tf and idf score of a word in a
document followed by the combined tf-idf factor:

Tf(k,i) = ௨௧ (ௐೖ,)∑ೕ ௨௧ (ௐೖ,) (1)

Idf(wi) = log |||{|ௐ€ೕ| (2)

Tf-dif(k,i) = tf(k,i) * idf(wk,i) (3)

Here, ‘D’ represents the entire corpus while Dj,
denotes the jth snippet in the corpus. Wi donates the ith

word of the vocabulary based on tokenization, and |{𝑗|𝑊€𝐷| represents the total count of sample
snippets containing the word Wi. Wk,i denotes the ith
frequency of the vocabulary in the Kth text. The count
of the ith word in the Kth text is denoted by 𝐶𝑜𝑢𝑛𝑡 (𝑊,) and ∑ 𝐶𝑜𝑢𝑛𝑡 (𝑊,) represents the

summation of the word frequencies of all words in the

vocabulary in the kth sample snippet. Finally, equation
(3) is used for calculating the tf-idf factor of each
token.

3.4 Dimensionality Reduction

Since our experiment subject is vast and diverse, the
generated features are expected to be similarly huge
as well. However, many a times, the feature matrix is
occupied by irrelevant tokens that don’t add up in the
classification process in true sense. To this
predicament, we make use of ‘chi-square’ or ‘chi2’
feature selection method (McHugh and Mary, 2013)
to filter our impertinent data.

The chi2 technique aims to measure the degree of
independence between a specific feature (tokens of
the snippet in our case) and its respective class
(programming language in our case).

After performing the chi-squared test, we keep
only selective features having a certain p-value.

3.5 Model Selection

After performing the chi-squared test, we are left with
the subset of distinguishable features which would be
fed to a suitable classifier.

Based on previous studies, we selected two
prominent ML based classifiers for our work, namely
- Random Forrest (Breiman, 2001) and XG Boost
(Chen et al., 2016) to better compare with the existing
baseline.

We also employ neural networks as an alternative
to our ML classifiers. Although, in terms of structure,
logistic regression can be regarded as a basic neural
network with no hidden layer, still we wish to
investigate if neural networks could make a
significant difference or not.

Finally, for our comparative analysis, we train our
corpus on word2vec and distil Bert as separate tasks.

4 RESULTS AND COMPARITIVE
ANALYSIS

4.1 Dataset

We gather the snippets for our experiment from the
SO post corpus gathered by (Alreshedy et al., 2020).
The corpus consisted of a total 232,727 questions
varying across 21 different programming languages.
These languages which include - Python, Objective-
C, Bash, Ruby, Perl, C++, Lua, CSS, Markdown,
Java, HTML, , C#, Scala, JavaScript, PHP, C, R,

Programming Language Identification in Stack Overflow Post Snippets with Regex Based Tf-Idf Vectorization over ANN

651

SQL, , VB.Net, Swift and Haskell comprise 80% of
questions on SO (Developer, 2017).

4.2 System Settings

We employ Intel(R) Xeon(R) CPU E5-1650 v3 @
3.50GHz 3.50 GHz with 32 GB Ram and 2GB
NVIDIA Quadro K620 GPU with running OS of
windows 10 for all the experiments.

We implement our model on keras framework
with Tensorflow backend on a Jupyter notebook. For
implementing distil-Bert, we make use of python
library transformers made available through Hugging
Face Corporation (Wolf et al., 2019).

4.3 Experimentation

In this subsection, we would elaborate on the various
steps carried out during the experiment.

As fig 1 depicted the methodology, the first step
is to pre-process the data. We start with our
customized tokenization based on regular
expressions.

Once the corpus is transformed into individual
tokens, we apply tf-idf vectorization on them. We
limit the maximum number of features up to 5000
tokens based on the frequency of their appearance in
the corpus.

Further, to select the subset of relevant features,
we perform the chi-squared test with p value of 0.95
that reduced the number of features to 3150. Some of
the most statistically pertinent keywords are listed in
table 2. The final filtered features are then passed out
to the ML and Neural Network classifiers.

Earlier works have shown the efficacy of Random
Forrest and XG Boost algorithms for this task. To
have a better comparative analysis with the existing
baselines, we decided to compete both these models.

For this purpose, we employ Sklearn’s
GridSearchCV and pipeline method to select the best
estimators and hyper parameters (Pedregosa et al.,
2011). To keep the computational cost low, we
perform grid search over 25% of our dataset.

Finally, we deploy our winner classifier by
unpacking the best parameters tuned through grid
search, which in our case was Random Forrest which
is in line with earlier work of (Alreshedy et al., 2020)
as well.

Additionally, we also implement artificial neural
network with 10,000 nodes in the input layer, 64 in
the hidden layer and then 21 dense layers followed by
a sigmoid function for classification. We make use of
ADAM optimizer which is an optimized version of

‘RMSProp’ and ‘momentum’ combined followed by
categorical cross entropy for fitting the model.

Table 2: Top keywords filtered after chi-square test.

Languages Top features
bash bin bash, then, grep, sh, fi,

awk, done, sed, bash, echo
C fopen, gcc, malloc, define,

int, sizeof, struct, char, void,
printf,

C# get set, using, ilist,
assembly, private void,

typeof, ienumerable,
foreach, public, new

C++ operator, endl, int,
push_back, const, cpp,
boost, void, std, cout

Css width, moz, hover, border,
style, webkit, margin, div,

background, css
haskell io, haskell, ghc, xs, cabal,

hs, do, otherwise, where, let,
java inputstream, synchronized,

javax, jsp, system out,
public, public void, extends,

new, java
Java_script settimeout, new date,

document, javascript, js,
prototype, onclick, alert,

function, var
lua torch, require, nil, function,

lua_state, print, then, end,
local, lua,

We keep the train-test split ratio to 75-25 percent
for an optimum analysis.

Since neural networks cannot handle sparse data
straight away, we convert the tf-idf vectors into dense
array. However, owing to the huge size of the dataset,
we pass the data in batches by creating an iterable
generator object.

Further, we manually fine tune the hyper
parameters such as changing the learning rate,
increasing the number of hidden nodes, adding a drop
out layer and so on for an optimized result.

4.4 Results of Proposed Methodology

After the posts are classified through respective ML
and NN classifiers, we plot the confusion matrix and
evaluate the performance. While Random Forrest
outperformed other ML classifiers in grid search, NN
even performed better than RF. However, the
computational time of NN was slightly more than the
RF classifier, so in a sense the trade-off was
comparable. Still, for performance considerations, we
chose to proceed with our ANN classifier.

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

652

We evaluate the performance for all the languages
individually as well as collectively based on four
metrics, namely accuracy, precision, recall and F1
score. The confusion matrix of the ANN classifier
along with the individual prediction performance can
be found in supplementary information on the
following link - https://tinyurl.com/2p9b4bhb.

Table 3: Overall performance of the classifier.

Classifier/Metric ANN RF
Precision 85.60% 83.40%

Recall 81.90% 80.20%
F1 Score 82.50% 81.30%
Accuracy 85.04% 83.80%

4.5 Comparative Analysis

In this subsection, we compare our model’s
performance with earlier existing baselines and also
investigate whether embedding based techniques and
state of art models like Bert can perform better on
source code or not.

Most of the earlier works have either considered
snippets insignificant to be included or have merged
their features with the features extracted from body
and description of the post. However, we can still
make an overall comparison keeping in view the aim
of achieving the end goal to classify the programming
language of code snippets.

However, identifying the language in large source
code files is very much different from classifying
snippets and therefore an equivalent comparison can’t
be made between the two.

Table 4 shows the overall comparison of similar
works in the domain. Although (Alreshedy et al.,
2018; 2020) in their work achieve better performance
overall, but it is to be noted that when applied on the
snippets alone, their accuracy dropped and our model
surpasses their work. To combine the effect of textual
part of the body and description is our future work.
Table 5 further draws comparison between the work
of (Alreshedy et al., 2020) and our work on individual
programming language level.

Besides, our investigation concerning the
performance of embedding based approaches and
pre-trained models are also presented in table 6. The
training-validation curve diagram regarding the same
can be found at https://tinyurl.com/2p9b4bhb.

Table 4: Comparative analysis of our approach against
existing baselines for identifying tags in SO posts.

Study Dataset based on Acc, Pr, Rc, F1
(Kuo, 2011) Title and

Description
47%

(Saha et al.,
2013)

Only Title 68%

(Stanley et
al., 2013)

Title and
Description

65%

(Baquero,
2017)

Title and
Description

60.8%, 68%, 60%,
and 60%

(Alreshedy
et al., 2018)

Title and
Description

Title, Description
and code Snippet

Only code Snippets

81%, 83% 81%,
and 0.81%;

91.1%, 91%, 91%

and 91%

73%, 72%, 72%,
72%

(Saini and
Tripathi,

2018)

Title, Description
and code Snippet

65%, 59%, 36%,
and 42%

(Jain and
Lodhavia,

2020)

Only Title 75%, F1 Score-
81%

(Kavuk and
Tosum,
2020)

Title and
Description

75%, 62%, 55%
and 39%

(Alreshedy
et al., 2020)

Title and
Description

Title, Description
and code Snippet

Only code Snippets

78.9%, 81%, 79%
and 79%

88.9%, 88%, 88%

and 88%

79.9%, 80%, 80%,
80%

Our work Only Code
Snippets

85%, 85%, 81%
and 82%

4.6 Discussion

The significant performance improvement of our tf-
idf approach over existing works can be attributed to
the decisive pre-processing of the corpus based on
regular expressions and feature reduction technique.
Neural network classifier further outperforming ML
based classifiers also adds to the boost of
performance.

Further, from table 4 and 6, we can see that out of
all the 21 languages, HTML and Markdown
performed worst. While Markdown had only 1300
snippets as compared to 12000 snippets of other 20
languages which very much explains it low
performance due to lack of training data, the reason
for bad performance of HTML could be attributed to
the ambiguity of HTML snippets which
simultaneously contain CSS and JavaScript code

Programming Language Identification in Stack Overflow Post Snippets with Regex Based Tf-Idf Vectorization over ANN

653

Table 5: Comparative analysis of F1 score of our approach
against existing baselines for individual programming
languages (all results in percentage).

Classifier/
Model

PLI
(PLI
tool,

2018)

SCC
(Alresh
edy et

al.,
2018)

SCC+
(Alresh
edy et

al.,
2020)

Our
Work

lua 50 84 70 92
C 56 76 81 84

ruby 43 70 72 89
C# 51 79 78 80

C++ 65 51 73 84
python 69 88 79 87

R 72 77 78 88
Css 30 86 77 80

Vb.net 60 83 77 91
swift 54 84 89 96

haskell 67 89 78 93
Html 35 54 55 53
Sql 50 65 79 83

Java 46 70 76 81
markdown 28 76 91 32

bash 67 76 85 82
objectivec 77 57 88 93

Perl 69 74 41 90
PhP 62 74 88 85

Scala 72 76 81 94
Javascript 48 78 74 75

Table 6: Comparative analysis of our approach against
Word2Vec and Distil-Bert.

Classifier/
Metric

Tf-Idf
+ANN

Word2Vec
over Bi-
LSTM

Distil-
Bert

Accuracy 85.04% 68.30% 61.2%
Time taken 139.4s 3936.6s 36996s

per step

segments which leads to miss-classification. One
possible solution to fixing this anomaly could be to
increase the training data for Markdown and to
generate multiple tags for HTML snippets and not
consider the miss-classification count of JavaScript
and CSS tags.

Elsewhere, the performance of tf-idf approach
excelling the embedding based approaches can be
attributed to the fact that code classification is very
much independent of semantic association of words
as compared to regular text.

One may argue that recent advances that have
transpired codebert (Feng et al., 2020), which is
specifically trained on code corpus comprising six
languages can outperform traditional methods. In this
regard, we wish to point out that the computational
time needed for distil bert only was around 1000

times more than that of tf-idf approach with a RF
classifier, and distil bert is the most preliminary
version of the Bert series. Therefore, keeping the
basis of performance and computational time trade-
off, we can safely argue that traditional approaches
are more suited for code classification purposes.

However, a proper in-depth investigation in this
regard can hold a promising future work.

5 CONCLUSION

Stack Overflow is one of the foremost resources for
developers to seek technical assistance. The site
receives massive traffic on a daily basis and thus
needs a proper mechanism for post segregation.
Earlier works have focused mainly on classification
of large source code files from github repositories.
Since prediction of programming languages in stack
overflow posts is relatively much challenging task,
we have proposed our model trained on regex-based
tf-idf vectorizer over an ANN classifier. We achieve
decent accuracy of 85% which excels several
baselines in the task of code snippet classification.

Further, we also investigate the utility of
embedding based algorithms such as word2vec and
pre-trained models such as distil-bert. Our
investigation shows that traditional approaches are
much suited for source code classification tasks
owing to the lack of semantic dependence in code
scripts.

REFERENCES

Alreshedy, K., Dharmaretnam, D., German, D. M.,
Srinivasan, V., & Gulliver, T. A. (2018). Predicting the
Programming Language of Questions and Snippets of
StackOverflow Using Natural Language Processing.
arXiv preprint arXiv:1809.07954.

Alrashedy, K., Dharmaretnam, D., German, D. M.,
Srinivasan, V., & Gulliver, T. A. (2020). Scc++:
Predicting the programming language of questions and
snippets of stack overflow. Journal of Systems and
Software, 162, 110505.

Barua, A., Thomas, S. W., & Hassan, A. E. (2014). What
are developers talking about? an analysis of topics and
trends in stack overflow. Empirical Software
Engineering, 19, 619-654.

Baquero, J. F., Camargo, J. E., Restrepo-Calle, F., Aponte,
J. H., & González, F. A. (2017, September). Predicting
the programming language: Extracting knowledge from
stack overflow posts. In Colombian Conference on
Computing (pp. 199-210). Springer, Cham.

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

654

Breiman, L. (2001). Random forests. Machine learning, 45,
5-32.

Cao, K., Chen, C., Baltes, S., Treude, C., & Chen, X. (2021,
May). Automated query reformulation for efficient
search based on query logs from stack overflow. In
2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE) (pp. 1273-1285). IEEE.

Chen, T., & Guestrin, C. (2016, August). Xgboost: A
scalable tree boosting system. In Proceedings of the
22nd acm sigkdd international conference on
knowledge discovery and data mining (pp. 785-794).

Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong, M.,
... & Zhou, M. (2020). Codebert: A pre-trained model
for programming and natural languages. arXiv preprint
arXiv:2002.08155.

Gilda, S. (2017, July). Source code classification using
Neural Networks. In 2017 14th international joint
conference on computer science and software
engineering (JCSSE) (pp. 1-6). IEEE.

Jain, V., & Lodhavia, J. (2020, June). Automatic Question
Tagging using k-Nearest Neighbors and Random
Forest. In 2020 International Conference on Intelligent
Systems and Computer Vision (ISCV) (pp. 1-4). IEEE.

Kavuk, E. M., & Tosun, A. (2020, June). Predicting Stack
Overflow question tags: a multi-class, multi-label
classification. In Proceedings of the IEEE/ACM 42nd
International Conference on Software Engineering
Workshops (pp. 489-493).

Klein, D., Murray, K., & Weber, S. (2011). Algorithmic
programming language identification. arXiv preprint
arXiv:1106.4064.

Khasnabish, J. N., Sodhi, M., Deshmukh, J., &
Srinivasaraghavan, G. (2014, July). Detecting
programming language from source code using
bayesian learning techniques. In International
Workshop on Machine Learning and Data Mining in
Pattern Recognition (pp. 513-522). Springer, Cham.

Kuo, D. (2011). On word prediction methods. Technical
report, Technical report, EECS Department.

McHugh, M. L. (2013). The chi-square test of
independence. Biochemia medica, 23(2), 143-149.

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013).
Efficient estimation of word representations in vector
space. arXiv preprint arXiv:1301.3781.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., ... & Duchesnay, E. (2011).
Scikit-learn: Machine learning in Python. the Journal of
machine Learning research, 12, 2825-2830.

Pennington, J., Socher, R., & Manning, C. D. (2014,
October). Glove: Global vectors for word
representation. In Proceedings of the 2014 conference
on empirical methods in natural language processing
(EMNLP) (pp. 1532-1543).

Programming language identification tool, 2018. Available:
https://www.algorithmia.com [Online].

Rekha, V. S., Divya, N., & Bagavathi, P. S. (2014,
October). A hybrid auto-tagging system for
stackoverflow forum questions. In Proceedings of the
2014 International Conference on Interdisciplinary
Advances in Applied Computing (pp. 1-5).

Saha, A. K., Saha, R. K., & Schneider, K. A. (2013, May).
A discriminative model approach for suggesting tags
automatically for stack overflow questions. In 2013
10th Working Conference on Mining Software
Repositories (MSR) (pp. 73-76). IEEE.

Saini, T., & Tripathi, S. (2018, March). Predicting tags for
stack overflow questions using different classifiers. In
2018 4th International Conference on Recent Advances
in Information Technology (RAIT) (pp. 1-5). IEEE.

Sanh, V., Debut, L., Chaumond, J., & Wolf, T. (2019).
DistilBERT, a distilled version of BERT: smaller,
faster, cheaper and lighter. arXiv preprint
arXiv:1910.01108.

Stanley, C., & Byrne, M. D. (2013, July). Predicting tags
for stackoverflow posts. In Proceedings of ICCM (Vol.
2013).

Swaraj, A. and Kumar, S. A Methodology for Detecting
Programming Languages in Stack Overflow Questions.
DOI: 10.5220/0011310400003266. In Proceedings of
the 17th International Conference on Software
Technologies (ICSOFT 2022)

Van Dam, J. K., & Zaytsev, V. (2016, March). Software
language identification with natural language
classifiers. In 2016 IEEE 23rd international conference
on software analysis, evolution, and reengineering
(SANER) (Vol. 1, pp. 624-628). IEEE.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C.,
Moi, A., ... & Rush, A. M. (2019). Huggingface's
transformers: State-of-the-art natural language
processing. arXiv preprint arXiv:1910.03771.

Programming Language Identification in Stack Overflow Post Snippets with Regex Based Tf-Idf Vectorization over ANN

655

