
SeCloud: Computer-Aided Support for Selecting Security Measures for
Cloud Architectures

Yuri Gil Dantas and Ulrich Schöpp
Fortiss GmbH, Munich, Germany

Keywords: Securing Cloud Architectures, Security Architecture Patterns, Automation.

Abstract: The adoption of cloud infrastructures requires the deployment of security measures to protect assets against
threats (e.g., tampering). Several security measures/technologies are available for securing cloud infrastructures,
such as Service Mesh Istio and OpenID Connect. In the current state of practice, the selection of security
measures is manually done by an expert (e.g., a security engineer). It becomes challenging for experts to
make these selections due to the complexity of cloud infrastructures and the vast number of available security
measures and technologies. This article proposes a tool for automating the recommendation of security measures
for cloud architectures. Our tool expects as input information both the cloud architecture and assets identified
during a threat analysis, and recommends security measures for protecting such assets against threats. We
validate our tool in a case study that provides cloud services for unmanned air vehicles (UAVs).

1 INTRODUCTION

Cloud infrastructures offer runtime environments with
sophisticated mechanisms for reliability, observabil-
ity, manageability and security. These infrastructures
provide several benefits for business and IT, including
lower implementation and maintenance costs.

Security is one of the biggest concerns about cloud
infrastructures, especially because the data is no longer
controlled by the client who purchased the cloud ser-
vice. Indeed, a literature review conducted by (Carroll
et al., 2011) confirms that security is the main risk for
businesses using cloud infrastructures.

Two attack surfaces against cloud systems have
brought the attention of security researchers and en-
gineers: 1) External attackers may carry out attacks
against cloud services (Eliseev et al., 2021). For ex-
ample, without suitable security measures, an external
attacker may carry out spoofing attacks to impersonate
a legitimate client in accessing critical data. 2) An
internal service may also be the source of attacks due
to, e.g., misconfiguration, compromise, or being inten-
tionally malicious (Oleshchuk and Køien, 2011). To
implement an effective defense-in-depth strategy, it is
important to consider also threats that originate from
internal services. Internal services may, e.g., carry out
elevation-of-privilege attacks to access data from crit-
ical services without authorization. Potential attacks
through these attack surfaces shall be mitigated by se-

lecting and deploying suitable security measures for
cloud infrastructures.

Before selecting security measures, security engi-
neers perform a threat analysis to identify assets, threat
scenarios, and attack paths leading to threat scenarios.
Threat analysis is recommended for the early stages of
the system development, i.e., during the design of the
cloud architecture to avoid expensive changes later in
the cloud system lifecycle.

The identification of potential security measures
to mitigate the identified threat scenarios is a main
challenge for cloud architectures. Examples of tech-
nologies offering security measures are Service Mesh
Istio, the authentication protocol OpenID Connect, and
the Kubernetes network plugin Cilium. In the current
state of practice, the selection of security measures is
manually done by an expert (e.g., a security engineer).

There are many cloud technologies and platforms
to choose from, and it is hardly feasible to evaluate the
implications of many possible choices in detail, e.g.,
due to time constraints. Even when the technologies
are understood in principle, it is not easy to keep track
of the consequences of selecting a combination of
them. One would also like to understand the trade-offs
between different choices regarding system develop-
ment and operation, e.g., in the form of additional
requirements for certificate management, or regarding
resource overhead.

The cloud native landscape is vast, and it’s

264
Dantas, Y. and Schöpp, U.
SeCloud: Computer-Aided Support for Selecting Security Measures for Cloud Architectures.
DOI: 10.5220/0011901900003405
In Proceedings of the 9th International Conference on Information Systems Security and Privacy (ICISSP 2023), pages 264-275
ISBN: 978-989-758-624-8; ISSN: 2184-4356
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

easy to become overwhelmed by its growing
number of competing and overlapping plat-
forms and technologies.1

Figure 1 may give an impression of the vastness.

Figure 1: Cloud Native Technology Landscape (excerpt).

Contribution: This article proposes SECLOUD, a
tool for automating the recommendation of security
measures for cloud architectures. (i) SECLOUD com-
putes threat scenarios for assets provided as input in-
formation by the user. (ii) SECLOUD computes attack
paths based on an intruder model, and the cloud archi-
tecture received as input information. (iii) SECLOUD
recommends security measures for mitigating threat
scenarios (i.e., addressing all attack paths leading to
threat scenarios). The target user for SECLOUD is
security engineers responsible for assessing the se-
curity of cloud architectures and hardening such ar-
chitectures with security measures. SECLOUD has
been implemented in the logic programming engine
clingo (Potassco, 2022).

SECLOUD is built on the work by (Dantas and
Nigam, 2022), who proposed a tool for automating
the recommendation of security architecture patterns
for autonomous vehicle architectures. The original as-
pects of our work are: (i) extension of the domain-spe-
cific language for cloud architectures, (ii) specifica-
tion of security measures suitable for cloud architec-
tures, (iii) more specific reasoning principles for rec-
ommending security measures. The work by (Dantas
and Nigam, 2022) only considers the cybersecurity
property satisfied by the pattern as the main condi-
tion to recommend patterns, and (iv) specification of
constraints to reduce the number of recommended so-
lutions with security measures to deal with scalability
and usability issues.

SECLOUD is available online at (SeCloud, 2022).

Structure of this Article: The remainder of this ar-
ticle is structured as follows. Section 2 describes a

1https://www.cncf.io/blog/2020/09/15/
top-7-challenges-to-becoming-cloud-native

running example to help us introduce the contributions
of the article. Section 3 describes an intruder model for
cloud infrastructures. Section 4 describes the workflow
of SECLOUD, including its inputs and output artifacts.
Section 5 describes the domain-specific language of
SECLOUD, including how SECLOUD specifies secu-
rity measures to enable their automation through the
reasoning rules described in Section 6. Section 7 il-
lustrates the benefits of using constraints and the in-
creased automation enabled by SECLOUD. We con-
clude the article by discussing related and future work
in Sections 8 and 9.

2 RUNNING EXAMPLE

SECLOUD is intended to assist security engineers with
security architecture decisions for cloud infrastruc-
tures. We present it using a real application developed
in a research project as a running example.

The example application provides services by un-
manned air vehicles (UAVs), such as transportation
services or search and rescue services. It optimizes the
usage of UAV and implements planning, optimization
and prognostic health management functions. While
the particular details of the use-case are not important
to describe the application of SECLOUD, the applica-
tion provides a realistic use-case.

The role of SECLOUD is to support the selection
of technologies to implement security functions at an
early stage in the system development, where the main
components and their interfaces have been identified,
but where the security architecture of the system is
still under consideration.

Figure 2 gives an overview of the logical architec-
ture of the system. The main system components are
Service Broker (sb), Multi Resource Manager (mrm),
Cognitive Assistant (ca), Operations Manager (om),
Fleet Manager (fm). These components are intended to
be deployed on a cloud platform. They provide public
interfaces where clients may access the services.

The applications communicate with each other
through two mechanisms. First, the components offer
a Rest/HTTP API for access to resources. Second, they
use Kafka2 for event-based communication. Kafka im-
plements topic-based pub/sub communication. It pro-
vides named topics where the application components
may publish messages about certain aspects, e.g. the
topic av-updates is intended for messages pertaining
to the status of air vehicles. These messages are de-
livered to all components that subscribe to them. For
example, the Operations Manager receives telemetry

2https://kafka.apache.org/

SeCloud: Computer-Aided Support for Selecting Security Measures for Cloud Architectures

265

data from the ground control station and publishes
this to av-updates. The Fleet Manager subscribes to
this topic and thus receives telemetry updates. Pub/-
sub communication is convenient for decoupling com-
ponents, but also introduces challenges for security,
e.g. for limiting the impact of the compromise of one
internal component.

The main application components are each real-
ized by a set of Docker containers. Figure 3 shows a
container architecture of the system. It contains the ap-
plication containers and support containers, such as for
ingress. While, in realistic deployments, Kafka will
likely be deployed redundantly, it suffices to consider
it as a single container for our purposes.

Figure 3 shows assumptions about the deployment
and the security environment of the system. We con-
sider client a public, external component, to which
attackers have full access. Most of the components
are intended to be hosted on a cloud platform, where
ingress serves as a gateway component. While ground
control station is part of the system, it needs to be
hosted on-site at an airport rather than in the cloud.

The container architecture of Figure 3 represents
and early stage of system development. It does not con-
tain any security features. It could be deployed directly
using Docker, but the components would communicate
over plain http without authentication or authorization.
The purpose of SECLOUD is to support the design of
a security architecture for the application.

3 INTRUDER MODEL

This section describes an intruder model for cloud
infrastructures. The intruder model is taken into ac-
count by SECLOUD when computing attack paths. We
consider both external and internal intruders based
on the Dolev-Yao intruder (Dolev and Yao, 1983).
Both intruder models are inspired by related work, e.g.,
(Oleshchuk and Køien, 2011; Eliseev et al., 2021).

External Intruder. The external intruder assumes
that public interfaces may be exploited by attackers,
as in (Eliseev et al., 2021). As a result, the external
intruder may inject malicious data into the cloud in-
frastructure through public interfaces (e.g., cloud con-
sumers) to violate the cybersecurity property of assets.
Consider, e.g., the architecture described in Section 2,
where the interface from client to sb represents a public
interface of the system, and the container sb is an asset.
A malicious attacker may carry out spoofing attacks
impersonating a legitimate client to write unauthorized
data to sb, thus violating the authenticity properties
of data arriving at sb. We assume that an attack from

a public interface to an asset may be possible if there
exists an information flow from the public interface to
the asset. This is the case for the example above, as
shown in the cloud architecture illustrated Figure 3.

Internal Intruder. The internal intruder assumes
that internal containers may not be trustworthy, as in
(Oleshchuk and Køien, 2011). As a result, an internal
container may inject malicious data into other contain-
ers (possibly assets) in the cloud system. For example,
sb may not be trustworthy and carry out elevation of
privilege attacks to access data from other assets like
mrm without authorization. We assume that an attack
from an internal container to another asset container
may be possible if there exists a communication chan-
nel from the internal container and to the asset. This is
the case for sb and mrm, as illustrated in Figure 3.

4 SeCloud: OVERVIEW

Our goal is to provide automated methods for the selec-
tion of security measures for cloud architectures. To
this end, we build on SecPat proposed by (Dantas and
Nigam, 2022). We propose the use of Knowledge Rep-
resentation and Reasoning (KRR) (Baral, 2010) for
representing cloud architectures, security artifacts, and
security measures as knowledge bases. The security
measures are recommended in an automated fashion
through the specification of reasoning rules. The repre-
sentation of the knowledge bases are realizable through
a domain-specific language (DSL). We specify rules to
reason about the security of the cloud architecture, in-
cluding rules to enable the automated recommendation
of security measures. Our tool – SECLOUD – imple-
ments both the DSL and reasoning rules for securing
cloud architectures. SECLOUD has been developed in
the logic programming engine clingo (Potassco, 2022).

Figure 4 illustrates the workflow of SECLOUD.
The gray boxes represent either artifacts received as
input or generated for output. SECLOUD receives two
main artifacts as input, namely cloud architecture and
security artifacts.

Architecture Model. This input artifact consists of
a Logical Architecture, a Container Architecture, and
an Allocation Table. An allocation table denotes the
mapping of logical components to containers. Selected
containers may be annotated as public (i.e., they are
external components that are not under the control of
the system) or gateways. Annotating containers as pub-
lic is relevant for security, especially for identifying
potential attack paths.

ICISSP 2023 - 9th International Conference on Information Systems Security and Privacy

266

Figure 2: High-level architecture of running example.

Figure 3: Container architecture of running example.

Security Artifacts. This input artifact consists of ar-
tifacts that may be identified in a Threat Analysis and
Risk Assessment (TARA) analysis. Examples of secu-
rity artifacts identified in a TARA analysis are assets
and threat condition. SECLOUD expects that at least
assets are provided as input. Assets are objects (e.g.,
software elements) that need protection. SECLOUD
expects that an asset is associated with a container.

Both the cloud architecture and security artifacts
are specified in the DSL of SECLOUD. This speci-
fication enables SECLOUD to reason about the secu-
rity of the cloud architecture through reasoning princi-
ples. The reasoning principles enables the automated
computation of threat scenarios and attack paths. SE-
CLOUD attempts to deploy security measures wherever
they are applicable to mitigate threat scenarios. SE-
CLOUD outputs assumptions that need to be valid to
ensure that the recommended security measure works
as intended. The assumptions are turned into require-
ments that are output together with the recommended
measures. These requirements shall be implemented
and validated during the development of the system.
In summary, SECLOUD provides as output artifacts
threat scenarios and attack paths, as well as security
measures alongside assumptions/requirements.

4.1 Clingo

Clingo is an engine to implement logic programs based
on Answer-Set Programming (ASP) semantics (Gel-
fond and Lifschitz, 1990).

A logic program is a set of rules. Each rule is of

the form a0 ← a1,..., an, where the literal a0 is the
head of the rule, and the literals a1,..., an are the body
of the rule. A literal is an atom (am) or a negated atom
(¬am). A rule with an empty head is a constraint. A
model (often referred by this article as solution) is an
interpretation satisfying a set of rules.

This article uses the clingo notation, where :- de-
notes←, and not denotes ¬. Identifiers beginning with
capital letters (e.g., A, B) denote variables that dur-
ing clingo’s execution are instantiated by appropriate
terms. Identifiers beginning with a lower-case letter
(e.g., a, b) are constants. The (underscore) charac-
ter specifies that the argument can be ignored in the
current rule.

5 DOMAIN-SPECIFIC LANGUAGE

SECLOUD provides a domain-specific language (DSL)
for specifying (a) cloud architectures, (b) security arti-
facts, and (c) security measures. Table 1 provides the
predicates/facts for specifying selected architectural
elements and security artifacts. With the exception
of threat conditions, threat scenarios and attack paths,
all these facts shall be provided as input. The threat
conditions denote the adverse consequences if the cy-
bersecurity property of an asset is violated. Follow-
ing the STRIDE methodology (Shostack, 2014), this
article considers the authenticity, integrity, and autho-
rization properties. These properties may be violated
by, respectively, spoofing, tampering, and elevation of
privilege attacks.

SeCloud: Computer-Aided Support for Selecting Security Measures for Cloud Architectures

267

Figure 4: SECLOUD’s workflow. Gray boxes are artifacts either received as input or generated for output. The light blue boxes
under SECLOUD are for illustrative purposes only.

Example. Consider the container architecture
illustrated in Figure 3 and the predicates described
in Table 1. Assume that both ground control station
and sb have been identified as assets in the initial
threat analysis. The user of SECLOUD specifies the
container architecture and the identified assets as
follows.

% Containers (excerpt)
container_out(client,o1).
container_out(gcs,o2).
container_inp(gcs,i1).
container_inp(ingress,i2).
container_inp(ingress,i3).
container_onp(ingress,o3).
container_onp(ingress,o4).
container_inp(sb,i5).
container_out(sb,o6).

% Connections (excerpt)
conn(sg1,o1,client,i2,ingress).
conn(sg2,o2,gcs,i3,ingress).
conn(sg3,o3,ingress,i1,gcs).
conn(sg3,o4,ingress,i5,sb).
conn(sg3,o6,sb,i6,sb_database).

% Assets (excerpt)
asset(gcs).
asset(sb).

Listing 1: Specification of container architecture and assets.

5.1 Specifying the Security Content of
Cloud Technologies

We refer to security measures at the architectural
level as security architecture patterns (Cheng et al.,
2019). Security architecture patterns are architectural
solutions for mitigating threat scenarios. This sec-
tion describes by example how SECLOUD provides
semantically-rich description of patterns that will en-
able the automated reasoning described in Section 6.

Before introducing the security architecture pat-
terns, we describe the DSL of SECLOUD for speci-
fying security architecture patterns. The bottom of
Table 1 describes the predicates/facts for specifying
(a) the pattern instantiation, (b) the pattern attributes.

The former denotes all relevant architecture elements
for instantiating the pattern. The relevant architecture
elements are the pattern components, and the pattern
channels. The pattern attributes denote the intent and
problem addressed by the pattern. That is, the pattern
attributes consist of the desired cybersecurity property
achieved by the pattern, the threat addressed by the pat-
tern, and the attack surface suitable to instantiate the
pattern. You may read this as the pattern mitigates the
particular threats (e.g., tampering) at the attack surface
against the cybersecurity property (e.g., integrity).

We consider two kinds of attack surfaces, namely
external and internal interface. The former denotes
any attacks carried out by with external entities, such
as entities that are public or entities that send data to
the system through a gateway. The latter denotes any
attacks carried out within the system. Considering the
attack surface is relevant because some patterns may
only be applied inside the system (internal interface) or
outside the system (external interface). The traditional
firewall is an example of such patterns that may only
be applied at the external (a.k.a. network) interface.

At present, SECLOUD formulates five security ar-
chitecture patterns for the recommendation of different
kinds of technologies for cloud applications: Cilium3

is a Kubernetes network plugin with advanced func-
tionality for providing, securing, and observing net-
work connectivity between containers. Cilium uses
IPsec to transparently encrypt data in transit between
applications to avoid data tampering attacks. Cilium
is also able to enforce policies for satisfying both au-
thenticity and authorization properties. TLS (Trans-
port Layer Security) is a protocol to provide secure
communication over a network communication chan-
nel. In the context of cloud computing, TLS can be
used to enforce secure communication between con-
tainers to prevent attackers to tamper with the data
exchanged between applications. Mutual Authentica-
tion is described in Section 5.1.1. OpenID Connect4

is an authentication protocol built on top of OAuth
2.0. OpenID Connect allows a client to authenticate
itself when accessing services. An OpenID Connect

3https://cilium.io
4https://openid.net/connect

ICISSP 2023 - 9th International Conference on Information Systems Security and Privacy

268

Table 1: DSL for (selected) architecture elements, security artifacts, and security architecture patterns.

Fact Description
Architectural elements

container inp(id,idi) id is a container and it has an input port idi.

container out(id,ido) id is a container and it has an output port ido.

conn
(id,id1o,id1,id2i,id2)

id is a signal connecting an output port id1o of container id1 to an input port id2i of
container id2.

gateway(id) id is a gateway container.

public(id) id is a public container that may be accessible by external users.

Security artifacts
asset(id) denotes that container id is an asset.

threat condition
(id,secp,idast)

id is the adverse consequence if the cybersecurity property secp of asset idast is
violated, where secp ∈ {authenticity, integrity,authorization}.

threat scenario
(id,tsdes,as,ts,idast)

id is a threat scenario, with description tsdes, originating from attack surface
as, to violate the cybersecurity property of asset idast with threat ts, where ts
∈ {spoofing, tampering,elevation of privilege}.

attack path
(id,el,idast)

id is an attack path denoting that malicious data may be injected from element el to
target asset idast.

Security architecture patterns
security pattern
(id,pat,cp,inp,int,out)

id is the unique identification of security architecture pattern pat. This pattern
consists of a list of components cp. The last three parameters inp, int and out denote,
respectively, the input, the internal, and the output channels related to the pattern.

security attributes
(pat,as,secp,ts)

pat is a security architecture pattern suitable for satisfying the cybersecurity property
secp by mitigating threat ts at the attack surface as.
as ∈ {external interface, internal interface},
secp ∈ {authenticity, integrity,authorization},
ts ∈ {spoofing, tampering,elevation of privilege}.

server verifies user credentials (e.g., username and
password) and issues identity tokens. Client may use
such identity token to authenticate themselves when
accessing application services. Service Mesh Istio5 is
an application-level infrastructure for managing ser-
vices in a cloud environment. Security-wise, Istio can
enforce secure communication between applications
by encrypting traffic and providing mutual authenti-
cation (i.e., to ensure integrity and authenticity). It
provides support functions, such as key distribution
and rotation. Istio provides the functionality to enforce
policies to authorize resource access in the mesh.

We describe how SECLOUD captures cloud tech-
nologies in the form of semantically-rich description of
security architecture patterns by example using Mutual
Authentication. Table 2 describes the pattern attributes
for all the patterns supported by SECLOUD.

5https://istio.io

5.1.1 Mutual Authentication

Mutual Authentication (mTLS) (Vasudev et al., 2020)
is a security measure for verifying the authenticity of
two entities that wish to exchange data over a commu-
nication channel. Assume a client and a server con-
nected through a communication channel. This pattern
ensures that the server authenticates with the client,
and the client authenticates with the server before the
actual communication occurs. To ensure the authen-
ticity of these entities over a communication channel,
both the client and the server shall provide their digital
certificates to prove their identities to each other. This
is in contrast to TLS, where only the server presents
a certificate. The Mutual Authentication pattern ad-
ditionally guarantees the integrity of data exchanged
between the client and server given that the identities
of the entities have been correctly verified. Finally,
for satisfying the authorization property, this pattern
assumes that both client and server implement policies

SeCloud: Computer-Aided Support for Selecting Security Measures for Cloud Architectures

269

Table 2: Security architecture patterns currently supported by SECLOUD. This table describes that a pattern may be used to
mitigate threat (e.g., spoofing) at the attack surface (e.g., external interface) to satisfy the security property (e.g., authenticity).

Pattern Threat→ Security Property Attack Surface
Cilium spoofing→ authenticity

tampering→ integrity
elevation of privilege→ authorization

internal interface

OpenID Connect spoofing→ authenticity internal/external interface

TLS tampering→ integrity external interface

mTLS spoofing→ authenticity
tampering→ integrity
elevation of privilege→ authorization

internal/external interface

Service Mesh Istio spoofing→ authenticity
tampering→ integrity
elevation of privilege→ authorization

internal/external interface

for data access control. Mutual Authentication may
be applied for components communicating over an
internal or external interface. The instantiation of the
Mutual Authentication pattern is shown in Table 3.

Based on the structure of mTLS shown in Table 3,
SECLOUD instantiates this pattern as shown below.

security_pattern(id,mTLS,(cp1,cp2),
(inp1,inp2),(int1,int2),none).

Listing 2: Pattern instantiation (mTLS).

security_attributes(mTLS,
attack_surface(external_interface,
internal_interface),

property(authenticity,integrity,
elevation_of_privilege),

threat(spoofing,tampering,
elevation_of_privilege)).

Listing 3: Security attributes (mTLS).

6 SECURITY REASONING
PRINCIPLES

SECLOUD specifies reasoning principles to reason
about the security of the cloud architecture, including
reasoning principles to (a) compute threat scenarios,
(b) enumerate attack paths for the identified threat sce-
narios, (c) recommend security architecture patterns
for mitigating threat scenarios. While the main focus
of this section is about the pattern recommendation,
we also provide a brief explanation of (a) and (b).

Computing Threat Scenarios. SECLOUD com-
putes threat scenarios that may violate the cyberse-
curity property of assets. We consider the authentic-

ity, integrity, authorization of assets received as input.
Based on STRIDE (Shostack, 2014), we consider that
these three properties may be violated, respectively, by
spoofing, tampering, and elevation of privilege attacks.
For example, for each asset received as input, we con-
sider that the integrity of the asset may be violated by
tampering attacks.

While this is a fairly coarse way of computing
threat scenarios, SECLOUD provides the possibility to
define more fine-grained criteria for threat scenarios
that may use all available information. This can be
done by defining inference rules of the following form.

threat_scenario(ID, THREAT, SOURCE,
TYPE, ASSET) :- ...

Listing 4: Threat scenario inference rule (snippet).

Computing Attack Paths. SECLOUD computes at-
tack paths for each threat scenario. To this end, SE-
CLOUD implements the intruder model described in
Section 3 with capabilities to carry out both external
and internal attacks.

Example. Figure 5 illustrates a potential attack path
(based on the architecture from Section 2) for three
threat scenarios. The upper part of Figure 5 illustrates
an attack path from client (public interface) targeting
the asset sb (short for service broker). The lower part
Figure 5 describes three threat scenarios for asset sb.
The attack surface is obtained from the attack path
originated at the external interface (i.e., by client).

We now introduce three predicates for specifying
whether a threat scenario is mitigated or not. First, miti-
gated by(IDTS,IDPAT) specifies when a threat scenario
IDTS is mitigated by a suitable security architecture

ICISSP 2023 - 9th International Conference on Information Systems Security and Privacy

270

Table 3: Instantiation of the Mutual Authentication pattern. The assumptions represent only a selection.

Description SECLOUD Specification

Pattern name Mutual Authentication NAME=mTLS;

Structure
COMPONENTS=[cp1,cp2];
INPUT CH=[inp1,inp2];
INTERNAL CH=[int1,int2];

Intent This pattern is used when two entities over a
communication channel verify each other’s iden-
tity (authentication). Given the correct verifica-
tion of the entities, this pattern also satisfies the
integrity of messages exchanged between the
sender and the receiver. Both entities imple-
ment authorization policies.

TYPE SEC PROPERTY=
[authenticity,integrity,authorization];
TYPE THREAT=
[spoofing,tampering,elevation of privilege];
TYPE ATTACK SURFACE=
[external interface,internal interface];

Problem ad-
dressed

This pattern prevents that data exchanged be-
tween two entities in communication channel
are spoofed or tampered. This pattern prevents
such entities to gain privileges in accessing re-
sources that shall not be authorized.

Assumptions/
Requirements
(selection)

CP1 and CP2 have digital certificate signed by
a trusted CA.

TYPE ASSUMPTION=entity has received
certificate signed by trusted ca;
COMPONENTS=[cp1,cp2];

Figure 5: Illustration of one attack path and three threat
scenarios computed by SECLOUD.

pattern IDPAT. We assume that a threat scenario is miti-
gated if the attack path leading to the threat scenario is
addressed. Second, mitigated(IDTS) expresses that the
threat scenario IDTS by some pattern. Finally, nmiti-
gated(IDTS) specifies that IDTS is not mitigated. The
reasoning rules for three predicates are as follows:

mitigated(IDTS) :- mitigated_by(IDTS,IDPAT).
nmitigated(IDTS) :-
threat_scenario(IDTS,_,_,_,_),
not mitigated(IDTS).

Listing 5: Mitigation rules.

6.1 Pattern Instantiation

SECLOUD specifies reasoning rules for automating
the recommendation of security architecture patterns.
These rules specify the conditions for when a particular

security architecture pattern can be recommended to
mitigate threat scenarios targeting assets, which were
identified by the user. Whenever a security architecture
pattern is recommended, the rule mitigated by applies
to infer which threat scenarios have been mitigated.
SECLOUD only outputs architecture solutions when all
threat scenarios have been mitigated. This is ensured
through the specification of the following constraint,
which expresses that any non-mitigated threat scenario
is not allowed (implies empty/false).

:- nmitigated(IDTS).

Listing 6: Constraint: No non-mitigated threat scenarios.

A security architecture pattern is recommended
if there is a match between security artifacts and the
pattern attributes. That is, SECLOUD considers infor-
mation related to a threat scenario, i.e., attack surface,
threat, and property violated by the threat, and the
pattern attributes. A security architecture pattern is
recommended if the following conditions hold:

attack surface ∈ pattern attribute
threat ∈ pattern attribute

security property ∈ pattern attribute

We illustrate a reasoning rule specified in SE-
CLOUD to recommend security architecture patterns.
The following reasoning rule specifies the conditions
for recommending security architecture patterns. The
rule checks whether there is one instance of secu-
rity attributes for the security artifacts specified on the
right side of the rule.

SeCloud: Computer-Aided Support for Selecting Security Measures for Cloud Architectures

271

{ recommended_pattern(PAT,IDTS,IDAP, EL1,EL2)
: security_attributes(PAT,AS,SECP,TS) } = 1

:- threat_scenario(IDTS,_,AS,TS,AST),
threat_condition(_,SECP,AST),
get_ap_from_ts(IDTS,IDAP),
attack_path(IDAP,EL1,EL2).

Listing 7: Pattern recommendation rule.

The above rule derives facts of the form recom-
mended pattern(PAT,IDTS,IDAP,EL1,EL2), which ex-
press that pattern PAT has been recommended to ad-
dress attack path IDAP of threat scenario IDTS. EL1
and EL2 are architectural elements in the attack path
IDAP. These architecture elements may become pattern
components. For example, assume that the mTLS pat-
tern has been recommended. The instantiation denotes
that mTLS used for the communication from EL1 (i.e.,
client) to EL2 (i.e., server). SECLOUD may derive the
input, internal and output channels from the (baseline)
system architecture received as input. Omitted here,
we have a rule for mapping recommended pattern to
security pattern (described in Table 1).

6.2 Combinations and Constraints

Pattern instantiation will produce a large number of
possible solutions. The number of solutions depends
on the number of (a) assets, (b) attack paths leading
to threat scenarios, and (c) security architecture pat-
terns. SECLOUD computes all possible solutions with
security architecture patterns as long as there exists a
match between security artifacts and pattern attributes.

The purpose of SECLOUD is to assist the selec-
tion of architecture options, so it is essential to select
reasonable options from the set of possible instantia-
tions. By building on an ASP solver like clingo, we
can define sophisticated constraints on the possible
combinations of patterns, which can be checked effi-
ciently by the solver. Indeed, the intended usage of
ASP solvers is to generate a (possibly very large) set
of potential solutions up front and to select suitable
ones using constraints (Lifschitz, 2019).

SECLOUD uses the following constraints.
1. All threats have been mitigated. SECLOUD spec-

ifies a constraint to only computes architecture
solutions where all threat scenarios have been mit-
igated. That is, SECLOUD discards solutions if at
least one threat scenario has not been mitigated.
This constraint is shown in Listing 6.

2. Only one pattern for addressing each threat
scenario. SECLOUD may output two security ar-
chitecture patterns for addressing the same threat
scenario. For example, possible solutions for mit-
igating tampering threats violating the integrity

of assets are Mutual Authentication and Service
Mesh patterns. SECLOUD specifies a constraint to
only recommend one pattern for each threat sce-
nario avoiding that two patterns are recommended
for the same threat scenario.

3. No TLS and mTLS for the same element. SE-
CLOUD may compute solutions where TLS and
mTLS are recommended for the same element.
These solutions may be redundant in the sense
that the element should have two certificates, one
for TLS and one for mTLS. SECLOUD specifies
a constraint to avoid TLS and mTLS from being
recommended for the same element.

4. No mTLS for public elements. Mutual Authen-
tication may be impractical for public elements,
as certificates would need to be distributed to all
external clients. SECLOUD therefore specifies a
constraint to avoid the mTLS pattern from being
recommended for public elements.

5. Only one pattern for addressing equivalent se-
curity artifacts. SECLOUD may compute several
combinations of patterns for addressing threat sce-
narios. This might lead to expensive solutions to
be implemented during the development of the
system. For example, SECLOUD may output a
solution where Service Mesh is recommended for
two containers, and Cilium is recommended for
the remaining containers in the system. It might
be expensive and unnecessary to deploy a Service
Mesh for only two containers of the system, es-
pecially when Cilium may be deployed for all
containers. SECLOUD specifies constraints to rec-
ommend the same pattern to address security arti-
facts with equivalent attributes (i.e., attack surface,
threat, and cybersecurity property).

7 CASE STUDY

This section illustrates the use of SECLOUD for the
cloud architecture described in Section 2. We evaluate
the use of the constraints defined in Section 6.2, and
discuss the recommended patterns by SECLOUD.

For the sake of illustration, we assume two assets:
ground control station and sb. As described in Sec-
tion 2, we assume that client is a public component,
ingress is a gateway, and ground control station sends
and receives data through ingress. This means that all
attack paths involving client and ground control station
denote potential attacks through an external interface.
The remaining attack paths denote potential attacks
through an internal interface.

ICISSP 2023 - 9th International Conference on Information Systems Security and Privacy

272

Table 4: Experiments with constraints. Scenario with 2
assets, 31 attack paths, and 5 security architecture patterns.
The entry ‘-’ means that SECLOUD has not returned all
solutions after 60 minutes. The constraint’s ID (e.g., 1, 2,...)
refers to the constraints described in Section 6.2.

Constraint #Solutions Execution time (s)

none - 3600

1 - 3600

1, 2 - 3600

1, 2, 3 2916 0.27

1, 2, 3, 4 1458 0.13

1, 2, 3, 4, 5 6 0.06

SECLOUD has computed 93 threat scenarios, and
31 attack paths (28 and 3 attack paths based on, re-
spectively, the external and internal intruder). For each
attack path, SECLOUD considers three threat scenar-
ios that may violate the property of the asset through
spoofing, tampering, and elevation of privilege. Thus,
the number of threat scenario is 31 × 3 = 93.

There are many ways of applying the security ar-
chitecture patterns to mitigate these threat scenarios.
With the patterns and constraints defined in Sections 5
and 6, SECLOUD recommends six architecture options
almost instantly. These options are shown in Table 5.

To understand how SECLOUD may deal with a
larger number of possible solutions, e.g., when ex-
tended with more patterns, it may be instructive to
consider also its performance when some of the con-
straints from Section 6.2 are lifted. Table 4 describes
the results of our experiments. We ran the experiments
on a 1.9GHz Intel Core i7-8665U with 16GB RAM
wuth Ubuntu 18.04 LTS and clingo 5.2.2.

SECLOUD could not enumerate all solutions with-
out any constraints and with constraints 1, and 1 &
2. With constraints 1 & 2 & 3, and 1 & 2 & 3 &
4, SECLOUD computed all solutions within 0.27 and
0.13 seconds, respectively. These results illustrate
that while the number of pattern instantiations being
considered is the same in all cases, imposing con-
straints to filter solutions is sufficient to improve per-
formance. However, the number of solutions were still
high, impacting the usability of SECLOUD (i.e., it is
impractical for the user to choose a solution). The
breakthrough was the specification of constraint 5 for
only recommending one type of pattern to address
equivalent security artifacts. Together with the other
constraints, SECLOUD computed six solutions within
0.06 seconds.

The six solutions are shown in Table 5. In general,
they represent a reasonable selection of architecture
options to address the 93 threat scenarios identified by

SECLOUD. Solution 6 has previously been selected
manually in the development of the system that serves
as our running example. One aspect that is perhaps not
reasonable is that all solutions use the authorization
policies of the Istio service mesh to verify OpenID
Connect tokens, even when no components are placed
in the mesh. This is an artifact of the current small
selection of security architecture patterns. However,
the reasons for selecting the patterns are documented
by SECLOUD, so users may replace individual patterns
in each solution.

Indeed, SECLOUD provides documentation for the
identified attack paths, threat scenarios, and new re-
quirements for each solution. The requirements are
traced to threat scenarios, which themselves are asso-
ciated to attack paths. For each threat scenario, SE-
CLOUD documents which security architecture pattern
in the selected solution has mitigated the threat.

To aid the user in selecting a solution, SECLOUD
computes simple metrics of the solution. We consider
the number of new requirements on application com-
ponents and on the infrastructure deployment as one
selection criterion. We distinguish such requirements
in the following sense:

• Application requirements need to be considered
in the development of the applications themselves.
For example, Solution 1 adds the new application
requirement that sb uses mTLS to communicate
with sb database. This needs to be considered by
the developers, e.g., by using a suitable library.

• Infrastructure requirements need to be imple-
mented when building the infrastructure and de-
ploying the components. For example, Solution 6
adds a requirement that an authorization policy for
the communication from sb to mrm has been de-
fined. The configuration of the Istio service mesh
is also defined in the form of requirements. For
example, Solution 6 has a requirement that sb must
be part of the service mesh.

If the aim is to provide security measures in a transpar-
ent manner for the application developers, then Solu-
tion 6 will likely be preferable over Solution 1. This
choice is indeed the case as Solution 6 makes encryp-
tion transparent, while Solution 1 requires application
developers to use mTLS explicitly.

8 RELATED WORK

SECLOUD is built on SecPat proposed by (Dantas
and Nigam, 2022). SecPat enables the recommenda-
tion of security architecture patterns for autonomous
vehicle architectures, while SECLOUD supports the

SeCloud: Computer-Aided Support for Selecting Security Measures for Cloud Architectures

273

Table 5: Solutions recommended by SECLOUD.

Solution Recommended Security Patterns # Additional
Application
Requirements

Additional
Infrastructure
Requirements

1 Mutual Authentication for mitigating the threat scenarios with
attack paths based on the internal intruder, including attack
paths targeting ground control station. TLS for ingress acting
as a server for client to mitigate tampering attacks. OpenID
Connect for client for authentication purposes to address spoof-
ing attacks. The identity tokens of client obtained by OpenID
Connect can be checked by an instance of Service Mesh Istio
for all containers receiving data from client.

19 34

2 Cilium for mitigating selected threat scenarios with attack
paths based on the internal intruder, and Mutual Authentica-
tion for addressing the attack paths targeting ground control
station. In this solution, Mutual Authentication has been rec-
ommended for addressing attacks from outside the system
(external interface). TLS for ingress acting as a server for
client to mitigate tampering attacks. OpenID Connect for client
for authentication purposes to address spoofing attacks. The
identity tokens of client obtained by OpenID Connect can be
checked by an instance of Service Mesh Istio for all containers
receiving data from client.

11 22

3 Cilium for mitigating selected threat scenarios with attack
paths based on the internal intruder. TLS for ingress acting
as a server for client and ground control station to mitigate
tampering attacks. OpenID Connect for both client and ground
control station for authentication purposes to address spoofing
attacks. The identity tokens of client and ground control station
obtained by OpenID Connect can be checked by an instance of
Service Mesh Istio for all containers receiving data from client
and ground control station.

11 25

4 Mutual Authentication for mitigating selected threat scenar-
ios with attack paths based on the internal intruder. TLS for
ingress acting as a server for client and ground control station
to mitigate tampering attacks. OpenID Connect for both client
and ground control station for authentication purposes to ad-
dress spoofing attacks. The identity tokens of client and ground
control station obtained by OpenID Connect can be checked by
an instance of Service Mesh Istio for all containers receiving
data from client and ground control station.

19 37

5 Service Mesh Istio for mitigating selected threat scenarios with
attack paths based on the internal intruder. TLS for ingress act-
ing as a server for client and ground control station to mitigate
tampering attacks. OpenID Connect for both client and ground
control station for authentication purposes to address spoofing
attacks. The identity tokens of client and ground control station
obtained by OpenID Connect can be checked by the instance
of Service Mesh Istio.

11 40

6 Service Mesh Istio for mitigating selected threat scenarios
with attack paths based on the internal intruder, and Mutual
Authentication for addressing the attack paths targeting ground
control station. TLS for ingress acting as a server for client
to mitigate tampering attacks. OpenID Connect for client
for authentication purposes to address spoofing attacks. The
identity tokens of client obtained by OpenID Connect can be
checked by the instance of Service Mesh Istio.

11 37

ICISSP 2023 - 9th International Conference on Information Systems Security and Privacy

274

recommendation of patterns suitable for cloud archi-
tectures. SecPat provides a DSL and reasoning prin-
ciples to automate the recommendation of patterns.
SecPat only considers one condition to recommend
patterns, namely the cybersecurity property satisfied
by the pattern. SECLOUD extends SecPat’s DSL to
include further pattern’s attributes, namely the threat
mitigated by the pattern, and the attack surface that
the pattern may be deployed. SECLOUD follows the
STRIDE methodology to map threats to cybersecurity
properties. This extension enables a more precise rec-
ommendation of patterns through reasoning principle
rules. Another extension is the specification and evalu-
ation of constraints to reduce the number of solutions
with patterns. This extension deals with scalability
issues and improves the usability of SECLOUD.

ThreatGet6 is a commercial tool for threat analysis.
ThreatGet identifies threat scenarios and attack paths
in an automated fashion. To deal with such security
artifacts, ThreatGet provides a list of potential security
measures to be selected by the user. ThreatGet does not
instantiate the selected security measures in the system
architecture. As a result, it might be unclear for the
user to identify which components are relevant to the
selected security measures. SECLOUD instantiates the
recommended security measures by making explicit
which components are part of the security measure
(e.g., mTLS for components A and B).

Another commercial tool for STRIDE analysis
of cloud architectures is Microsoft’s Threat Analysis
tool 7. While SECLOUD is also based on STRIDE, it
is able to automatically compute architecture options.
Its flexible definition using ASP allows the extension
to more fine-grained threat scenario models.

SECLOUD outputs requirements alongside the rec-
ommended security measures. Other tools, such as
Ansible (Spanaki and Sklavos, 2018), may be used
to harden cloud infrastructures by implementing such
requirements. Ansible provides the means of, e.g.,
installing SSL certificates, installing and configuring
monitoring tools, and configuring user accounts.

9 CONCLUSION

This article proposed SECLOUD, a tool to assist secu-
rity engineers with the selection of security measures
for cloud architectures. We validated SECLOUD in a
case study that provides cloud services for unmanned
air vehicles (UAVs). We are currently investigating
several future directions, including (i) specification

6https://www.threatget.com
7https://www.microsoft.com/en-us/

securityengineering/sdl/threatmodeling

of security measures to address threat scenarios that
violate the availability of assets, and (ii) integration of
SECLOUD in a model-based system engineering tool
that will serve as a frontend to improve its usability.

ACKNOWLEDGMENTS

We thank the German Ministry for Economic Affairs
and Climate Action of Germany for funding this work
through the LuFo V-3 project RTAPHM.

REFERENCES

Baral, C. (2010). Knowledge Representation, Reasoning and
Declarative Problem Solving. Cambridge University
Press.

Carroll, M., Kotzé, P., and van der Merwe, A. (2011). Se-
cure cloud computing: Benefits, risks and controls. In
Venter, H. S., Coetzee, M., and Loock, M., editors,
Information Security South Africa Conference 2011,
ISSA 2011. ISSA, Pretoria, South Africa.

Cheng, B. H. C., Doherty, B., Polanco, N., and Pasco, M.
(2019). Security Patterns for Automotive Systems. In
MODELS’19.

Dantas, Y. G. and Nigam, V. (2022). Automating Safety
and Security Co-Design through Semantically-Rich
Architectural Patterns. ACM Trans. Cyber Phys. Syst.

Dolev, D. and Yao, A. C. (1983). On the security of public
key protocols. IEEE Trans. Inf. Theory, 29(2):198–207.

Eliseev, V., Miliukova, E., and Kolpinskiy, S. (2021). Neural
Network Cryptographic Obfuscation for Trusted Cloud
Computing. In Integrated Models and Soft Computing
in Artificial Intelligence, pages 201–207.

Gelfond, M. and Lifschitz, V. (1990). Logic programs with
classical negation. In ICLP.

Lifschitz, V. (2019). Answer Set Programming. Springer.
Oleshchuk, V. A. and Køien, G. M. (2011). Security and pri-

vacy in the cloud a long-term view. In 2011 2nd Inter-
national Conference on Wireless Communication, Ve-
hicular Technology, Information Theory and Aerospace
& Electronic Systems Technology (Wireless VITAE).

Potassco (2022). Clingo: A grounder and solver for logic
programs https://github.com/potassco/clingo.

SeCloud (2022). https://github.com/ygdantas/SeCloud.
Shostack, A. (2014). Threat Modeling: Designing for Secu-

rity. Wiley.
Spanaki, P. and Sklavos, N. (2018). Cloud Computing: Secu-

rity Issues and Establishing Virtual Cloud Environment
via Vagrant to Secure Cloud Hosts. In Computer and
Network Security Essentials, pages 539–553. Springer.

Vasudev, H., Deshpande, V., Das, D., and Das, S. K. (2020).
A Lightweight Mutual Authentication Protocol for
V2V Communication in Internet of Vehicles. IEEE
Trans. Veh. Technol., 69(6):6709–6717.

SeCloud: Computer-Aided Support for Selecting Security Measures for Cloud Architectures

275

