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Abstract: Companies have key concerns about privacy issues when dealing with big data. Many studies show that privacy
preservation models such as Anonymization, k-Anonymity, l-Diversity, and t-Closeness failed in many cases.
Differential Privacy techniques can address these issues by adding a random value (noise) to the query result
or databases rather than releasing raw data. Measuring the value of this noise (ε) is a controversial topic that
is difficult for managers to understand. To the best of our knowledge, a small number of works calculate the
value of ε. To this end, this paper provides an upper bound for the privacy budget ε based on a given risk
threshold when the Laplace noise is used. The risk is defined as the probability of leaking private information
multiplied by the impact of this disclosure. Estimating the impact is a great challenge as well as measuring
the privacy budget. This paper shows how databases like UT CID ITAP could be very useful to estimate these
kinds of impacts.

1 INTRODUCTION

With the increasing expansion of databases, the im-
portance of protecting the personal information of in-
dividuals has received more attention. Humans have
always tended to preserve their information. They like
to set measures to limit undesirable access to their
data. Tech companies are aimed to collect and an-
alyze information about their customers which can
provide high-quality services. This information can
be used in a wide variety of domains, such as statis-
tics (Azencott, 2018; Kim et al., 2018; Subramanian,
2022), learning (Berger and Cho, 2019; Jiang et al.,
2018), economics (Dankar and Badji, 2017; Hawes,
2020), etc. (Johnson et al., 2018; Winslett et al.,
2012). In fact, this is a delicate position for tech
companies to collect and use customers’ data while
maintaining their privacy. With the California Con-
sumer Privacy Act (CCPA) (Goldman, 2020) effec-
tive on January 1, 2020, and General Data Protection
Regulation (GDPR) (Regulation, 2018) applied in the
EU from May 2018, there is a compelling demand to
provide rigorous privacy guarantees for users when
analyzing and collecting their usage data. Moreover,
many governments set strict policies about how tech
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companies can collect and share user data. Compa-
nies that do not follow these policies can face huge
fines. For example, a Belgian court (Gibbs, 2018)
in 2018 ordered Facebook to stop collecting data on
users’ browsing habits on external websites, or face
fines of C250,000 a day or up to 100 million euros.

Nowadays, many multinational companies who
operate in different areas, like Apple (Greenberg,
2016), Google (GoogleDP, 2018) or US census bu-
reau (Abowd, 2018) have begun to use differentially
private algorithms to collect behavioral statistics from
their users. In 2016, Apple announced that it would
use Differential Privacy algorithms in the iPhone.
Google also tries to bring Differential Privacy into
practice, as implemented a feature in Chrome that col-
lects behavioral statistics from Chrome browsers. We
can find other practical examples in Privitar. These
products enable companies to perform meaningful
analyses on sensitive data while providing privacy
guarantees to their users.
Research Question. This paper aims to answer the
following questions:

1. For a query q that has an impact I on privacy dis-
closure, how to fix the value of ε, so that the risk
will be lower than a threshold value RT ?

2. For n queries q1, . . . ,qn that have impacts, respec-
tively, I1, . . . , In on privacy disclosure, how to fix
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the value of ε so that the global risk will be lower
than a threshold value RT ?

3. How can we estimate the impact of the privacy
disclosure related to a query q in the real world?

Outline. The remaining part of this paper is struc-
tured as follows: Section 2 gives some preliminar-
ies useful notations, definitions, and results related to
Differential Privacy. Section 3 gives an upper bound
of privacy budget based on risk and answers questions
1 and 2. Section 4 answers to question 3 by showing
how the impact of data leaking could be estimated.
Section 5 gives a literature review and Section 6 con-
cludes the paper and gives some perspectives.

2 PRELIMINARIES

2.1 Formal Differential Privacy

According to Cynthia Dwork’s book (Dwork and
Roth, 2014):

Definition 1. (Differential Privacy.) A randomized
algorithm M with domain N|X | is (ε,δ)–differential
private if for all S ⊆ Range(M ) and for all x,y∈N|X |
such that ‖x− y‖1 ≤ 1 :

Pr[M (x) ∈ S ]≤ exp(ε)×Pr[M (y) ∈ S ]+δ

This formal definition of Differential Privacy (DP)
will guarantee that the manner of the randomized al-
gorithms on similar input databases is likely the same.
For well understanding Definition 1, we explain the
important notations as follow: M is a privacy mecha-
nism (probabilistic), X is a universe set of data types,
N is the set of all non-negative integers, x ∈ N|X | is a
dataset in the possible datasets (we also use D, D’, y as
datasets), M (x) is the distribution of the outputs of M
given input x, Range(M ) is the set of possible outputs
of the mechanism, S ⊆ Range(M ) is the subset of
possible outputs, ε is the maximum distance between
the result of a query on database (x) and database (y),
δ is the probability of data leakage and ‖x−y‖1 is a L1
norm which measures how many records are different
between x and y.

2.2 Types of “Query Sensitivity“ in
Differential Privacy

One important parameter that determines how much
noise we should add to the ε-differential privacy
mechanism is “sensitivity”. The sensitivity is the
measure to determine how much the outputs would
change if we change one entry of data sets. Actually,

sensitivity parameterized the amount of noise that is
required for the Differential Privacy mechanism. It
refers to the impact of changing at most one element
on the result of a query.

2.2.1 L1 and L2 Norms

The L1 norm is defined as the sum of the vector’s
elements. For a vector V = (V1, . . . ,Vk), we have:
‖V‖1 = ∑

k
i=1|Vi|

For example in two-dimensional space, we call it
“Manhattan distance” which is the L1 norm of the
difference between two vectors. |Vi| is an absolute
value of the vector’s element. If we consider V as
a database, ‖V‖1 is a measure of the size of the
database, that is the number of records it contains.
Subsequently, the L1 distance between two datasets
V and Z is ‖V −Z‖1 and it is a measure to know how
many records differ between V and Z. The L2 norm is
defined as the square root of the sum of squares. For
a vector V = (V1, . . . ,Vk), we have:

‖V‖2 =
√

∑
k
i=1 V 2

i

For example, in two-dimensional space, we called
it “Euclidean distance” which is always less than or
equal to the L1 distance. For large databases, accord-
ing to this formula, the L2 sensitivity will be signif-
icantly much lower than the L1 sensitivity. So, in
real-world applications such as machine learning al-
gorithms, L2 sensitivity is obviously lower than L1
sensitivity. The sensitivity of a query can be defined
as follows. In fact, we have two types of sensitivity,
namely Global sensitivity and Local sensitivity.

2.2.2 Global Sensitivity

Global sensitivity states that if we change one element
of any data set, how much is the maximum difference
between the outputs of the query? Subsequently, how
much noise we should add to the result to satisfy ε-
differential privacy requirements? For two data sets
xA,xB which are different in at most one record and
we apply query q on these two data sets then we have:

∆qGS = maxxA,xB⊆X ‖q(xA)−q(xB)‖1

L1-norm ‖.‖1 is the distance between query re-
sults on two databases that are different in just one
record, and max define as the maximum result of
q(xA)− q(xB) for any data sets xA and xB. By this
definition, for any two neighboring data sets xA and
xB, the difference between q(xA) and q(xB) is at most
∆qGS. It is worth mentioning that global sensitivity
is independent of the database and just dependent on
the query, due to the fact that it is the max difference
between the outputs in view of any neighboring data
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sets xA and xB. This definition has a significant impact
on the utility of some queries. For example, consider
the sum query on any data set which has arbitrary
entries. In this case, the largest difference between
the outputs of any query is infinite because there is
no upper bound on any input, so the global sensitiv-
ity for the sum query is infinite. To solve this issue,
we define bounds for the queries. These bounds limit
the data sets just to store values less than a predeter-
mined threshold. Consequently, we modify the data
set continuously to guarantee that no value exceeds
the threshold. Thus, the global sensitivity is depen-
dent on the query and threshold and it is not infinite
anymore. Now we have a better definition of global
sensitivity. Global sensitivity would be the minimum
sensitivity of the query to cover all possible data sets.

2.2.3 Local Sensitivity

We consider any two adjacent databases in global sen-
sitivity, but in local sensitivity, we fix one of the two
databases as an actual dataset being queried and con-
sidered all its adjacent datasets. For a dataset x which
is queried by function q, the local sensitivity is:

∆qLS = maxx1‖q(x1)−q(x2)‖1

x1 and x2 are two adjacent data sets that differ in at
most one record. Here, local sensitivity is the max-
imum difference that changing one record in x1 can
produce and is the minimum sensitivity that is needed
for a query to cover the actual data set x1. We define
local sensitivity measures related to the actual data
set’s size, enabling us to place finite bounds on the
sensitivity of some functions which are difficult to set
in global sensitivity. The problem with local sensitiv-
ity is that it depends on the dataset so the adversary
who knows it, may be able to infer some data about
the dataset. So, we need to use some auxiliary pa-
rameters with local sensitivity. Moreover, even if the
adversary does not know the local sensitivity, by com-
paring just a few query answers, it is possible to de-
termine the scale of the noise. Here we face the ques-
tion: which one is better, global or local sensitivity?
We have many studies and real-world use cases which
use both, but it is important to know that local sensi-
tivity is the minimum sensitivity that is needed for the
query to cover one fixed (actual) dataset, while global
sensitivity is the minimum sensitivity that is needed
for the query to cover all possible adjacent datasets.

2.3 Laplace Mechanism

One of the most popular database queries is numerical
queries. In numerical queries, q : N|x|→ Rk , we map
the database to k real numbers. Local sensitivity is

one of the important parameters which determine how
we can accurately answer numerical queries. The lo-
cal sensitivity determines an upper bound on the noise
which we add to the output for preserving privacy.
Differential Privacy aims to hide the participation of
individuals, so by the local sensitivity, we measure in
the worst case how much a single individual’s input
can influence the output of the dataset.

Definition 2. (The Laplace Distribution.)(Dwork
et al., 2006). The Laplace Distribution with the scale
b, is the distribution with probability density function:

Lap(x|b) = 1
2b × exp(− |x|b )

The Laplace mechanism uses the noise which is
drawn from the Laplace distribution and perturbs each
element to compute q. In the Laplace mechanism,
noise is scaled to 1

ε
which is independent of the size

of the database. Actually, the noise is scaled to the
[(sensitivity of a (query))/ε], where the sensitivity is
equal to the amount that the output of the function will
change when its input changes by 1. For instance, the
sensitivity of counting queries is always equal to 1.

Definition 3. (The Laplace Mechanism.)(Dwork
et al., 2006). Given any function q : N|x| → Rk, the
Laplace mechanism is define as:

ML(x,q(.),ε) = f (x)+(Y1, . . . ,Yk)

where Yi are i.i.d random variables drawn from
Lap( ∆q

ε
).

By this definition, the Laplace mechanism is (ε,δ)-
differential privacy or ε-differentially private, where δ

is always equal to 0. The Laplace mechanism is for
numeric queries with low sensitivity but it does not
have a solution for non-numerical queries.

2.4 UT CID ITAP Dataset

The important question that we faced in the relation-
ship between Differential Privacy and risk is how we
can measure the probability and the impact of data
disclosure. To address this issue, the Center for Iden-
tity at the University of Texas (UT CID) is conduct-
ing multi-disciplinary research on critical fraud in
the United States. To increase the fundamental un-
derstanding of fraud processes, patterns and identity
theft, they proposed the risk assessment tool which
is called Identity Threat Assessment and Prediction
(ITAP)(Zaiss et al., 2019). ITAP collects data on
fraud, abuse, and identity theft (from over 6000 iden-
tity theft news stories) to investigate many features
such as the value of identity attributes, their risk
of exposure, and the identified vulnerabilities. The
ITAP model finds the most vulnerable identity fea-
tures to theft, analyzes their importance, and studies
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the Personally-Identifying Information (PII) which is
more targeted by thieves (more than 50 features about
each identity theft incident). It offers identity solu-
tions relevant to financial services, healthcare, con-
sumer services, education, defense, and government.

2.4.1 UT CID Identity Ecosystem

Under the ITAP project, the Identity Ecosystem is de-
veloped by the UT Center for Identity (Chang et al.,
2021). In fact, the Identity Ecosystem is a Bayesian
network representation of a person’s identity which
analyses how personal identities are built and used in
our daily lives. For instance, in the UT CID Iden-
tity Ecosystem, we could analyze the security level of
an authentication method. By the UT CID Ecosys-
tem, three main real-world queries are answered: 1)
the risk of disclosure of a certain PII attribute, 2) the
cost/liability of disclosure and 3) the cause of data
disclosure. Based on various features in the UT CID
Ecosystem, they built the UT CID Identity Ecosystem
Graphical User Interface (GUI). With this GUI we can
choose the color and size attribute nodes as shown in
Figure 1. By this valuable tool, we can analyze the
data, model identity theft and abuse, and answer var-
ious questions about identity risk and risk manage-
ment. We will describe more in Section 4.

Figure 1: The UT CID Identity Ecosystem. It determines
the value and risk of PII attributes. The size of nodes is
based on their value and the color of nodes is determined
by their risk (Chang et al., 2021).

2.5 Risk in Cybersecurity

It is important to correct our view toward the con-
cept of risk in cybersecurity. Cyber risk generally
corresponds to any risk of disruption, financial loss,
or damage to the reputation of a company due to the
failure of its technology system. It could have hap-
pened in a variety of ways, such as premeditated and
unauthorized breaches of security to gain access to the
information. Moreover, poor system integrity causes
operational risks. Defectively managed cyber risk can
lead to a variety of attacks which consequently com-

promise the safety of information of individuals. One
way to manage and reduce the probability of cyber
risk is to apply Differential Privacy methods. Aca-
demic achievements show that by applying Differen-
tial Privacy mechanisms, the risk of data disclosure is
significantly reduced. We have a few studies which
are focused on the relationship of Differential Privacy
and risk. Tsou et al. (Tsou et al., 2019) use the simple
definition of risk.

Definition 4. Definition of the Risk:

Risk = Probability of data disclosure (RoD).

As we see, here the definition of risk is limited to
the probability of data disclosure and does not con-
sider other important factors. We will bring the com-
plete definition of risk in Section 3.2.

3 AN UPPER-BOUND FOR ε

BASED ON RISK

3.1 The Relationship Between ε and the
Risk of Data Disclosure

In (Tsou et al., 2019), Tsou et al. proposed a new
method for measuring the relationship between the
risk of data disclosure and ε. However, as this was a
new work in this domain, they used just a simple def-
inition for the risk (the risk of data disclosure). First,
they proposed the definition of Differential Privacy as
follows (Tsou et al., 2019):

Definition 5. (Dwork et al., 2006). A random-
ized function M is ε–differentialy private if for any
datasets x1,x2 with at most one different record and
any possible outputs S ⊆ Range(M ),

Pr[M (x1) ∈ S ]
Pr[M (x2) ∈ S ]

≤ eε

where the probability Pr depends on M randomness.
Differential Privacy can be implemented by adding
Laplace noise into the output of the query or original
dataset to perturb the sensitive data of each record.
In the dataset, the maximal effect of a record on the
output of a query function is global sensitivity.

Definition 6. (Tsou et al., 2019). For any query q,
the stochastic function M ,

M (D) = q(D)+(Lap1(
1
λ
),Lap2(

1
λ
), . . . ,Lapn(

1
λ
))

satisfies ε–differential privacy, that Lapi(
1
λ
) are i.i.d

Laplace variables with λ = ε

∆q . According to defini-
tion 4, adding Laplace noise into individuals’ records
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can guarantee their privacy. If A( j) is the real nu-
merical value the j-th individual’s data in the origi-
nal dataset D, by adding Laplace noise to it: A′( j) =
A( j)+Lap j(

1
λ
). Due to the value of the Laplace noise

Lap j(
1
λ
), we have the variation in the value of A′( j).

So, the actual value A( j) would be in the interval
[A′( j)−Lap j(

1
λ
),A′( j)+Lap j(

1
λ
)]. According to the

Laplace mechanism (Dwork et al., 2006; Eltoft et al.,
2006) the parameter 1

λ
generates the noise which is

from -∞ to +∞.
The value of Laplace noise is selected randomly

and unboundedly, but we can estimate the maximal
value of noise max(Lap( 1

λ
)) by a bounded scale pa-

rameter and a confidential probability. The detail of
this estimation is described in (Tsou et al., 2019).

Theorem 1. (Tsou et al., 2019). Max(Lap( 1
λ
)) is the

maximal value of the generated noise related to the
value of ε and is equivalent to − ε×ln(2−2γ)

∆q .

∆q is the global sensitivity and γ is the confi-
dence probability to estimate noise distribution. In
this work, they focus on integer response queries (i.e.,
queries that return integers such as count). The proof
of this theorem is described in (Tsou et al., 2019).
Now we can define the RoD according to the maxi-
mum value of the noise.

Definition 7. ROD (Tsou et al., 2019)
By applying the Laplace noise, the actual value of
A( j) would be hidden in the interval R = [A′( j)−
Lap j(

1
λ
),A′( j)+Lap j(

1
λ
)]. So, If there are ξ j values

which fall into R, the RoD for the actual value A( j)
is equal to 1

ξ j
(Tsou et al., 2019) ( 1

ξ j
is the estimated

probability for the actual value A( j)).

3.2 New Definition for Risk

When the threat has happened, we can measure the
risk associated with two parameters which are the vul-
nerabilities of data and the impact of this data disclo-
sure. Consequently, the risk‘s definition is equal to
the probability of data disclosure multiplied the im-
pact of this data disclosure.

Definition 8. Definition of the Risk:

Risk = Probability of data disclosure (RoD) ×
Impact of the data disclosure.

It is important to know the probability of data dis-
closure and its relationship with the impact of dis-
closing this data. We know that the information does
not have the same value and companies have policies
to measure the impact of leaking this information on
their assets. Actually, companies’ strategy to inves-
tigate the privacy budget is dependent on the value
of the information. The company can estimate the

impact of data disclosure (I) and the managers can
set a threshold for this risk (RT ), which means the
maximum risk that the company can support. One
useful framework to estimate the probability and im-
pact of data disclosure is the Identity Ecosystem. This
practical tool gives an estimation of these two values,
as well as other interesting attributes (we investigate
more in Section 4).

3.3 Risk and Privacy Budget ε

In Differential Privacy mechanisms, the level of pri-
vacy is controlled by the parameter ε. But it is not
easy to find the appropriate value for ε. In (Tsou et al.,
2019), they intuitively formulated ε by using the con-
fidence probability of the noise estimation.

Theorem 2. (Tsou et al., 2019). If ξ is the num-
ber of values in the estimated distribution and the
max(Lap( 1

λ
))≥ ξ−1

2 , we can formulate ε as follow:

max(Lap( 1
λ
)) =− ε×ln(2−2γ)

∆q ≥ ξ−1
2

⇒ ε×ln(2−2γ)
∆q ≤ 1−ξ

2

⇒ ε ≤ ∆q(1−ξ)
2×ln(2−2γ)

Here, ε is estimated according to its relationship
with the risk of data disclosure (RoD). One of the
challenges of Differential Privacy is how to fix the
ε. Decision-makers cannot understand the meaning
of this important parameter. They usually make their
decisions based on the risk that involves the impacts.
They may have risk thresholds according to which
they decide. Therefore, it will be useful to connect
the risk threshold to the security budget. The follow-
ing theorem connects the privacy budget ε to a risk
threshold RT . More precisely, given a query q that
may reveal private information that could have a neg-
ative impact I, the theorem gives an upper bound for
the privacy budget ε based on I and RT .

Theorem 3. Let q be a query and I be the impact of
its privacy disclosure. Let RT be a risk threshold (the
maximum risk that the company can tolerate). The
privacy budget ε with Laplace noise needs to be equal
or less than

u× (1− I
RT

)

where u = ∆q
2×ln(2−2γ) .

Proof. From Theorem 2, we have: ε≤ ∆q×(1−ξ)
2×ln(2−2γ) .

Let u = ∆q
2×ln(2−2γ) , then: ε≤ u× (1−ξ). From Defi-

nition 7, RoD = 1
ξ
, it follows that:
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ε≤ u× (1− 1
RoD

) (1)

RT is the maximum tolerated risk, RoD× I ≤ RT .
It follows that: 1

RoD ≥
I

RT
. Then, 1− 1

RoD ≤ 1− I
RT

.
Since u is a positive value, u× (1− 1

RoD ) ≤ u× (1−
I

RT
). From Equation (1), we have:

ε≤ u× (1− 1
RoD

)≤ u× (1− I
RT

)

And finally, we conclude that:

ε≤ u× (1− I
RT

)

This Theorem is for single-dimensional data. Now
we generalize the theorem to n queries.

Theorem 4. Let q1, . . . ,qn be n queries and I1, . . . , In
be the impacts of their privacy disclosures, respec-
tively. Let RT be a risk threshold (the maximum risk
that the company can tolerate). The global privacy
budget ε with Laplace noise is equal or less than

U− ∑
n
i=1 ui× Ii

RT

where U = ∑
n
i=1 ui and ui =

∆qi
2×ln(2−2γ) .

Proof. Form Theorem 3, we have: εi ≤ ui × (1−
Ii

RT
) = ui− ui×Ii

RT
, where ui =

∆qi
2×ln(2−2γ) . From the Dif-

ferential Privacy composition theorem (Dwork and
Roth, 2014), it follows that:

ε =
n

∑
i=1

εi ≤
n

∑
i=1

ui−
∑

n
i=1 ui× Ii

RT

3.4 An Example for Measuring the ε

By our definition in the previous section, now we have
a new formula for ε which is ε≤ u×(1− I

RT
). Simply,

we can calculate the value of ε (that more precisely, it
is the upper bound for ε). In Table 1, we show that the
value of ε is not fixed randomly. In fact, it depends
on RT and I. For example, assume that the I = 5 and
the manager fixes the value RT = 7, then ε = 0.29
(in the next section, we will bring more details about
how to estimate the impact and risk of data disclosure
in real-world). We suppose that ∆q = 1 (the global
sensitivity) and according to (Tsou et al., 2019), we
choose an appropriate value for γ to have a positive
value for u (in Theorem 2, u≤ 1 and for simplicity in
our calculation, we suppose u = 1). Given different
values for RT and I, we see that by the large value for

RT , the ε is close to 1. On the other hand, when I is
large, the value of ε is close to 0. Obviously, when RT
and I are equal, ε= 0. Now, the important question is
how we can measure the risk of data disclosure and
the impact of data disclosure in the real world.

Table 1: An example for measuring the ε.

Impact of data
disclosure (I)

Risk
threshold (RT )

ε is equivalent
or less than

5 7 0.29
5 5 0
3 6 0.5
0 7 1

4 ESTIMATION OF THE IMPACT
OF DATA LEAKING

For measuring the probability of risk of data disclo-
sure and the impact of data disclosure, R. Zaeem et
al. have done valuable work (Zaeem et al., 2016). At
the University of Texas at Austin, they have designed
the Identity Ecosystem. This valuable tool can model
identity theft and abuse, analyze the data and conse-
quently answer various questions about identity risk
and risk management. The Ecosystem can predict the
probability of risk which causes a breach of each Per-
sonally Identifiable Information (PII) and calculate a
potential monetary value of damage to the PII owner
in the situation of identity theft. In the situation that
more information is available about the victim or inci-
dent, the Ecosystem can update the predicted risk and
monetary value according to the risk and value in the
real world. They use probabilistic analysis to present
the results in the graph-based visualization. As it is
shown in Figure 1, in the Ecosystem Graphical User
Interface (GUI), nodes are the attributes and edges are
the connections between these attributes. The user
can use this GUI to interactively play out different
scenarios, and graphically see the conclusions about
the risk of data disclosure and the potential monetary
value of the attributes.

Based on various properties of the attribute such as
risk and monetary value, nodes are colored and sized.
Figure 1 shows the PII attributes that nodes are col-
ored according to their risk (low-risk attributes col-
ored in green, medium risk in yellow and high risk in
red) and are sized according to their monetary value
(bigger nodes have the higher monetary value). This
GUI can visually show PII attributes, their connec-
tions, potential risk, and other interesting values.

In Table 2, we have examples of the sensitivity
scores which are assigned to the identity assets. These
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scores are assigned according to the prior probability
and the monetary loss. For instance, Social Security
Number has a higher score among other attributes.
Consequently, the risk of disclosing this attribute is
more than others.

Table 2: Identity assets and their sensitivity scores.

Identity
Asset Name

Prior
probability

Loss
(USD) Score

Email Addr. 0.027526 18105024 0.613
Social

Security No. 0.096598 27465086 0.938

Passport Info. 0.002565 1252465 0.652
Phone No. 0.017439 4405490 0.605

Related to the risk and managing identity at-
tributes, the Ecosystem can answer three important
questions in the situation of disclosing a set of at-
tributes: First, ”How does disclosing a set of attributes
affect the risk of disclosing other attributes?” The sec-
ond question is, ”What is the source of disclosing
data?” And the last question that UT CID Ecosystem
can answer is ”What is the total cost of disclosing this
attribute?” This work is a good example of measuring
the risk of data disclosure and the monetary impact
of this exposure. More precisely, in the new defini-
tion of privacy budget (Theorem 3), we need these
two parameters to evaluate the value of noise for the
Differential Privacy mechanism.

5 LITERATURE REVIEW

We have many use cases of Differential Privacy tech-
niques in the real world. For example, in the health
industry (Azencott, 2018; Kim et al., 2018; Subrama-
nian, 2022), genomics data sharing (Berger and Cho,
2019), location privacy and US census bureau and etc
(Abowd, 2018; Hawes, 2020; Jiang et al., 2018; John-
son et al., 2018; Quinton and Reynolds, 2018). For
deeply understanding notions about differential pri-
vacy, we have an excellent survey and book by Dwork
(Dwork et al., 2006; Dwork and Roth, 2014). Dwork
and her colleagues proposed several privacy models
(Dwork and Lei, 2009; Dwork and Smith, 2010) and
discussed many mechanisms.

One of the first researchers who emerges in the
field of privacy is done by Adams (Adams, 1999). He
conducts three years of research according to users’
privacy perceptions of three information multimedia
communication environments such as video confer-
encing, Internet multi-casting, and virtual reality. His
research shows that three elements affect the user’s
perception of privacy: the usage of the information,

the level of trust of the user in the information re-
ceiver, and the released information sensitivity. In
this empirical research, he argues that the risk of data
disclosure would relate to the context of the data uti-
lization. Although his valuable research was on real-
world cases, he just worked on the risk of data disclo-
sure and did not study the differential privacy concept.

The most detailed discussion on the value of ε and
its relationship with RoD is done by Lee and Clifton
(Lee and Clifton, 2011). They assume that an attacker
has infinite computation power and can obtain arbi-
trary background knowledge, except for one specific
individual. In data set D, there are n rows (n indi-
viduals’ data) and there is a data set D′ which has
one less individual, D′ ⊆ D and |D′| = |D| − 1. The
attacker aims to identify a specific individual in D′

according to his prior belief on the original data set
D. After observing the result, he updates his prior be-
lief depending on whether the outcome was more or
less likely if the specific individual had participated.
Here, ε controls how much an adversary’s belief can
change. Subsequently, it is possible to derive a bound
on ε in order to keep the adversary’s belief below a
given threshold. Finally, they obtain posterior belief
on D′ to calculate the RoD. Although they had new in-
sight into this domain, they just considered the back-
ground knowledge of the attackers and did not inves-
tigate other attacks such as a linkage attack.

Zhang et al. (Zhang et al., 2022) demonstrate a re-
view and evaluate the open-source differential privacy
(DP) tools. They define criteria such as the impact of
DP on different functionalities and quantify how dif-
ferent DP tools can be optimally configured to reduce
the risk of data disclosure. They propose guidelines
to select DP tools according to the user’s need and the
level of anticipated privacy and utility while working
on private data. They openly release their evaluation
coding repository, a framework that users can reuse to
evaluate privacy tools.

In (Hayes et al., 2022), Hayes et al. propose a
framework to compare the adversarial and nominal
risk. They use both private and non-private settings in
their study. They concentrated risk analysis for robust
and private learning to know which parts of differen-
tial privacy and adversarial training hurt optimization.
Their results show that clipping norm in differential
privacy and the size of adversarial perturbation would
increase the risk of disclosing data. Nonetheless, they
did not apply their new method to real cases.

McClure et al. (McClure and Reiter, 2012) pro-
posed the statistical induction on proportions in syn-
thetic binary data and investigated the relationship be-
tween prior beliefs and posterior beliefs for the bi-
nary data and synthetic data. They compared the
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Table 3: Comparison of Differential Privacy techniques.

Techniques
Parameters Privacy budget

management RoD
Impact of revealing
information on the
risk management

Adams (Adams, 1999) No No No
Lee and Clifton (Lee and Clifton, 2011) Yes Yes No

Dankar and Badgi (Dankar and Badji, 2017) Yes No No
Zhang et al. (Zhang et al., 2022) Yes No No
Hayes et al. (Hayes et al., 2022) Yes Yes No

McClure et al. (McClure and Reiter, 2012) Yes Yes No
Maurizio and Giuseppe (Naldi and D’Acquisto, 2015) Yes Yes No

Yu et al. (Chen et al., 2017) Yes No No
Tsou et al. (Tsou et al., 2019) Yes Yes No

Zaeem et al. (Liau et al., 2019) Yes Yes Yes

prior and posterior probabilities obtained from dif-
ferent levels of ε in an ε-differential privacy private
synthesis model. The restriction of this work is the
difficulty to extend its analysis for RoD over the one-
variable binary/numerical data sets.

Maurizio and Giuseppe (Naldi and D’Acquisto,
2015) defined the RoD in relation to noise pollution.
They used a method for choosing ε, which computes
how much the actual output of a counting query may
be measured from a noise-polluted one. Although
their method can be applied to measure the RoD of
synthetic data sets, it is limited to counting queries
and does not calculate the RoD for a counting query
of the joint distribution.

Yu et al. (Chen et al., 2017) proposed an algorithm
for choosing an applicable privacy budgetε with a bal-
ance between privacy and utility. They used a data-
driven algorithm to measure and predict the error of
statistical results from the addition of random noise
to an original data set. However, they did not investi-
gate in detail the relationship between ε and RoD.

Zaeem et al. (Liau et al., 2019) proposed novel
practical research on data privacy, they built a graph-
ical model to represent a complex network for prob-
abilistically dependent data and their correlated ran-
dom variables and finally performed an inference
model. They considered three questions: 1) What
is the impact of the exposure risk for the target at-
tributes in correlation to other attributes? 2) What
is the most likely source of the exposure of an at-
tribute? and 3) What is the total cost of exposure of
an attribute? To answer these questions, they build
the Identity Ecosystem based on the Bayesian graph
model to answer sophisticated queries such as ”how
to predict future risk and losses of losing a given set
of personal identities”.

Table 3, shows a comparison between Differen-
tial Privacy techniques according to their relationship
with the risk of data disclosure. Our evaluation shows

that many studies ignored calculating the privacy bud-
get’s value and just used the predetermined value for
it. Moreover, just a few works investigate the issue
of risk of data disclosure. Nonetheless, they do not
consider the full definition of the risk. To the best of
our knowledge, just one work evaluated the impact of
revealing information on risk management.

6 CONCLUSION

Many companies and institutions are holding huge
databases containing private information that could
be useful to improve different aspects of human life.
However, laws force them to protect their private life.
Differential Privacy provides a nice bypass for this re-
striction. It promises to allow us to take benefits from
private information without violating privacy. How-
ever, the definition of Differential Privacy is compli-
cated and could not be easily understood by a large
part of decision-makers. In particular, the privacy
budget is not connected to some metrics with which
decision-makers are familiarized, such as risk. This
paper gives a theorem providing an upper bound for
the privacy budget based on a risk threshold and the
impacts of data leaking coming from the involved
queries. Another important question addressed by this
paper is the evaluation of the impact of data disclo-
sure using the UT CID Identity Ecosystem. We use
the Laplace noise in this paper. For our future work,
we want to use privacy mechanisms different from the
Laplace noises. Moreover, we aim to include the util-
ity (the positive impact) in the new definition of ε.
Then we can distribute the privacy budget in a way
that we have maximum utility.
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