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Abstract: In this paper, we investigate the application of per-pixel difference metrics for evaluating Monte Carlo (MC)
rendering techniques. In particular, we propose to take the sampling distribution of the mean (SDM) into
account for this purpose. We establish the theoretical background and analyze other per-pixel difference
metrics, such as the absolute deviation (AD) and the mean squared error (MSE) in relation to the SDM.
Based on insights from this analysis, we propose a new, alternative, and particularly easy-to-use approach,
which builds on the SDM and facilitates meaningful comparisons of MC rendering techniques on a per-pixel
basis. In order to demonstrate the usefulness of our approach, we compare it to commonly used metrics based
on a variety of images computed with different rendering techniques. Our evaluation reveals limitations of
commonly used metrics, in particular regarding the detection of differences between renderings that might be
difficult to detect otherwise—this circumstance is particularly apparent in comparison to the MSE calculated
for each pixel. Our results indicate the potential of SDM-based approaches to reveal differences between
MC renderers that might be caused by conceptual or implementation-related issues. Thus, we understand our
approach as a way to facilitate the development and evaluation of rendering techniques.

1 INTRODUCTION

Simulating light transport for the synthesis of pho-
torealistic images is of great importance for film
production, architectural visualization, product de-
sign, and many other applications. Predominant ap-
proaches to solve this problem are based on a model
described by the rendering equation (Kajiya, 1986)
and evaluate its numerous integrals using Monte
Carlo (MC) integration.

This type of integration approximates the integral
of a function through exhaustive random sampling.
Due to the stochastic nature of this approach, the ap-
proximations generally suffer from variance, which
manifests itself as noise in the rendered images. As
the number of samples increases, the variance eventu-
ally vanishes and the integral converges to the correct
solution.

A significant amount of research has been dedi-
cated to reduce variance and speed up convergence
by using more advanced sampling strategies. How-
ever, the variance inherent to all MC-based render-
ing techniques impedes their comparison, as images
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are only completely noise-free in the theoretical limit,
which generally cannot be attained in practice. More-
over, commonly used difference metrics do not take
this variance fully into account.

In this paper, we investigate the potential of sam-
pling distribution-based approaches for the compari-
son and evaluation of MC renderings and techniques
on a per-pixel basis. The key insight is that conven-
tional metrics, such as the absolute deviation (AD) or
mean squared error (MSE), only incorporate limited
information about the distributions of per-pixel radi-
ance estimates. We see great potential in incorporat-
ing additional information, in particular information
about the sampling distribution of the mean (SDM),
to develop improved measures that can reveal differ-
ences more clearly than other approaches. The under-
lying intuition is that the SDM includes information
about the variability of per-pixel radiance estimates at
a particular stage of convergence, i.e., for a particular
number of samples per pixel (SPP). Therefore, the ac-
curacy of the renderings can be incorporated into the
measure and leveraged for comparison.

We propose a novel, alternative approach that
builds on the estimation of the SDM. It essentially
estimates the probability that one integrator produces
similar radiance estimates as another. Our approach
can be used for effectively comparing and evaluating
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(a) Unbiased Reference (b) Biased Rendering (c) Per-Pixel Root Mean
Squared Error

(d) Our Approach for
Evaluation

Figure 1: Here, we illustrate the potential of our proposed approach for the evaluation of Monte Carlo (MC) rendering
techniques. It is based on the sampling distribution of the mean (SDM). Image (a) shows a reference rendering and (b) an
artificially biased rendering for which the reflectance of the couch on the right-hand side was reduced. Our approach (d) can
reveal differences between both renderings that are difficult to identify through visual comparison or other metrics, e.g., the
(normalized) root mean squared error (RMSE) calculated for each pixel (c). This circumstance suggests the viability of using
SDM-based approaches for the per-pixel comparison of MC renderings.

MC renderings and techniques (see Figure 1).
The closely related work by Jung et al. (Jung

et al., 2020) already demonstrated how statistical ap-
proaches can be used effectively to reveal bias in ren-
dered images. They show that a non-uniform distri-
bution of p-values (based on the Welch’s test statistic)
is an indicator for bias. In contrast, we compute the
probability that one renderer computes similar radi-
ance values as another and moreover facilitate mean-
ingful comparisons between unbiased integrators. We
see our approach as an alternative to the work by Jung
et al.

The remainder of our paper is structured as fol-
lows: In Section 2, we provide an overview over re-
lated work. To motivate the incorporation of addi-
tional statistical information, such as the SDM, we
discuss the statistical background and provide a theo-
retical comparison of different measures in Section 3.
In Section 4, we present our approach. Furthermore,
in Section 5, we evaluate the measures based on ren-
derings of several scenes computed by different inte-
grators. Our examples illustrate how well the mea-
sures are able to reveal differences between render-
ings. We show that sampling-distribution-based mea-
sures are consistently able to reveal subtle differences.
Moreover, we point out shortcomings of per-pixel
mean squared error (ppMSE) in particular.

2 RELATED WORK

In previous work, researchers proposed various meth-
ods for the comparison and evaluation of Monte Carlo
(MC) renderings. In the following, we provide an
overview over those methods.

Perceptual Metrics. Many researchers employed a
perceptual model that can be used to approximate per-
ceived differences, which in turn can be exploited for
rendering. For instance, the visible differences pre-
dictor (Daly, 1993) has been employed to approx-
imate perceived rendering quality in order to use
it for a stopping condition (Myszkowski, 1998) or
to alternate between complementary rendering tech-
niques (Volevich et al., 2000). Ramasubramanian et
al. (Ramasubramanian et al., 1999) developed a per-
ceptual error metric for image-space adaptive sam-
pling. Farrugia and Péroche (Farrugia and Péroche,
2004) used an existing vision model (Pattanaik et al.,
1998) in order to achieve the same goal. Andersson
et al. (Andersson et al., 2020) presented an approach
that can estimate the perceived difference while al-
ternating between two images. In contrast, we focus
on the direct comparison of radiance estimates, as we
strive for objective and quantitative assessments for
MC rendering.

General Image Quality Metrics. Most researchers
leveraged general image quality metrics, which are
popular in the image-processing community, to com-
pare MC renderings. Prominent examples are the
mean squared error (MSE), the root mean squared er-
ror (RMSE), peak signal-to-noise ratio (PSNR), the
structural similarity (SSIM) index (Wang et al., 2004),
and variants of the high-dynamic-range visual differ-
ence predictor (HDR-VDP) (Mantiuk et al., 2005;
Mantiuk et al., 2011; Narwaria et al., 2015). For
instance, Meneghel and Netto (Meneghel and Netto,
2015) employed SSIM and HDR-VDP2 for the com-
parison of six different rendering techniques.
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Whittle et al. (Whittle et al., 2017) provided a
comprehensive overview and analysis of a multitude
of general image quality metrics. The problem with
such general metrics is that they are agnostic to the
sample distributions in MC rendering, which can po-
tentially provide a breadth of additional information.
By incorporating information about distributions, we
strive to provide a better alternative to those metrics.

Rendering Verification. Several works (Goral
et al., 1984; McNamara et al., 2000; Schregle and
Wienold, 2004; Meseth et al., 2006; McNamara,
2006; Bärz et al., 2010; Jones and Reinhart, 2017;
Clausen et al., 2018) compare renderings to real-
world measurements in order to assess rendering
quality. Ulbricht et al. (Ulbricht et al., 2006) inves-
tigated the state of the art for the verification of ren-
derings and pointed out that all approaches have their
weaknesses and that the development of robust and
practical solutions is still an open task. Nevertheless,
the verification of rendering techniques using real-
world measurements is orthogonal to our goal of com-
paring different rendering techniques.

Statistical Approaches. Compared to the methods
discussed so far, statistical approaches are most rel-
evant to ours. Celarek et al. (Celarek et al., 2019)
proposed an approach to estimate MSE expectation
and variance and to analyze the error distribution over
frequencies of MC rendering techniques. Subr and
Arvo (Subr and Arvo, 2007) employed statistical tests
to compare rendering techniques. However, they used
test hypotheses that are not suited to test for equality
but can only show significant differences. The method
by Jung et al. (Jung et al., 2020) also builds on clas-
sical hypothesis testing—specifically, Welch’s test—
by considering non-uniform distributions of p-values
as indicators for bias. Welch’s test also incorporates
more information about sampling distributions, which
makes it comparable to our proposed approach. How-
ever, our approach is not based on p-values but com-
putes probabilities that one renderer produces radi-
ance estimates similar as another. Furthermore, it
can also be used to compare unbiased renderers. In
Section 5, we discuss the differences between the ap-
proach by Jung et al. and ours in more detail.

In general, there has been a surprisingly low
amount of research on statistical approaches to com-
pare MC renderings and rendering techniques. Thus,
with our approach, we aim not only to provide a
novel, useful alternative to existing approaches but
also to inspire further research in this direction.

3 BACKGROUND

In this section, we describe the theoretical back-
ground and analyze common difference metrics in re-
lation to the sampling distribution of the mean (SDM)
in order to motivate the use of the latter for the eval-
uation of Monte Carlo (MC) renderings. Moreover,
we discuss the closely related approach by Jung et
al. (Jung et al., 2020).

3.1 Prerequisites

A MC rendering technique generates an image by
evaluating the rendering equation for each pixel by
means of MC integration. Due to the nature of this
approach, it can only estimate the involved integrals,
which generally leads to noise in the rendered im-
age. Typically, to assess quality and performance,
a noiseless reference is computed against which the
rendered image can be compared. Such a reference
generally requires a very high sample budget to en-
sure that its error is relatively low. The difference
between the rendered image to its reference is then
quantified using metrics like absolute deviation (AD),
mean squared error (MSE), or some variant thereof,
either aggregated over the whole image or per pixel.

Aggregate vs. Per-Pixel Metrics. Usually, metrics
such as the AD or MSE are computed incorporating
all pixels to form a single scalar difference value for
an individual image with respect to a reference. This
approach is useful when images need to be compared
on the basis of a single aggregated value, but it does
not help to identify the locations where the images
are different. This can rather be achieved by using
per-pixel difference metrics.

In this work, we focus on the per-pixel compari-
son of MC renderings; thus, if not stated otherwise,
all metrics in our exposition are applied on a per-
pixel basis. One fundamental shortcoming of apply-
ing commonly used metrics per pixel is that they do
not take the accuracy or state of convergence of the
renderings into account. In the following, we illus-
trate this issue and propose a potential solution based
on the SDM, which we first review in the next para-
graphs.

Sampling Distribution of the Mean. The samples
computed by a MC integrator for a particular pixel
can be seen as a random variable X from an arbitrary
distribution fX with an unknown population mean µX
and variance σ2

X . The distribution mainly depends
on the type of the integrator and the scene. During
rendering, an increasing number of samples from this
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Figure 2: These plots show the relation between the popula-
tion distributions (left) and the sampling distributions of the
mean (SDMs) (right) of two random variables X (blue) and
Y (orange) representing pixel radiance samples computed
by two integrators. (For this illustration, we have used two
beta distributions for X and Y that differ slightly in mean
and variance.) According to the CLT (Equation 1), the SDM
approaches normality and decreases in standard deviation
(SD) as sample size n increases (right; dotted blue line).

distribution are averaged to estimate µX , i.e., by com-
puting the sample mean X̄n using n samples per pixel
(SPP).

In contrast to fX , the sampling distribution of the
mean (SDM) fX̄n not only depends on µX and σ2

X but
also on the sample size n; the central limit theorem
(CLT) states that the SDM is approximately normal-
distributed for a sufficiently large n:

X̄n ∼ N
(

µX ,
σX√

n

)
. (1)

Furthermore, the standard deviation (SD) of the SDM
σX̄n = σX/

√
n is known as the standard error of the

mean (SEM), which can be used to quantify the er-
ror of a MC rendering. This error is proportional to
σX , i.e., the SD of the integrator, and inversely pro-
portional to n. These relationships are consistent with
the fact that error can be reduced by decreasing the
SD of the integrator σX or increasing the number of
samples n.

3.2 Issues of Commonly Used Metrics

In this section, we aim to clarify the shortcomings of
commonly used metrics such as the AD and MSE. To
this end, Figure 2 illustrates the relation between the
population distribution and the SDM. Here, random
variables X (blue) and Y (orange) represent pixel ra-
diance samples computed by two integrators. Aver-
aging transforms their population distributions (left)
into their corresponding SDMs (right). We note that
the means and therefore the bias remain unchanged.
For the same sample size n = 16, the SEMs σX̄n and
σȲn are proportional to the SDs of the corresponding
population distributions (both scaled by a factor of
1/4). As we increase the sample size from 16 to 256
for the sample mean X̄n (which we hereafter consider
as the reference), the SEM σX̄n decreases (dotted blue

line). Therefore, the SDM inherently includes infor-
mation about the error for different states of conver-
gence.

With these considerations in mind, we now focus
on two commonly used metrics. The AD only eval-
uates |µX − µY |, i.e., the difference between means
(known as bias), and therefore does not include any
information about the SDM. The MSE can be written
as the sum of variance and squared bias:

MSE
(
θ̂,θ

)
= E
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θ̂−θ

)2
)

= E
(
θ̂

2)+E
(
θ

2)−2θE
(
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)
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2)−E2(
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)
+E2(
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)
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)
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)
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(
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)
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(
E
(
θ̂
)
−θ

)2

= Var
(
θ̂
)
+Bias

(
θ̂,θ

)2

(2)
where θ̂ is the estimator and θ is the parameter being
estimated.

Equation 2 reveals a potential shortcoming of the
MSE: one can exchange variance for bias (and vice
versa) without changing the result. Another problem
is that the MSE assumes knowledge about the pa-
rameter being estimated—in our case, the population
mean θ = µX of the reference. In general, the pop-
ulation mean is unknown and must be estimated, but
the distribution of this estimate (the SDM) cannot be
taken into account in the MSE. Only the distribution
of the estimate θ̂ = Ȳn is accounted for:

MSE(Ȳn,µX ) = Var(Ȳn)+Bias(Ȳn,µX )
2. (3)

Aggregate vs. Per-Pixel MSE. We also want to
point out the key difference between applying the
MSE across all pixels of the image and applying it
per pixel. The former computes the mean squared
difference between corresponding pixels of two im-
ages and therefore tends toward zero as the difference
between those images decreases. The latter computes
the mean squared difference between random samples
and a fixed reference value for each individual pixel.
Therefore, the per-pixel MSE (ppMSE) converges to
the variance plus squared bias of the used MC inte-
grator. This property makes the ppMSE less suited
for the comparison of MC renderings, as we illustrate
with the results shown in Section 5.1.

Apart from the issues mentioned so far, both AD
and MSE do not include the additional information
provided by the SDM or SEM, in particular, the ac-
curacy or state of convergence of the estimates at a
specific sample size n. This circumstance is shown
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Table 1: An overview of the types of information that are
considered by various difference measures (including ours).
Bias is considered by all measures. The MSE additionally
incorporates the variance of the non-reference distribution.
Our approach, as well as the one by Jung et al. (Jung et al.,
2020), moreover takes the variance of the reference distri-
bution and, more importantly, the SDMs into account.

Bias Variance Variance Sample Distr.
(non-ref.) (reference) of the Mean

AD ✔ ✘ ✘ ✘
MSE ✔ ✔ ✘ ✘
(Jung et al., 2020) ✔ ✔ ✔ ✔
SDMP (Ours) ✔ ✔ ✔ ✔

in Table 1. It includes our proposed measure, which
additionally incorporates the error of the reference,
but more importantly, is based on estimations of the
SDM to take the SEM into account. The information
that we additionally take into account can facilitate
the evaluation and comparison of different MC ren-
derings and techniques, as evidenced by the results
shown in Section 5. In addition to the metrics dis-
cussed in this section, Table 1 also includes an ap-
proach recently published by Jung et al. (Jung et al.,
2020), which we discuss in the next section.

3.3 The Approach by Jung et al.

The approach by Jung et al. (Jung et al., 2020) is
based on hypothesis testing and provides a similar
feature set as our method. It is based on Welch’s
two-sample test for the difference in means. Specifi-
cally, they compute p-values for image tiles and ana-
lyze their distribution. They have shown that a non-
uniform distribution of p-values is an indicator for
bias, as under the null hypothesis (i.e., no bias), the
p-values are expected to be uniformly distributed. By
using MC samples averaged over tiles, they facilitate
the normality of the sample means, which is required
for Welch’s test.

Intuitively, a lower p-value indicates a higher
probability of the (population) means being different.
If the p-value is less than or equal to the specified
significance level α, the difference between means is
considered significant. But this only suggests a dif-
ference and cannot show equivalence. Nevertheless,
Jung et al. have shown that visualizing p-values per
tile can give clues about biased regions and that a uni-
form distribution of p-values indicates the absence of
bias. The similarities and differences between theirs
and our approach are discussed in Section 5, where
we also provide examples that demonstrate the advan-
tages of our approach.

4 OUR APPROACH

In the previous section, we described how the SDM
incorporates useful information about the rendering
process that is missing in classical metrics. Thus, we
propose to use the SDM for quantifying the similarity
between the radiance estimates produced by different
MC integrators. Our idea is to, for each pixel, esti-
mate the SDM and compute the probability that the
corresponding radiance estimates are similar to the
one produced by another integrator. In the following,
we derive the formulas for calculating this probability.

Probability of the Sample Mean X̄n. We first con-
sider a single integrator and determine the probability
that it generates sample mean values, represented by
a random variable X̄n, in a certain range for a par-
ticular pixel. The corresponding SDM fX̄n is defined
in Equation 1. Since the probability of X̄n taking on
any particular value in a continuous space is zero, we
can only derive probabilities for intervals (aX̄n ,bX̄n ].
Given the cumulative distribution function (CDF) FX̄n
corresponding to fX̄n , the probability that the integra-
tor produces radiance estimates in a certain interval
(aX̄n ,bX̄n ] can be derived as follows:

P(aX̄n < X̄n ≤ bX̄n) = P(X̄n ≤ bX̄n)−P(X̄n ≤ aX̄n)

= FX̄n(bX̄n)−FX̄n(aX̄n)
(4)

Furthermore, we consider the inverse CDF or
quantile function QX̄n = F−1

X̄n
, which can be used to

find an interval that contains a certain probability
mass of the distribution. In particular, we are inter-
ested in the interval whose endpoints are equidistant
to the mean X̄n and enclose the fraction 1−α of all
possible values:(

aX̄n ,bX̄n

]
=

(
QX̄n

(
α

2

)
,QX̄n

(
1− α

2

)]
. (5)

This interval, which turns out to be the confidence in-
terval (CI) for the sample mean, can be used to deter-
mine the probability that one integrator will produce
similar radiance estimate as another, as we describe in
the following.

Probability for Comparing Integrators. Our ap-
proach is to select one integrator (which generates
samples X) and compute the CI for its estimates
(aX̄n ,bX̄n ] according to Equation 5. We further de-
termine the probability that another integrator (which
generates samples Y ) produces estimates Ȳn within
this interval. Specifically, we compute how much
probability mass of the SDM of Y lies inside the CI
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Figure 3: An illustration of the asymmetry of our approach.
At the top, population distributions for X and Y are shown,
which have equal σ but different µ. Below, corresponding
SDMs for different sample sizes for X̄n and Ȳn are shown.
Since the SDM of X has a lower SD than that of Y , the
probabilities are not equal.

for the mean of X . This approach requires the inte-
gration of fȲn over the interval (aX̄n ,bX̄n)

1:

P
(
aX̄n < Ȳn ≤ bX̄n

)
=

∫ bX̄n

aX̄n

fȲn(x)dx

= FȲn(bX̄n)−FȲn(aX̄n).

(6)

This equation describes the probability that Ȳn takes
on values that fall into the CI for X̄n at a confidence
level 1−α. Thus, it can be used to quantify the simi-
larity of the radiance estimates produced by two inte-
grators.

We note that this probability is not symmetric: ex-
changing X̄n and Ȳn results in a different probability,
as illustrated in Figure 3. Intuitively, our approach
computes the overlap of one distribution with the CI
of another, which is only symmetrical if σX̄n = σȲn .

We propose to choose X̄n as the reference, for
which the error is relatively low. In this case, if
µY = µX , the probability increases with the accuracy
of Ȳn as more of its probability mass falls into the CI
of the reference.

The corresponding probability of dissimilarity is
given by

1−P(aX̄n < Ȳn ≤ bX̄n). (7)
For our evaluation in Section 5, we have used this
dissimilarity, i.e., the probability that a test renderer
computes sample means that fall outside the CI for

1Here, for brevity, we use f to denote the probability
density function (PDF) of the distribution instead of the dis-
tribution itself.

the mean of a reference renderer. We hereafter refer
to it as SDM-based probability (SDMP).

In cases where no reference is available, it may
be desirable to compare renderings on equal ground,
which would require a symmetric measure. A possi-
ble symmetric variant of our measure can be given by
the average

2−P(aX̄n < Ȳn ≤ bX̄n)−P(aȲn < X̄n ≤ bȲn)

2
. (8)

Other operations such as the minimum or maximum
of the two probabilities might also be of interest. In
this work, we focus on our asymmetric measure for
similarity and leave the investigation of symmetric
variants for future work.

Practical Considerations. In practice, since popu-
lation parameters are generally not available, our ap-
proach builds on sample estimates. Conveniently, the
required estimates can be computed online, i.e., with-
out the need to store individual samples (e.g., by us-
ing Welford’s algorithm (Welford, 1962)). For inte-
grators such as path tracing (PT), the estimates can be
directly computed from individual radiance samples
as long as the sample count is sufficient to assume
normal distribution. In cases where the sample count
is insufficient, we can effectively increase it by aggre-
gating over multiple pixels, as proposed by Jung et
al. (Jung et al., 2020). For more sophisticated inte-
grators such as Metropolis light transport (MLT), we
can average multiple estimates in form of short ren-
derings, as suggested by Celarek et al. (Celarek et al.,
2019).

The significance level α can be used to control the
sensitivity of our approach, i.e., the length of the CI of
X̄n used for calculating the probability. Since the SD
of the reference renderer can be estimated in advance,
it is possible to choose the α in such a way that the CI
corresponds to a desired range of radiance values.

5 EVALUATION

In this section, we first show how our approach com-
pares to other metrics. Afterward, we discuss the
closely related work by Jung et al. (Jung et al., 2020)
to which we also refer as JHD20 for brevity.

5.1 General Comparison

In the following, we investigate different approaches
for identifying differences in Monte Carlo (MC) ren-
derings. In particular, we compare our approach to
per-pixel absolute deviation (AD), root mean squared
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error (RMSE), and JHD20. (We choose RMSE in-
stead of mean squared error (MSE) since it expresses
the error in the same unit as the radiance values.)

We note that the comparisons provided in Fig-
ures 4 to 7 are structured similarly: In the first col-
umn, we show the renderings and in the second, the
corresponding sample standard deviation (SD). The
remaining columns show images of the different ap-
proaches. The rows correspond to independently
computed renderings. The first row corresponds to
the reference rendering (computed with a relatively
high sample count) and the others correspond to test
renderings (computed with a lower sample count).
Specifically, the second row corresponds to an unbi-
ased control rendering and the last row to an artifi-
cially biased rendering, for which a scene property
has been slightly changed. For this artificial bias,
we have kept the actual integrator implementation un-
modified. Moreover, we provide the average value for
each image (shown below the label). We note that in
our figures, we show all non-radiance values as RGB
images for compact display, instead of separately dis-
playing the individual channels.

We have used 32768 SPP to compute the refer-
ence renderings and 4096 SPP in all other cases (un-
less stated otherwise). The AD and RMSE values are
bounded by [0,∞). The p-values computed by JHD20
fall between 0 and 0.5 on average. Our approach com-
putes probabilities in the interval (0,1). We note that
in case of JHD20, low values indicate bias, while for
the other approaches, high values indicate dissimilar-
ity. We have used the scenes provided by Bitterli (Bit-
terli, 2016).

Living Room Scene. Figure 4 shows the results for
the LIVING ROOM scene rendered using PT. For the
unbiased control rendering (second row), the AD and
the RMSE contain structures that can distract from
identifying bias. In contrast, our SDM-based proba-
bility (SDMP) and JHD20 (last two columns) show no
structure but homogeneous noise. We also illustrate
this circumstance in Figure 8, which shows that in the
frequency domain, the spectrum of both approaches
is relatively uniform compared to the AD and RMSE.

We note that since the control rendering has no
bias, the RMSE is essentially the same as the SD in
this case. This circumstance stems from the bias–
variance decomposition described in Equation 2. The
only difference is that the RMSE uses the factor 1/n
instead of 1/(n−1) for normalization.

For the biased rendering (third row), only our
SDMP and JHD20 clearly reveal the bias caused by
the sofa. In the case of the AD, the bias can be seen,
especially in comparison to the control image, but it

is accompanied by potentially distracting regions of
structured noise. For the RMSE, the biased region
cannot be visually discerned. These circumstances
demonstrate how scene features and the SD of the in-
tegrator can manifest themselves as structures in the
measures that can mask bias—a detriment that both
our SDMP and JHD20 do not suffer from.

Veach Ajar Scene. Figure 5 shows the results for
the VEACH AJAR scene rendered using BDPT. Here,
we can see, similarly to the previous LIVING ROOM
example in Figure 4, that our SDMP and JHD20
clearly reveals the bias caused by the floor, while the
AD and RMSE are less effective in this regard due to
additional potentially distracting structures.

For this scene, we also investigate the convergence
of the different approaches with increasing SPP. In
Figure 6, we can see how distracting scene structures
are visible in all AD and RMSE images. In contrast,
our SDMP and JHD20 show the bias (caused by the
floor) more clearly.

In Figure 9, plots of the corresponding average im-
age values with respect to the SPP are shown. We can
see how the average RMSE matches the correspond-
ing average SD, and that the average RMSE for the
biased rendering is (counterintuitively) lower than for
the control. This fact indicates that the RMSE is not
well-suited to identify bias. In contrast, the average
AD reveals the increase in error for the biased ren-
derings and gets more accurate with increasing sam-
ple count. JHD20 is able to show bias; however, the
average value in the control case stays constant, i.e.,
it does not show the increase in accuracy due to the
increased sample count. In contrast, our SDMP indi-
cates this increased accuracy for the control render-
ing, suggesting its use for the comparison of unbiased
renderers.

Veach Bidir Room Scene. For the last compari-
son, we have chosen the VEACH BIDIR ROOM scene,
shown in Figure 7. In this scene, the bias is caused by
a change in intensity for the spotlight that illuminates
the left-hand wall. It is imperceptible in the render-
ings as well as in the RMSE.

An interesting observation can be made by com-
paring the average values of the different measures
(below the labels). The average RMSE would (coun-
terintuitively) indicate that the biased rendering (last
row) is closer to the reference. However, the other
average values show that the unbiased rendering is
indeed more accurate than the biased one, indicating
that these measures are more suited for per-pixel com-
parison.
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Figure 4: Renderings of the LIVING ROOM scene and the corresponding per-pixel images of different approaches for quanti-
fying the difference between renderings. All three renderings (leftmost column) were computed using path tracing (PT). The
bottom row shows an artificially biased version of the scene, for which the reflectance of the sofa on the right-hand side was
reduced. The structure of the scene is visible in the AD and RMSE images. Our approach and JHD20 reveal the biased image
region at the sofa (last row).
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Figure 5: Renderings of the VEACH AJAR scene and the corresponding per-pixel images of different approaches for the
comparison of renderings. All three renderings (leftmost column) were computed using bidirectional path tracing (BDPT).
The third row shows an artificially biased version of the scene, for which the reflectance of the floor was reduced. The structure
of the scene is still visible in comparison the AD and RMSE images, while our approach and JHD20 reveal the biased image
region at the floor (last row).

Another observation is that in this scene, outliers
due to fireflies are relatively frequent. Those addi-
tionally introduce distractions in the difference im-
ages. Moreover, they can transform the sample dis-
tributions such that the normality assumption—upon
which SDMP and JHD20 rely—is violated. We illus-
trate this issue in Figure 13 and discuss it in the next
section (5.2).

Application Scenarios. We see two main applica-
tion scenarios for our approach: The first scenario is

the per-pixel comparison to indicate similarity or bias
in different regions of the image. The second sce-
nario is the numerical comparison based on the aver-
age SDMP, either computed across the whole image
or a region of interest.

Let us assume that we are interested in the differ-
ence between multiple renderings with respect to each
other or to a reference. The magnitude of the SDMP
image indicates the amount of difference. This differ-
ence can be visually inspected or compared numeri-
cally using values averaged over the whole or a par-
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Figure 6: Images of different measures (rows) for increasing samples per pixel (SPP) (columns) for the biased variant of the
VEACH AJAR scene. Here, we can see that the AD decreases while many regions, e.g. the back wall, remain noisy. By
contrast, the noise in the RMSE images vanishes more quickly, while the images converges to the SD of the BDPT integrator.
In comparison, our approach and JHD20 reveal the bias more clearly, since other scene features are less noticeable. The
convergence of the corresponding average image values is illustrated in Figure 9.
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Figure 7: Comparison of measures based on the VEACH BIDIR ROOM scene. The biased variant (bottom row) was created
by decreasing the emission of the spotlight mounted on the right-hand wall. All renderings were computed using BDPT. The
introduced bias results in an increased intensity of the illumination on the left-hand wall. Here all approaches, except RMSE,
are able to show the biased region; however, our approach and JHD20 exhibit less structure in other image regions.

ticular region of the image. We provide examples of
such visual comparisons in Figures 4 to 6 and a basic
example of numerical comparison in Figure 9.

Additional examples of numerical comparisons
are provided in Figures 10 to 11. Here, we illustrate
the properties of the SDMP in comparison to the other
measures based on the VEACH AJAR scene. We com-
pare average values of the measures with respect to
sample count. These average values are computed
across the top image region, the bottom region, and
the full image, as illustrated in Figure 12. For the un-
biased control rendering (Figure 10), AD and RMSE

exhibit different average values for each region. Our
SDMP and JHD20 exhibit the same average values
for all regions. This is due to their beneficial uniform
spectrum, as shown in Figure 8.

Furthermore, it can be seen that the SDMP as-
signed a lower value (less difference) for the low-
quality reference case (dashed lines). This is be-
cause the confidence interval (CI) for the low-quality
reference is much broader than the CI of the high-
quality reference and therefore includes more proba-
bility mass of the sampling distribution of the mean
(SDM) of the test rendering. This shows that our ap-
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corresponding to the control images in Figure 4. The first
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each approach, while the rightmost column shows plots of
the radially averaged power spectra. The rows correspond
to the RGB channels. Here, we observe that our approach
and JHD20, in contrast to the others, have a very uniform
spectrum.This characteristic allows us to show biased re-
gions clearly, without distracting scene features from unbi-
ased regions.
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Figure 9: The average image values with respect to the
number of SPP for the (unbiased) control and the biased
renderings of all approaches shown in Figure 6. We note
that higher values correspond to more difference, expect for
JHD20. The latter is based on Welch’s p-value, which, in
the case of no difference, is 0.5 on average, and lower oth-
erwise.

proach, in contrast to the others, incorporates the ac-
curacy of the reference.

In Figure 11, we show the plots corresponding to
the biased renderings of the VEACH AJAR scene. In
this case, the bottom region (orange) covers the biased
values. We can see how the SDMP clearly indicates
the differences between the regions in both the high
and low-quality reference cases. This is less the case
for JHD20 since the p-values do not incorporate the
accuracy of the reference.

Implementation Details. For rendering, we have
used Mitsuba (Jakob, 2010), which we have slightly
modified to be able to set the seed of the random num-
ber generator (RNG). We chose the independent sam-
pler and the box filter for all cases. In general, our
approach can be used with any renderer for which the
RNG seed can be specified. All necessary statistics
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Figure 10: Plots showing the average values of the different
measures aggregated over different images regions at spe-
cific sample counts. The values correspond to the control
images shown in Figure 5. The image regions (T, B, F)
are shown in Figure 12. The dashed lines correspond to a
low-quality (LQ) reference (n = 4,096), and the solid lines
correspond to a high-quality (HQ) reference (n = 32,768).
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Figure 11: These plots are analogous to the ones shown in
Figure 10 with the difference that they are computed for the
biased case.

Figure 12: The image regions T (top), B (bottom), and F
(full) corresponding to the average values reported in Fig-
ures 10 to 11.

for the SDMP can be calculated online, i.e. with-
out maintaining individual samples (by e.g., using
Welford’s algorithm (Welford, 1962)). We choose
α = 0.05 for all experiments—a common choice for

GRAPP 2023 - 18th International Conference on Computer Graphics Theory and Applications

128



hypothesis testing. For the visualization of the ren-
dered images, we chose the global tone mapper by
Reinhard et al. (Reinhard et al., 2002), while the val-
ues of all other (non-radiance) images were clipped to
their 0.95 percentile to mitigate outliers and normal-
ized such that meaningful comparisons are possible.

5.2 Comparison to Jung et al.

In the following, we further investigate the differ-
ences of our approach to the closely related work by
Jung et al. (Jung et al., 2020). Both approaches es-
sentially build on the same statistical quantities for
two independent sample sets. The main difference
is that Welch’s test, used by Jung et al., estimates
the sampling distribution of the difference between
means (X̄n − Ȳn) and computes the corresponding p-
value. Our approach estimates the SDMs of both sam-
ple sets individually and computes the likelihood that
one mean (Ȳn) takes on values inside the CI of the
other mean (X̄n) (as described in Equation 7).

Therefore, both approaches compute probabilities
that correspond to a form of difference. However, both
probabilities exhibit different characteristics. In case
of no bias, Welch’s p-values are always uniformly dis-
tributed and therefore 0.5 on average, regardless of
the error of the sample means. With increasing bias,
the distribution of the p-values becomes skewed to-
ward zero. By contrast, in case of no bias, the SDMP
is not 0.5 on average but can take on any value be-
tween zero and one, thereby being free to indicate
how similar the two SDMs are. This property can
be seen in Figure 9. In the case of no bias, the p-
value (JHD20; red dashed line) is constant, regardless
of sample count. In contrast, our SDMP decreases
with increased sample count, indicating the conver-
gence of the unbiased control rendering toward the
reference rendering. In case of bias, the p-value con-
verges toward zero, whereas the SDMP converges to-
ward a particular value, depending on the error of the
reference.

Both approaches build on the central limit theo-
rem (CLT) and assume normally distributed sample
means. Jung et al. aggregate MC samples over im-
age tiles to ensure normality. For our comparison we
have not performed this aggregation but computed a
high number of SPP instead. Figure 7 shows that out-
liers (e.g., due to fireflies) can violate the normality
assumption. As already discussed by Jung et al., this
can lead to undesired structure and wrong results in
regions of such outliers. In order to investigate this
issue, we have performed a simulation study using the
Kolmogorov–Smirnov test for normality (summarized
in Figure 13), which suggests that fireflies can indeed
violate the normality assumption.

Rendering Red Green Blue
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Figure 13: A rendering (left) of the VEACH BIDIR ROOM
scene and the average p-values of the Kolmogorov–Smirnov
test for normality of the radiance sample means for each
color channel (three rightmost columns). We can see that
for most regions of the rendering, the p-values are relatively
high, suggesting normality. However, in some regions, fire-
flies (seen in Figure 7) skew the distribution of the mean.
This results in low p-values which indicate a divergence
from normality.

6 CONCLUSION

In this paper, we have discussed how sampling distri-
bution of the mean (SDM)-based approaches can fa-
cilitate the per-pixel comparison of Monte Carlo (MC)
renderings and techniques. While the absolute devi-
ation (AD) can show differences, it tends to exhibit
structured noise that makes it difficult to distinguish
actual bias from variability. This is even more prob-
lematic for the root mean squared error (RMSE), since
it is inherently tied to the variability of the integrator,
which makes it difficult to detect bias that is smaller in
comparison. The recent approach by Jung et al. (Jung
et al., 2020) can detect bias at low sample counts.
However, due to the properties of Welch’s p-value,
the approach is agnostic to the state of convergence of
renderings. In contrast, our approach takes the state of
convergence into account. Our results suggest that our
approach is a promising alternative for the comparison
and evaluation of MC renderings and techniques.

Limitations. Our approach, as well as that by Jung
et al., builds on the assumption of normally distributed
sample means. Therefore, measures to ensure nor-
mality should be applied, such as tiling or the use of
higher sample counts.
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Rushmeier, H., editors, Rendering Techniques 2000,
pages 207–218, Vienna. Springer Vienna.

Meneghel, G. B. and Netto, M. L. (2015). A comparison
of global illumination methods using perceptual qual-
ity metrics. In 2015 28th SIBGRAPI Conference on
Graphics, Patterns and Images, pages 33–40.

Meseth, J., Müller, G., Klein, R., Röder, F., and Arnold, M.
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