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Modeling complex systems or natural phenomena requires special skills and extensive domain knowledge.
This makes automating model development an intriguing challenge. One question is whether a model’s
ontology—the essence of its entities—can be learned automatically from observation. We describe work
in progress on automating the learning of a basic concept: an image of the straight line segment between two
points in a two-dimensional plane. Humans readily encode such images using two endpoints, or a point, an
angle, and a length. Furthermore, image recognition algorithms readily detect line segments in images. Here,
we employ autoencoders. Autoencoders perform both feature extraction and reconstruction of inputs from
their coded representation. It turns out that autoencoding line segments is not trivial. Our interim conclusions
include: (1) Developing methods for comparing the performance of different autoencoders in a given task is
an essential research challenge. (2) Development of autoencoders manifests supervision of this purportedly
unsupervised process; one then asks what knowledge employed in such development can be obtained automat-
ically. (3) Automatic modeling of properties of observed objects requires multiple representations and sensors.

This work can eventually benefit broader issues in automated model development.

1 INTRODUCTION

Model-driven engineering is an important practice in
system development, and thus, model-development
automation tools are of great interest (Nardello et al.,
2019; Kochbati et al., 2021; Kahani, 2018). Since
building models requires expertise in the problem
domain, efforts in this direction include application
of artificial intelligence and machine learning (ML).
Here, we focus on the ontology of the problem
domain—the entities in the model and their attributes
and methods—and ask whether such ontologies can
be learned automatically. Model ontology learning
often relies on text analysis and natural language pro-
cessing or a combination of visual object recogni-
tion in combination with a pre-existing general on-
tology (Tho et al., 2006; Fang et al., 2020). Here we
are interested in modeling the essential attributes of
objects from visual observation.

While object detection as part of automated image
processing is a well-researched topic, we further nar-
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row our interest to detecting one object type. To sim-
plify our quest even more, we suffice for now with ob-
ject attributes, deferring the addressing of automated
modeling of methods and relationships of objects to
later stages in our research. The object type we have
chosen is the line segment: the finite straight line
drawn between two points. (We occasionally abbre-
viate “line segment” simply as “line”).

To illustrate the dimensionality reduction in such
encoding, consider a high-resolution image of such
a line with a million pixels; a person describes it in
a text message, and the remote recipient of the mes-
sage recreates the image. The text message is much
smaller than the million numbers in the original rep-
resentation of the image.

We are interested in using autoencoders (AE),
which can distill the defining properties of the input
and reconstruct input entities from their coded rep-
resentation. We have yet to find published work on
autoencoding images of line segments. This problem
is very different from edge detection or line detection
in an image, which is extensively covered in image
processing work, where the system knows in advance
what an edge or a line looks like. Autoencoding lines
is also different from distinguishing images of lines
from images of non-line entities.
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Figure 1: An autoencoder and autoencoding. The image and text are borrowed from (Cohen and Marron, 2022). See detailed

explanation in the text.

In Section 2, we provide some background infor-
mation about autoencoding. In Section 3, we describe
four groups of experiments that we have conducted
thus far, including the ML solution architecture and its
training and our assessment of the results. We plan to
continue our research and expand this initial set of ex-
periments. In Section 4, we document several conclu-
sions that shed light on this particular autoencoding
problem and the role of autoencoding in automated
modeling in general.

2 AUTOENCODERS AND
AUTOENCODING: OVERVIEW

Whether for understanding the results of scientific
observations in nature, extracting value from data
repositories, or enabling autonomous computer pro-
cessing, there is a growing need for automating the
discovery of the defining features of individuals in
a given population. Once these features are estab-
lished, they can form a vector F = [f1, f2, ..., fa], such
that each individual x in the population can be repre-
sented sufficiently for the relevant use by an assign-
ment of a specific value v} to each feature f;; that is
x= [0

Methods and tools for these purposes, under the
headings of feature extraction, dimensionality reduc-
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tion, and autoencoding, range from principal compo-
nent analysis (PCA) to deep learning tools (Zhong
etal.,2016). A common ML approach is an AE (Bank
etal., 2020) — an unsupervised neural network model
designed to learn a meaningful representation of the
input data. This is done by learning how to encode
the inputs in the given population in such a way as to
make it possible to faithfully reconstruct them.

More specifically, Figure 1, borrowed from (Co-
hen and Marron, 2022) with some edits and clari-
fications, illustrates the concepts of an AE and au-
toencoding. Typical AEs include three network-based
elements: the encoder (blue circles), the code (also
termed the bottleneck layer, red circles), and the de-
coder (orange circles). The designer defines the archi-
tecture, activation functions, and initial weights of the
neural networks. Individual inputs (in this example,
handwritten digits) are fed into the encoder, encoded
as values in the code layer, and then reconstructed by
the decoder.

During training (A), a loss function computes the
differences between the output and the input. An op-
timization process then adjusts the weights W of the
edges connecting the neurons in order to minimize
this reconstruction loss. Training consists of numer-
ous repetitions using a finite set of examples.

Once training is complete, the AE is ready for de-
ployment (B) to perform its application task. Typical
applications include image search, cleaning out im-
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age data by removing insignificant “noise”, anomaly
detection, classification, and more. Encoding and de-
coding are then carried out with a fixed encoder and
decoder: the initial neural net with the edge weights
determined in the training phase. The AE can now
process an unbounded number of inputs from the do-
main of interest.

We define autoencoding as the training process
described above. Autoencoding establishes a process
that can create a compact representation for every en-
tity in the input population. While the term autoen-
coding is used in practice, we have yet to find an ex-
plicit definition for it. Hence we define it here, clar-
ifying that what we have in mind when we use the
term is the shaping of an encoder and a decoder dur-
ing training and not the encoding and decoding that
is carried out once the trained AE is deployed for its
application.

An AE with one fully-connected hidden layer, a
linear activation function, and a squared error loss
function is closely related to PCA (Plaut, 2018).
However, PCA is limited to encoding by only linear
transformations, where AEs based on neural nets can
employ nonlinear functions.

3 EXPERIMENTS

3.1 The Task: Autoencoding Line
Segments

As stated above, we wish to automatically discover
succinct representations for individuals in a popula-
tion of images, each containing one straight finite line
connecting two points. A computer program draws
the images in black-and-white in a prespecified res-
olution. This is a compromise between the abstract
concept of a line segment which has no color attribute
and whose width is zero, and an image of a real ob-
ject.

3.1.1 Inputs

In the experiments documented here, all images are
32 x 32 pixels (Autoencoding of handwritten digits is
often demonstrated using the MNIST dataset images
with 28 x 28 pixels). The training and validation set
consist of 15,000 and 1,000 images, respectively. The
process that creates each training and validation im-
age randomly chooses two pairs of coordinates and
draws the line connecting them using Bresenham’s
rasterizing algorithm.

3.1.2 Outputs and Loss Function

We modeled the task as a multi-label classification
where each of the 32 x 32 output neurons holds the
probability that the corresponding pixel is 1. When
displaying the output, the grey level reflects this prob-
ability. We then had to deal with the problem of low
foreground-to-background ratio: the model can lower
the loss by reducing the error in the dominant easy-to-
classify background pixels rather than improving its
predictions for the foreground pixels. For example,
blank output images would have a relatively low loss
value. To handle this, we used Binary Focal Cross-
Entropy (Lin et al., 2017). For each pixel, we com-
puted

if y=1

_ {—oc(l ~pflog(p) i 0
if y=0,

—ap¥log(1—p)

where y is input pixel value, p € [0,1] is the output
probability, 7y is the focusing parameter and o is a
scaling parameter. This is a generalization of the stan-
dard Binary Cross-entropy function by introducing a
new term. For both cases in Eq. (1), the new term re-
duces the contribution of small errors (when the pre-
dicted probability is close to the correct value) to the
total result of the loss function. Thus, it reduces the
dominance of easy-to-classify background pixels in
the loss gradient. For all models, we used y = 2 and
o =0.25.

3.1.3 Role of Domain Knowledge

All models reflect in some way domain knowledge.
For example, all models include Convolutional Neu-
ral Network (CNN) layers. A set of neurons in a CNN
layer share the same weight set. Each one is con-
nected to a limited number of specific adjacent out-
put units in the previous layer, resulting in a convo-
lutional filter operating on its input. Simply put, the
model “knows” to look for spatial patterns in an or-
ganized input grid. However, this knowledge is lever-
aged only partly: the loss function treats each output
pixel independently of the others.

3.1.4 Experimentation Heuristics

In conducting these four groups of experiments (each
of which we described with one concrete case), we
did not follow a strict methodology. After building
an initial model in each approach, we adjusted the
hyperparameters until the incremental improvements
became very small. We then switched to a new ap-
proach. The criteria for analyzing and comparing re-
sults are discussed in the individual experiment de-
scriptions and in the conclusion section.
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Figure 2: Results of AE1: a plain sequential AE. See the explanation in the text.

3.2 AE1: Plain Sequential Autoencoder

The architecture of AE1 is as follows. The bottleneck
layer, i.e., the code , is set to 4 neurons. The encoder
consists of 5 CNN layers followed by a single Fully
Connected (FC) layer. The number of filters in the
encoder CNN layers increases from one layer to the
next while the dimension of the output feature maps
decreases (using max pooling). The decoder consists
of the transposed architecture.

Figure 2 shows the results of AE1 with the first ten
validation set images, illustrating the handling of dif-
ferent lengths, angles, and locations within the image.
The model certainty is high in the line’s middle sec-
tion for all raw outputs: narrow and dark. However,
near the line ends, the pixels are spread and are greyer,
indicating a lower certainty. Applying a threshold of
0.36 to all pixels reveals clearer images (bottom row),
most of which approximate the input to some degree.

All lines share the same “step” pattern for diag-
onal sections except for the rightmost image, where
the original diagonal line is reconstructed as a straight
vertical line. It will be interesting to explore whether
there is value in capturing in a loss function this sen-
sitivity of humans, where the difference between (in
this case) “zero steps” and “one step” draws our at-
tention more than the difference between, say, “ten
steps” and “eleven steps”. Note also that all lines are
thicker than the input ones, and some do not have the
same length and angle as the input (e.g., the fifth im-
age from the left).

3.3 AE2: Customizing the Encoder
Using Domain Knowledge

An intuitive way for humans to represent a line is by
capturing the coordinates of its two ends. Given such
encoding, decoding would mean to “just” draw a line
from one end to the other (however, this decoding by
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drawing a line is not a trivial task for a neural net).

As shown in Fig. 3, the encoder looks separately
for the eight possible configurations of line ends, re-
lying on the domain knowledge/assumption that when
rasterizing the thinnest possible line, Bresenham’s al-
gorithm does not create an L-shaped arrangement of
black pixels. Exactly two of these configurations will
be found, yielding a feature map with a positive value
at the respective locations. The other six feature maps
will be all zeros. Ultimately, the encoder translates
each feature map into a pair of numbers. For example,
the third feature map from the left captures the bottom
end of the line, and the pair of neurons record its loca-
tion in the 32 x 32 image ([15,27]). The encoder then
concatenates the result into a 16-neuron sparse bottle-
neck layer (in a sparse code layer, for any given input,
only a small portion of the neurons contains non-zero
values). The decoder consists of eight sequential FC
layers and two CNN-transposed layers.

All the output images of AE2 have a gray back-
ground (Fig. 4); the lines are thicker than the in-
put. Some short lines and lines located near the image
boundaries appear as blotches (fourth and sixth from
the left and the rightmost outputs). Applying a binary
threshold (this time with a value of 0.4) “cleans” the
background and sharpens some lines, but some im-
ages do not seem like lines.

3.4 AE3: Customizing the Loss
Function Using Domain Knowledge

The customization of AE3 is between the extremes
of AEI and AE2. AE1 has a plain architecture with a
relatively large number of parameters and without any
heuristics in the optimization of image reconstruction.
By contrast, AE2 uses fixed prespecified CNN filters
in a specially designed encoder. In AE3, the encoder
and decoder are the same as in AE1. In addition, using
the same technique as in AE2, we add to the decoder a
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Figure 3: The encoder of AE2. It employs the 8 CNN filters to capture any line end configuration. See the explanation in the

text.
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Figure 4: Results of AE2. See the explanation in the text.

component that detects line end locations in the input
images and returns the corresponding reconstructed
pixel values as additional information that is then used
by the loss function.

Figure 5 depicts the results of AE3 on the same
first ten validation set images. AE3 emphasizes pix-
els at the ends of the output lines. In most images in
the validation set, the rest of the output line is thin,
reflecting a satisfactory reconstruction. However, the
intensity is lower than at the line ends, suggesting that
the AE lacks confidence in this prediction. In addi-
tion, several results are similar to AE2’s: short lines
and lines near the image boundary appear as blotches,
not as lines (for example, the fourth and sixth from
the left). For a small group of lines with edges at
the boundaries, the output image was completely dis-
torted (not shown).

3.5 AE4: a Variational Autoencoder

A variational autoencoder (VAE) (Kingma and
Welling, 2013; Doersch, 2016) is different from clas-
sic AEs in that (i) all the code vectors for a given
population are forced to occupy a continuous sub-
space with a normal distribution; (ii) implied by the
above: the model is generative—if an arbitrary code
value that falls within the code subspace is fed to the
decoder, the output entity is a valid instance of the
population; (iii) as part of forcing the code space to
be continuous, during encoding, the VAE samples the
code vector from a specific distribution; as a result,
the code vector for a given input may change between
runs.

The encoder of AE4 is composed of three sequen-
tial CNN layers, another FC layer, and two additional
FC “parallel” layers. Each of the two “parallel” FC
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Figure 5: Results of AE3.

See the text for details.
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Figure 6: Results of AE4. See the explanation in the text.
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Figure 7: AE4 line generation.

layers is separately connected to the last layer. The
two corresponding output vectors are mean and stan-
dard deviation vectors from which code vectors are
then sampled (using Gaussian distribution). The de-
coder consists of two sequential FC layers and three
CNN-transposed layers that output images.

Results are depicted in Fig. 6. The lines in the out-
put are broad, and many additional pixels appear with
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a non-zero probability. Interestingly, in the rightmost
image, pixel intensity is relatively high in a region far
from the original position of the line (a gray blotch at
the bottom edge of the image). Figure 7 shows the re-
sults of twelve generated images using randomly sam-
pled vectors as code for the decoder. Roughly half
display the emergence of a straight line segment.

3.6 Code Interpretability

In automated modeling, naturally, one would be inter-
ested in intuitive codes that reflect how humans think
about and compare entities in the given population.
Thus, in the various experiments, we are working now
on interpreting the code pattern, checking if it results,
for example, in the pair of [x, y] coordinates or in other
intuitive codes as described in the introduction. In the
above examples, the code produced by AE2 is indeed
intuitive and explainable.

4 DISCUSSION & CONCLUSIONS

We draw from the above experiments the following
interim conclusions and open problems.
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1. In this work, we presented four different AEs
for the task of autoencoding images of line seg-
ments. Though the results are all different, we
find it challenging to measure them according to
well-specified criteria and then somehow com-
pose these measurements into a single numerical
grade. For example: AEI1 yields thin lines with
moderate uncertainty regarding the edges. AE2
yields thick lines and struggles with short lines
or lines near the image borders. AE3 results in
relatively thin lines with high confidence at the
edges but, again, has difficulty with lines that are
short or near the image frame. Lastly, AE4 yields
lines with significant uncertainty in areas far from
the original line position. How does one translate
such critique into an order relation?

Loss function values cannot readily serve as this
ordering measure since some models use addi-
tional terms and some deviations that appear small
to the human eye turn out to produce large loss
values. For example, a reconstructed image of a
vertical line identical to the input but shifted by
one pixel to the right would result in a great loss
value, while a human observer may initially see
the two images as identical.

Moreover, with or without such measures of qual-
ity, it is difficult to measure how much of an AE
result is due to domain knowledge (which simpli-
fies the learning task), over-fitting to the training
data, or superior general learning techniques.

2. In the field of ML, autoencoding is referred to as

being unsupervised since inputs are not labeled.
We observe that the process involves many as-
pects of external control, including the choice of
the ML architecture, the loss function, and the in-
put representation for the real-world concept that
is to be autoencoded. Furthermore, learning a
concept may require knowledge of and assump-
tions about other concepts, as in the reliance on
understanding endpoints in some of our experi-
ments. Recall that such a-priori knowledge or as-
sumptions may also result in a bias in the ML pro-
cess itself.
We believe that methodologies for design of such
ML and AE solutions should include search-
ing for and documenting the reliance—explicit
or implicit—on external knowledge and assump-
tions. The goal is not necessarily to avoid such re-
liance altogether but to construct relevant ontolo-
gies that may dictate alternative orders for learn-
ing and autoencoding in a given domain.

3. In building a model based on observation and
sensing, each representation, like an image or an

audio or touch signal, extracts only a limited num-
ber of features of the real-world object. Modeling
all properties and interactions of a given object
type may require multiple representations or the
use of pre-existing domain knowledge. For ex-
ample, a unique property of a line segment, com-
pared to an arc or a line with multiple angles, is
its “straightness”. In a classical rectangular grid
of pixels arranged densely in fixed locations, each
pixel is surrounded by exactly eight other pix-
els. The straightness of the line is not directly
represented; it has to be inferred from emergent
step patterns. An alternative image representation
could be floating sparse pixels whose location and
distance from each other are specified as numbers
with decimal precision that exceeds the resolution
of any standard pixel-based image. This approach
may represent straightness better, but the property
of the continuity of the line may have to be in-
ferred using other methods.

In summary, automated ontology acquisition will
likely require and contribute advances in algorithms
and techniques in ML, perception and knowledge
management.

S FUTURE WORK

Our ongoing exploration and plans include dealing
with combinations of the following and more:

* Develop methodologies for measuring and com-
paring the quality of AE reconstructed outputs,
like (i) measuring the success of a human or pro-
gram in matching reconstructed outputs to the re-
spective inputs and (ii) measuring how close prop-
erties of the reconstructed output are to properties
of the corresponding real-world entity rather than
only to the (input) image of that entity.

* Investigate different adjustments to the loss func-
tion.

* Use higher resolution images with thicker and
smoother lines.

* Investigate additional domain-specific properties.

 Study interpretability of the resulting code.
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