
An Efficient Real Time Intrusion Detection System for Big Data
Environment

Faten Louati1 a, Farah Barika Ktata2 b and Ikram Amous3 c

1MIRACL Laboratory, FSEGS, Sfax University, Sfax, Tunisia
2MIRACL Laboratory, ISSATSo, Sousse University, Sousse, Tunisia

3MIRACL Laboratory, Enet’com, Sfax University, Sfax, Tunisia

Keywords: Intrusion Detection System, Big Data, Spark Streaming, Real Time Detection, Machine Learning.

Abstract: Nowadays, Security is among the most difficult issues in networks over the world. The problem becomes more
challenging with the emergence of big data. Intrusion detection systems (IDSs) are among the most efficient
solutions. However, traditional IDSs could not deal with big data challenges and are not able to detect attacks
in real time. In this paper, a real time data preprocessing and attack detection are performed. Experiments on
the well-known benchmark NSL KDD dataset show good results either in terms of accuracy rate or time of
both training and testing and prove that our model outperforms other state-of-the-art solutions.

1 INTRODUCTION

All the data today could be considered as Big Data
because of the rapid increase of the use of cloud/edge
computing and 5G technologies which are utilized in
all aspects of life such as economics, politics, culture,
health-care to name a few. This rapid development
brings along to big challenges namely, security and
safety. The complexity of Big data makes the task
of processing and handling data very hard. Hence,
data are more vulnerable to different types of attacks.
Since its invention by Anderson in 1980 (Anderson,
1980), intrusion detection systems (IDS) have been in
continuous development and have been widely inves-
tigated by researchers as being among the most effi-
cient solutions for networking security.

An IDS is a kind of software that monitors, ana-
lyzes networking traffics and sends an alert automat-
ically once a malicious activity is detected (Louati
and Ktata, 2020). There are two main techniques
for IDSs: signature-based technique and anomaly-
based technique. Signature-based IDS is based on a
database of signatures of attacks which is used to de-
cide if a given pattern is an attack or not. Although
this approach achieves high accuracy and low false
alarm rate, it is still unable to detect unseen attacks.

a https://orcid.org/0000-0002-8582-6092
b https://orcid.org/0000-0001-5706-4548
c https://orcid.org/0000-0002-5893-9833

Thus, this technique is not suitable for big data con-
text since there are new kinds of attacks appearing ev-
ery day. On the other hand, anomaly-based approach
tackles this limit and achieves good detection rate for
known as well as unknown attacks, but the main draw-
back is that it causes a high false alarm rate i.e, it may
trigger an alert for a benign pattern. For this reason,
we used an enhanced anomaly-based intrusion detec-
tion by investigating Machine Learning (ML) algo-
rithms, since they perform high level of accuracy and
low value of false alarm rate in classification problem.

Because most of the existing IDSs are still unable
to deal with the huge size of data in real time, in this
paper we proposed a new solution that performs a real
time intrusion detection system for big data environ-
ment. We address the challenges of big data such as
velocity and volume. We achieved a real time data
preprocessing and data classification.

For this purpose, we created two clusters; the role
of the first is preparing and preprocessing the incom-
ing streams of data in real time an in parallel way,
then sending them to the second cluster to be classi-
fied in real time and in parallel way too. At this stage,
we used the benchmark NSL kDD dataset to simu-
late network traffics. Experimental results show that
our work outperforms other state-of-the-art solutions
in term of accuracy as well as time of both prepro-
cessing and detection,

The remaining part of the paper is organized in the

1004
Louati, F., Ktata, F. and Amous, I.
An Efficient Real Time Intrusion Detection System for Big Data Environment.
DOI: 10.5220/0011885900003393
In Proceedings of the 15th International Conference on Agents and Artificial Intelligence (ICAART 2023) - Volume 3, pages 1004-1011
ISBN: 978-989-758-623-1; ISSN: 2184-433X
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)



following way:
In section 2 we present same state-of-the-art solutions
in big data context. Section 3 introduces our solution.
Experimental results are described in section 4. Fi-
nally, section 5 concludes the paper and presents our
future works.

2 RELATED WORKS

Only few papers focus on Intrusion detection systems
in big data frameworks (Hassan et al., 2020). For in-
stance (Terzi et al., 2017) used clustering algorithm to
detects network anomaly from Netflow. Experiments
performed on CTU-i3 dataset achieve 96% of accu-
racy but high false alarm rate.

(Hassan et al., 2020) exploited conventional neu-
ral network and weight dropped long short-term
memory (WDLSTM) network to build the IDS. The
work was tested on the UNSW-NB15 dataset and
achieves an accuracy=97.17%.

(Mohamed et al., 2022) proposed an intrusion de-
tection framework using Apache Spark for IoT. Three
Spark’s MLlib was tested in BoT-IoT dataset based on
F1-measure, namely Random Forest, Decision Tree
and Naive Bayes. Experiments show that Decision
tree achieves the highest value of F1-measure in big
data context i.e when using the whole dataset with
97.9% for binary classification and 79% for multi-
classification.

(Liu et al., 2020) proposed a network intru-
sion detection system based on Deep Random For-
est. The model was deployed in Spark environment.
Four datasets were used in experimentation namely,
NSL KDD, UNSW-NB15, CICICDS2017 and CICI-
CDS2018 and good results were achieved.

(Al-Rawi, 2019) used two algorithms from
Spark’s MLlib; The first is Multi-Layer Perceptron
which classifies the data into normal or attacks. Data
classified as attacks are fitted to the second classifier,
which is the Random Forest, for further verification.
The proposed IDS performs an overall accuracy of
99.12% on UNSW-NB15 dataset.

Also (Kurt and Becerikli, 2018) performed a
comparison between different machine learning al-
gorithms provided by Spark’s MLlib namely, Logis-
tic Regression, Support Vector Machine, Naive Bayes
and Random Forest. Experiments on KDD99 dataset
show that Logistic Regression achieves the best accu-
racy with 99.1% . However Naive Bayes achieves the
lowest training and prediction time.

(Vimalkumar and Radhika, 2017) presented an
intrusion detection framework for smart grids using
Apache spark and various machine learning tech-

niques namely, Deep Neural Networks, Support Vec-
tor Machines, Random Forest, Decision Trees and
Naive Bayes. Also feature selection and dimensional-
ity reduction algorithms are exploited. Experimenta-
tion are done on the synchrophasor dataset and the re-
sults are compared using useful metrics i.e accuracy,
recall, false rate, specificity, and prediction time. Best
results were achieved by Naive Bayes classifier with
accuracy= 79.21%.

(Ouhssini et al., 2021) proposed a distributed IDS
for cloud systems based on big data tools and ma-
chine learning algorithms. The system is composed
of four components, namely network data collector, a
streamer based on Kafka, preprocessing/data clean-
ing and data normalizing/feature selection using k-
means algorithm. Different ML techniques are used
for anomaly detection. After Comparison, authors
chose decision Tree for their system because of its ac-
curacy and detection time.

(Bagui et al., 2021) introduced an IDS based on
Random Forest for a distributed big data environment
using Apache Spark. The classifier is tested using the
UNSW-NB15 dataset. Authors used information gain
and principal components analysis (PCA) to address
the issue of high dimensionality of the dataset. The
highest accuracy was obtained by the binary classifier
was 99.94%.

(Awan et al., 2021) applied machine learning ap-
proaches namely Random Forest (RF) and Multi-
Layer Perceptron (MLP) through Spark ML library
for the detection of Denial of Service (DoS) attacks.
The model achieved a mean accuracy of 99.5%

(Jemili and Bouras, 2021) proposed an Intrusion
Detection System based on big data fuzzy analyt-
ics. In fact, Fuzzy C-Means (FCM) is used to clus-
ter and classify the training dataset. Experimentation
are done with CTU-13 and UNSW-NB15 datasets and
shows high performance in terms of accuracy (97.2%)
and recall (96.4%).

Although works mentioned above are proposed
for big data context, most of them didn’t address same
big data challenges such as velocity since data in
big data environment are coming in very high speed,
hence they should be treated at real time.
For this motivation, we introduce in this write-up a
real time data preprocessing and detection within big
data environment.

Table 1 summarizes and compares between those
works and our solution based on experimental results
especially the accuracy rate and the time of training
and testing.

An Efficient Real Time Intrusion Detection System for Big Data Environment

1005



Table 1: Comparison of cited works for Big Data context.

Ref. Approach Dataset Results Training
time

Testing
time

(Jemili and
Bouras, 2021)

big data fuzzy analyt-
ics

CTU-13 and
UNSW-NB15

accuracy=
97.2%

- -

(Awan et al.,
2021)

Random Gorest +
Multi Layer Percep-
tron + Spark

The appli-
cation layer
DDoS dataset

accuracy=
99.5%

34.11 min 0.46 min

(Bagui et al.,
2021)

Random Forest +
Spark

UNSW-NB15
dataset

accuracy=
99.94%

- -

(Ouhssini
et al., 2021)

Decision Tree +
spark + kafka

CIDDS-001
dataset

accuracy=
99.97%

-

(Vimalkumar
and Radhika,
2017)

ML algoritms +
spark

synchrophasor
dataset

accuracy=
79.21%

- 18.23
sec for
Random
Forest

(Hassan et al.,
2020)

Conventional Neural
Network + Weight
Dropped Long Short-
Term Memory

UNSW-NB15 accuracy
=97.17%

-

(Terzi et al.,
2017)

Clustering algorithm CTU-i3 accuracy=
96%

- -

(Mohamed
et al., 2022)

(Random Forest/ De-
cision Tree/ Naive
Bayes) + Spark

BoT-IoT f1 mesure=
97.9% for
binary clas-
sification
and 79%
for multi-
classification

- -

(Liu et al.,
2020)

Deep Random Forest
+ Spark

NSL KDD/
UNSW-
NB15/ CI-
CIDS2017/
CICIDS2018

For NSL
KDD: Ac-
curacy=
99.1%

- 16.1 sec
for NSL
KDD

(Al-Rawi,
2019)

Multi Layer Percep-
tron + Random For-
est + Spark

UNSW-NB15 accuracy=
99.12%

- -

(Kurt and Be-
cerikli, 2018)

(Logistic Regression/
Support Vector Ma-
chine/ Naive Bayes/
Random Forest) +
Spark

KDD accuracy=
99.1%

4.041
hours

0.089
hours

Our solution real time Streaming
data preprocessing +
Real time streaming
data intrusion detec-
tion using spark

NSL KDD accuracy=0.99%32.043 sec 5.76 sec

3 THE PROPOSED SOLUTION

The main idea is to provide a solution that meets the
challenge of Big Data velocity while maintaining a

high detection rate. Most, if not all, state-of-the-
art solutions prepare the data first and then perform
the detection/classification task. This approach takes
twice, i.e. preparation time plus detection time. For

ICAART 2023 - 15th International Conference on Agents and Artificial Intelligence

1006



this motivation, our solution consists of reducing time
by performing both preparation and detection tasks in
parallel and in real time. This means that the data ar-
riving at the system in a continuous stream is prepared
and classified at the same time and in real time. As
shown in Fig.1, our model is composed of two main
components, the first one is responsible of data prepa-
ration and preprocessing in real time, the second one
is responsible of intrusion detection in real time too.
In this section, we give a brief background of the used
concepts and we explain the solution with details .

3.1 Background

1. Big Data: The term big data dates back to 2005,
it is typically defined by three words: volume, ve-
locity and variety (Louati. et al., 2022). However,
some researchers extends those known 3Vs of big
data to 6Vs, namely:
• Volume: Size of the data
• Variety: Diversity of the data
• Velocity: Speed of the data
• Veracity: Uncertainty of the data
• Value : Usefulness of the data
• Variability: the way in with the data are used

and formatted
2. Apache Spark: We used Apache spark (Spark,

2014) which is widely used framework for Big
Data analysis, processing and parallel Machine
Learning. Spark uses in-memory computation
therefore, it executes all programs up to 100 xs
faster in memory, (and 10 xs faster on disk) than
Apache Hadoop.
Apache Spark system provides a high-level APIs
accessible in several programming languages
such as Scala, Java, Python and R and is com-
posed with Spark core and higher level libraries
such as Spark SQL which deals with SQL and
structured data, Spark MLlib which contains a
large set of ML and data mining algorithms,
GraphX which helps with graph processing, and
Spark Streaming for real-time stream processing
. Spark has the ability to process a huge amounts
of data in real time using big data analytic tools
and streaming engine which leads to many ben-
efits that can be exploited in intrusion detection
field.
We tested four Spark MLlib algorithms, namely
Decision Tree, Random Forest, Logistic Regres-
sion and Naive Bayes.

3. Decision Tree: Decision Tree (DT) is a powerful
supervised machine learning algorithm. It con-
sists of dividing the dataset into subsets based on

an attribute value test. Each node in the tree repre-
sents a test on an attribute, each branch represents
the result of the test, and each leaf node repre-
sents a class label. The main advantages of De-
cision tree is that it can handle high dimensional
data and has high accuracy rate.

4. Random Forest: Random Forest (Khan et al.,
2021) consists of a large number of individual de-
cision trees that operate as an ensemble. Each in-
dividual tree in the random forest spits out a class
prediction and the class with the most vote be-
comes the final model’s prediction (Yiu, 2019).

5. Logistic Regression: Logistic regression algo-
rithm gives a relationship between a dependent
and one or more independent variables. It is usu-
ally used to makes predictions for continuous/real
variables also for categorical variables.

6. Naive Bayes: A Naive Bayes (NB) classifier is
a probabilistic machine learning model used for
the classification task and is based on Bayes’ the-
orem.

3.2 The Solution’s Architecture

We created two spark clusters using docker (Docker,
2013) each cluster is built on one or more docker con-
tainers. The use of docker brings many advantages
such as providing isolated environment for the appli-
cations. Thus, they could be deployed anywhere i.e
in the cloud or local machines. Besides, Docker helps
in data processing and analysis by providing packag-
ing and management of dependencies e.g. python’s
libraries.

The first cluster (cluster preprocessor) works as
an agent responsible for preparing and preprocessing
of the incoming data streams in real time to be suit-
able for being fitted in machine learning model. The
preprocessed streams are stored on a shared docker
volume, The second cluster (cluster detector) takes
those streams one by one and performs classifica-
tion in real time. We used the four Spark Mllib al-
gorithms explained in section3.1 i.e, Random Forest,
Naive Bayes, Decision Tree and Logistic Regression
to train the cluster detector and create models. Then,
spark streaming is used for testing.

A comparison of those models is performed in
terms of training time, testing time and performance
metrics.

The application is divided into two phases:
The first phase consists of an offline training.

This means that we train the model with batches (not
streams) of the training dataset. For this purpose, a
spark application was created in cluster preprocessor

An Efficient Real Time Intrusion Detection System for Big Data Environment

1007



Figure 1: The proposed solution.

and ran as batch job. After being prepared, the new
training set is saved in a docker volume. This vol-
ume is shared between the two clusters and could be
accessed by both.

A second spark application was created in clus-
ter detector and ran as batch job too. This clus-
ter trains Random Forest classifier using the prepro-
cessed training set. Once the training is completed,
the cluster detector saves the model in the docker vol-
ume.

In the second phase, an online classification was
performed. We used flow of data arriving in the form
of streams. To simulate real time situation we divided
the testing set into 30 parts where each part presents
collected data flow.

In this phase, the cluster preprocessor performs
data preprocessing and data cleaning to each stream
of data as the same way as performed in the train-
ing phase and saves in the docker volume. At this
time, the cluster detector is listening to the volume
and checking if there are data arrived to be classified.

At this stage, the application uses NSL KDD
dataset as input and reads the data from a local file.
However, in the coming work we aim at improving
the solution to be more real by reading the data from
ingestion tools like Kafka.

The work-flow of the application is as follows:

1. Offline training:
1- Create and run spark application in cluster
preprocessor as a batch job
2- Create and run spark application in cluster
detector as spark job
3- Cluster preprocessor prepares and prepro-
cesses the training dataset

4- Cluster preprocessor saves the preprocessed
dataset in shared docker volume
5- Training cluster detector’s model with pre-
processed train set

2. Online classification:
6- Cluster preprocessor reads streaming data
and preprocess them stream by stream in real
time
7- Each preprocessed stream is saved in the
shared docker volume
8- Cluster detector accesses to the saved
streams and performs detection in real time
9- Output the results

Fig.1 depicts clearly the explained workflow.
To build the system we used docker compose

which helps to create and run multiple related docker
containers. As shown in Fig.2, our docker compose
contains six containers:

• One container for the preprocessor cluster created
from bitnami (Bitnami, 2022) spark image. It is a
single node cluster composed of only the master
i.e. no workers because data preparation does not
need that. The container runs on the port 8888.

• Three containers for the detector cluster created
from bitnami spark image. The cluster is com-
posed of master and two workers and runs on
ports 8080/4040. 1 core and 1G of memory are
assigned to each worker.

Those two containers used the same volume which
is bind mount to local directory. to visualize the re-
sults, we transform it to database to facilitate creating
queries. For this reason we created two other contain-
ers:

ICAART 2023 - 15th International Conference on Agents and Artificial Intelligence

1008



Table 2: Number of samples of each class in the training set
(KDDTrain+).

Class Count
normal 67343
DoS 45927
Probe 11656
R2L 995
U2R 52
Total 125973

Table 3: Number of samples of each class in the testing set
(KDDTest+).

Class Count
normal 9711
DoS 7458
R2L 2754
Probe 2421
U2R 200
Total 22544

• One container for PostgreSQL (Postgres, 2022)
which is a powerful, open source object-relational
database system. The container is created from
postgres image and run on port 5432.

• One container created from Adminer (Adminer,
2022) image which is a full-featured database
management tool written in PHP and is available
for MySQL, PostgreSQL, SQLite, MS SQL, Ora-
cle, Firebird, SimpleDB, Elasticsearch and Mon-
goDB. The container runs on port 8088.
Figure.3 depicts the results of random forest clas-
sifier shown by Adminer

4 EXPERIMENTAL RESULTS

4.1 NSL KDD Dataset

We evaluate the performance of our solution using
NSL KDD dataset (Tavallaee et al., 2009) which is
widely used in intrusion detection researches.

NSL KDD dataset is an improved version of
KDD99 dataset, composed of 42 features. Each sam-
ple of the dataset is labeled as either normal or a spe-
cific kind of networking attacks. All the attacks could
be categorized as one of the main four classes of at-
tacks i.e Denial of Service (DoS), Remote to Local
(R2L), Probe and User to Root (U2R) (Table 2, Table
3)

NSL KDD dataset is provided with two files KD-
DTest+.txt and KDDTrain+.txt.. The first file rep-
resents the test set, as shown in table 3 the dataset
is composed of 22544 samples where 9711 samples

Table 4: Comparison of both training and testing time of
used MLlib algorithms.

Algorithm Training time (s) Testing time (s)
Random Forest 32.0438 5.7666
Decision Tree 38.2766 3.4811
Naive Bayes 1.4716 3.5905

Logistic Regression 6.1271 3.3405

are labeled as normal, 7458 samples are DoS at-
tacks, 2754 samples are R2L attacks, 2421 samples
are Probe attacks and 200 samples are U2R attacks.

The second file represents the train set, as shown
in table 2, the dataset is composed of 125973 samples
where 67343 samples are labeled as normal, 45927
samples are DoS attacks, 11656 samples are R2L at-
tacks, 995 samples are Probe attacks and 52 samples
are U2R attacks.
Hence, the dataset is very large therefore, it well rep-
resents the context of big data.

4.2 Discussion

To evaluate the solution we refer to usable met-
rics namely, accuracy, precision, recall, F1-measure,
true positive rate, false positive rate, log Loss and
hamming loss. All those metrics are measured us-
ing MultiClassificationEvaluator function from pys-
park.ml.evaluator. Table 5 compares the results of the
four used classifiers. As shown in the table, Random
Forest performs the best results. For time, as shown
in Table4, naive bayes gives the best time in training
and Logistic regression in testing. However, Decision
Tree classifier achieves the worst training time. Ran-
dom Forest classifier achieves the worst testing time.

We choose Random Forest classifier in our solu-
tion because although it gives the worst testing time
but it still efficient especially if we focus on the ex-
cellent results in terms of other metrics such as ac-
curacy, precision recall etc. Furthermore, if we com-
pare our results with other state-of-the art solutions,
we can prove that our model outperforms other mod-
els in terms of accuracy and time of both training and
testing as shown in Table1.

5 CONCLUSION

The characteristics of Big data generated in the net-
works such as high volume, high speed have made
attack detection by traditional approaches very diffi-
cult. That is why the invention of new techniques able
to perform big data analysis to make predictions and
classification of large amount of data in real time, a
persistent need. The purpose of this work is to pro-
vide a new solution that improves the efficiency and

An Efficient Real Time Intrusion Detection System for Big Data Environment

1009



Figure 2: Docker containers architecture.

Figure 3: Visualization of classification’s results with Ad-
miner.

the rapidity of intrusion detection in the context of
big data by performing a real time preprocessing and
classification of incoming streams of data.

In summary, the main contributions of this work
are:

• Building an intrusion detection system capable of
dealing with big data streams in near-real time.

• Addressing the challenges of big data environ-
ment namely, velocity and volume by reducing the
detection time.

• Providing a novel approach by executing prepro-
cessing and classification at the same time as par-
allel jobs not in sequential manner as usually done
in previous works. This novel approach improves

well the detection time as shown in Table.4.

• Dealing with big data in a secure way by using the
docker technology.

• Taking advantages from the well-known ML al-
gorithms in the detection task and providing com-
parison between them

Experimental results show that our solution performs
the state-of-the art solution in term of speed (5.76 sec)
and accuracy (0.99%).

In the future, we plan to use real network traffic in-
stead of dataset also we aim at running other efficient
algorithms within Spark that do not exist in Spark’s
MLlib such as algorithms that uses neural networks.

REFERENCES

Adminer (2022). https://hub.docker.com/ /adminer.
Al-Rawi, A. A. (2019). Intrusion detection system using

apache spark analytic system.
Anderson, J. (1980). Computer security threat monitoring

and surveillance. Technical report, James P. Anderson
Company, Fort Washington.

Awan, M. J., Farooq, U., Babar, H. M. A., Yasin, A., Noba-
nee, H., Hussain, M., Hakeem, O., and Zain, A. M.
(2021). Real-time ddos attack detection system using
big data approach. Sustainability, 13(19).

Bagui, S., Jason, S., Russell, P., Bennett, T. A., and Sub-
hash, B. (2021). Classifying unsw-nb15 network traf-
fic in the big data framework using random forest in
spark. International Journal of Big Data Intelligence
and Applications, 2.

ICAART 2023 - 15th International Conference on Agents and Artificial Intelligence

1010



Table 5: Comparison of experimental results of MLlib’s algorithms.

Metric Random Forest Decision Tree Naive Bayes Logistic Regression
F1-mesure 0.99 0.95 0.39 0.95
accuracy 0.99 0.95 0.43 0.95
weightedPrecision 0.99 0.95 0.71 0.95
weightedRecall 0.99 0.95 0.43 0.95
weightedTruePositiveRate 0.99 0.95 0.43 0.95
weightedFalsePositiveRate 0.01 0.03 0.18 0.04
weightedFMeasure 0.99 0.95 0.39 0.95
truePositiveRateByLabel 1.00 0.98 0.16 0.98
falsePositiveRateByLabel 0.01 0.06 0.00 0.07
precisionByLabel 0.99 0.95 1.00 0.93
recallByLabel 1.00 0.98 0.16 0.98
fMeasureByLabel 0.99 0.96 0.28 0.96
logLoss 0.04 0.17 19.29 0.16
hammingLoss 0.01 0.05 0.57 0.05

Bitnami (2022). https://hub.docker.com/r/bitnami/spark.
Docker (2013). https://spark.docker.org/.
Hassan, M. M., Gumaei, A. H., Alsanad, A., Alrubaian, M.,

and Fortino, G. (2020). A hybrid deep learning model
for efficient intrusion detection in big data environ-
ment. Inf. Sci., 513:386–396.

Jemili, F. and Bouras, H. (2021). Intrusion detection based
on big data fuzzy analytics. In Kakulapati, V., editor,
Open Data, chapter 4. IntechOpen, Rijeka.

Khan, M. Y., Qayoom, A., Nizami, M., Siddiqui, M. S.,
Wasi, S., and Syed, K.-U.-R. R. (2021). Automated
prediction of good dictionary examples (gdex): A
comprehensive experiment with distant supervision,
machine learning, and word embedding-based deep
learning techniques. Complexity.

Kurt, E. M. and Becerikli, Y. (2018). Network intrusion de-
tection on apache spark with machine learning algo-
rithms. In Pimenidis, E. and Jayne, C., editors, Engi-
neering Applications of Neural Networks, pages 130–
141, Cham. Springer International Publishing.

Liu, Z., Su, N., Qin, Y., Lu, J., and Li, X. (2020). A deep
random forest model on spark for network intrusion
detection. Mobile Information Systems, 2020:1–16.

Louati, F. and Ktata, F. (2020). A deep learning-based
multi-agent system for intrusion detection. SN Applied
Sciences, 2.

Louati., F., Ktata., F., and Ben Amor., I. (2022). A dis-
tributed intelligent intrusion detection system based
on parallel machine learning and big data analysis.
In Proceedings of the 11th International Conference
on Sensor Networks - SENSORNETS,, pages 152–157.
INSTICC, SciTePress.

Mohamed, A., Mouhammd, A., Mohammad, A., and
Muhannad, M. (2022). An accurate iot intrusion de-
tection framework using apache spark.

Ouhssini, M., Afdel, K., Idhammad, M., and Agherrabi, E.
(2021). Distributed intrusion detection system in the
cloud environment based on apache kafka and apache
spark. In 2021 Fifth International Conference On In-

telligent Computing in Data Sciences (ICDS), pages
1–6.

Postgres (2022). https://hub.docker.com/ /postgres.
Spark (2014). https://spark.apache.org/.
Tavallaee, M., Bagheri, E., Lu, W., and Ghorbani, A. A.

(2009). A detailed analysis of the kdd cup 99 data set.
In 2009 IEEE Symposium on Computational Intelli-
gence for Security and Defense Applications, pages
1–6.

Terzi, D. S., Terzi, R., and Sagiroglu, S. (2017). Big data
analytics for network anomaly detection from netflow
data. In 2017 International Conference on Computer
Science and Engineering (UBMK), pages 592–597.

Vimalkumar, K. and Radhika, N. (2017). A big data
framework for intrusion detection in smart grids us-
ing apache spark. In 2017 International Conference
on Advances in Computing, Communications and In-
formatics (ICACCI), pages 198–204.

Yiu, T. (2019). Understanding random forest.
https://towardsdatascience.com/understanding-
random-forest-58381e0602d2.

An Efficient Real Time Intrusion Detection System for Big Data Environment

1011


