
A Framework for Assessing Decompiler Inference Accuracy of
Source-Level Program Constructs

Jace Kline a and Prasad Kulkarni b

Department of Electical Engineering and Computer Science, University of Kansas, Lawrence, Kansas, U.S.A.

Keywords: Decompilers, Security.

Abstract: Decompilation is the process of reverse engineering a binary program into an equivalent source code repre-
sentation with the objective to recover high-level program constructs such as functions, variables, data types,
and control flow mechanisms. Decompilation is applicable in many contexts, particularly for security ana-
lysts attempting to decipher the construction and behavior of malware samples. However, due to the loss of
information during compilation, this process is naturally speculative and prone to inaccuracy. This inherent
speculation motivates the idea of an evaluation framework for decompilers. In this work, we present a novel
framework to quantitatively evaluate the inference accuracy of decompilers, regarding functions, variables, and
data types. We develop a domain-specific language (DSL) for representing such program information from
any “ground truth” or decompiler source. Using our DSL, we implement a strategy for comparing ground truth
and decompiler representations of the same program. Subsequently, we extract and present insightful metrics
illustrating the accuracy of decompiler inference regarding functions, variables, and data types, over a given
set of benchmark programs. We leverage our framework to assess the correctness of the Ghidra decompiler
when compared to ground truth information scraped from DWARF debugging information. We perform this
assessment over all the GNU Core Utilities (Coreutils) programs and discuss our findings.

1 INTRODUCTION

In an increasingly digital world, cybersecurity has
emerged as a crucial consideration for individuals,
companies, and governments trying to protect their in-
formation, financial assets, and intellectual property.
Of the many digital threats, various forms of malware
continue to pervade the digital landscape. Decompi-
lation, the translation from binary code into an ap-
proximate source-level representation, is a key strat-
egy in attempting to understand the construction and
behavior of malware samples. A decompiler is a pro-
gram that performs decompilation. The decompila-
tion process is inherently speculative and error-prone
since high-level information such as function bound-
aries, variables, data types, and control flow mecha-
nisms are lost during program compilation.

Due to this imprecise nature of decompilation,
a generalized and extensible quantitative evaluation
framework for decompilers is critical. Existing work
(Liu and Wang, 2020) proposes an evaluation tech-

a https://orcid.org/0000-0003-4442-9776
b https://orcid.org/0000-0003-1236-5739

nique to determine whether decompiled programs, af-
ter recompilation, are consistent in behavior to their
original binaries. Another work (Naeem et al., 2007)
proposes a set of metrics for assessing the clarity of
decompiled Java programs with respect to program
size, conditional complexity, identifier complexity,
number of local variables, and expression complex-
ity. These works, although insightful for assessing
decompiler quality, do not measure the recovery ac-
curacy of high-level program constructs such as func-
tions, variables, and data types. The recovery and in-
ference of the these high-level constructs, in conjunc-
tion with clarity and behavioral correctness, is impor-
tant to gain an understanding of decompiled binary
programs.

Targeting the current gap in the literature, this
paper presents a novel framework for quantifying
and assessing the accuracy of decompiler tools with
respect to high-level program constructs, including
functions, variables, and data types. To validate our
concept, we apply our framework to the Ghidra (Na-
tional Security Agency (NSA), 2022) decompiler and
discuss our findings. The primary objectives achieved
by this work are as follows:

228
Kline, J. and Kulkarni, P.
A Framework for Assessing Decompiler Inference Accuracy of Source-Level Program Constructs.
DOI: 10.5220/0011872600003405
In Proceedings of the 9th International Conference on Information Systems Security and Privacy (ICISSP 2023), pages 228-239
ISBN: 978-989-758-624-8; ISSN: 2184-4356
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)



1. We define a domain-specific language (DSL),
written in Python, for expressing high-level pro-
gram information including functions, variables,
and data types. This serves as a medium whereby
we can translate program information extracted
from a decompiler or a ground-truth source.

2. We employ our DSL to compare program repre-
sentations from different sources. The primary
use case is to compare ground-truth program in-
formation to that inferred by decompilers.

3. Leveraging the comparison logic in (2), we define
a set of quantitative metrics to measure the accu-
racy of function, variable, and data type inference.

4. We develop a translation module in Python that
uses DWARF debugging information from a bi-
nary program to generate a ground-truth program
information representation in our DSL.

5. We utilize the Ghidra Python API to implement a
translation module from Ghidra’s decompilation
of a binary program to program information rep-
resentation in our DSL.

6. Using our developed language, metrics, and trans-
lation modules, we quantitatively assess the accu-
racy of the Ghidra decompiler when compared to
ground truth program information obtained from
DWARF debugging information. We perform this
analysis using the set of GNU Coreutils programs
as benchmarks. We present the evaluation results
and discuss additional findings and takeaways.

The remainder of this paper is outlined as follows: In
Sections 2 and 3, we discuss background concepts and
related research, respectively. Next, in Section 4, we
detail our methodology for developing our evaluation
framework. In Section 5, we present and discuss the
results of applying our evaluation framework to the
Ghidra decompiler. We conclude in Section 6 with a
summary of our results and future research directions.

2 BACKGROUND

DWARF (DWARF Standards Committee, 2022) is a
debugging file format used by many compilers and
debuggers to support source-level debugging for com-
piled binary programs. When specified flags (usually
‘-g’) are present at compilation, DWARF-supporting
compilers such as GCC and Clang will augment the
outputted binary program or object file with DWARF
debugging information. A resulting binary executable
can then be loaded into a DWARF-supporting de-
bugger such as GDB to debug the target binary pro-
gram with references to line numbers, functions, vari-
ables, and types in the source-level program. The

DWARF standard is source language agnostic, but
generally supports equivalent representations for con-
structs present in common procedural languages such
as C, C++, and Fortran. In addition, DWARF is de-
coupled from any architecture or operating system.
The generalizability of DWARF debugging informa-
tion makes it a prime candidate for extracting “ground
truth” information about a particular binary program,
regardless of the specifics of the source language, ar-
chitecture, or operating system. DWARF is leveraged
in this work to obtain ground truth information about
target binary programs.

Ghidra (National Security Agency (NSA), 2022),
created and maintained by the National Security
Agency (NSA) Research Directorate, is an extensible
software reverse engineering framework that features
a disassembler, decompiler, and an integrated script-
ing environment in both Python and Java. We use the
Ghidra decompiler in this work to demonstrate our
decompiler evaluation framework.

3 RELATED WORK

In a 2020 paper (Liu and Wang, 2020), the authors
present an approach to determine the correctness of
decompilers outputting C source code. They aim
to find decompilation errors, recompilation errors,
and behavior discrepancies exhibited by decompil-
ers. To evaluate behavioral correctness, they attempt
to recompile decompiled binaries (after potential syn-
tax modifications) and use existing dynamic analysis
techniques such as fuzzing to find differences in be-
havior between the recompiled and original programs.
The objective of our work differs as we aim to evalu-
ate decompiler inference of high-level structures such
as functions, variables, and data types.

A 2006 technical report (Naeem et al., 2007) pro-
poses a set of metrics for assessing the “cognitive ex-
pressibility” (clarity) of decompiled Java code. This
is achieved through metrics that capture program size,
conditional complexity, identifier complexity, number
of local variables, and expression complexity. Despite
the importance of these aspects in assessing the qual-
ity of a decompiler, this approach does not consider
the “correctness” - either behavioral or structural - of
the decompiled code. In addition, this work only tar-
gets decompiled Java programs.

Several existing works propose methodologies
and frameworks targeting high-level variable and type
inference from binary programs (Balakrishnan and
Reps, 2007; Lee et al., 2011; Caballero et al., 2012;
Lin et al., 2010; ElWazeer et al., 2013; Noonan et al.,
2016). Many of these works contain an evaluation

A Framework for Assessing Decompiler Inference Accuracy of Source-Level Program Constructs

229



of their inference accuracy; however, none of these
works demonstrate evaluation metrics that express a
unified assessment of function, variable, and data type
recovery.

4 METHODOLOGY

In this section, we discuss the philosophy, design, and
construction of our decompiler evaluation framework.

4.1 Domain-Specific Language (DSL)
for Program Information

We develop a domain-specific language (DSL) in
Python to represent program information such as
functions, variables, data types, and addresses, as well
as the relationships between them. This DSL acts
as a bridge linking binary-level information with the
source-level structures such as functions, variables,
and data types. Our DSL is decoupled from the source
of the program information. Any ground truth or de-
compiler source of program information can be trans-
lated into a ProgramInfo construct in this common
language (see Figure 1) and subsequently analyzed or
compared with another source of program informa-
tion.

Binary Program

DSL ProgramInfo

DWARF

extract decompile

Ghidra IDA Pro JEB3

Figure 1: DSL ProgramInfo extraction from multiple poten-
tial sources (National Security Agency (NSA), 2022; Hex-
Rays, 2022; PNF Software, 2022).

4.2 Capturing Ground Truth Program
Information

With our DSL defined, we need a reliable method to
extract “ground truth” information from a program
and translate this information into our DSL. This
ground truth information is intended to be used in a
comparison with the program information obtained
from a decompiler. Our framework is meant for eval-
uation and therefore we assume that we have access to

the source code of benchmark programs used during
evaluation.

Our approach to extracting ground truth program
information involves leveraging debugging informa-
tion optionally included in the binary by the com-
piler. The primary purpose of debugging information
is to link binary-level instructions and addresses with
source-level structures. We choose the DWARF de-
bugging standard as the assumed debugging format
for our framework; however, defining a translation
module from another debugging format into our DSL
is certainly possible. The DWARF debugging stan-
dard is supported by nearly all major Linux compilers
and may be extended to support any source-level pro-
gramming language. These properties of the DWARF
standard allow it to be used as a “ground truth” source
of program information, decoupled from the source
language or the compiler.

To capture DWARF information from a given
source program, we first compile the source pro-
gram with the option to include debugging symbols.
After we compile the program, we then extract the
DWARF debugging information from the resulting bi-
nary. We utilize the pyelftools Python library (Ben-
dersky, 2022) to perform this extraction. The extrac-
tion results in, among other information, a set of de-
bugging information entries (DIEs). Together, these
DIE records provide a description of source-level en-
tities such as functions, variables, and data types in
relation to low-level binary information such as pro-
gram counter (PC) addresses and storage locations.
Using this parsed DWARF information, we define a
module that translates the DIEs into the equivalent
constructs in our DSL.

4.3 Capturing Decompiler (Ghidra)
Output Information

In addition to capturing a ground-truth program rep-
resentation in our DSL, we must construct a DSL rep-
resentation of the program information obtained from
a decompiler we wish to evaluate. Depending on the
decompiler and the structure of its output, this pro-
cess may take many forms, often involving querying
APIs exposed by the decompiler framework. In all
cases however, this shall involve defining a translation
module from the decompiler output to the constructs
defined in the DSL.

For our analysis of the Ghidra decompiler, we
utilize the Ghidra scripting API to programmatically
scrape and process information about the decompila-
tion of target binary programs. The Ghidra scripting
environment exposes its own collection of data struc-
tures and functions from which we obtain our infor-

ICISSP 2023 - 9th International Conference on Information Systems Security and Privacy

230



mation.
The strategy employed for the Ghidra translation

is similar to that of our DWARF translation algorithm.
We utilize the Ghidra API to obtain particular infor-
mation about functions, variables, data types, and as-
sociated addresses gathered during the decompilation,
and subsequently translate this information into the
structure of our DSL. Of particular use to our trans-
lation logic is the DecompInterface interface exposed
by the Ghidra API.

4.4 Comparison of Ground Truth and
Decompiler Program Information

With the ability to convert ground truth and decom-
piler (Ghidra) program information into our DSL, we
formulate and implement a strategy to compare the
two resulting ProgramInfo objects. To achieve this,
we create an extension of our DSL that defines data
structures and functions for capturing comparison in-
formation at different levels.

4.4.1 Data Type Comparison

Given two DataType objects and an offset between
their start locations, we capture nuanced information
about the comparison of the data types.

Definitions. We define the metatype of a data type
to be the general “class” of the given data type.
These metatypes include INT, FLOAT, POINTER,
ARRAY, STRUCT, UNION, UNDEFINED, VOID,
and FUNCTION PROTOTYPE. We consider INT,
FLOAT, POINTER, UNDEFINED, and VOID to be
primitive metatypes since they cannot be decomposed
further. ARRAY, STRUCT, and UNION are consid-
ered complex metatypes since these types are formed
via the composition or aggregation of different mem-
bers or subtypes. We consider the ’char’ data type to
be of the INT metatype with size equal to one byte.

Figure 2: The ARTISTE type lattice (Caballero et al., 2012;
Caballero and Lin, 2016).

A primitive type lattice (Caballero and Lin, 2016)
is used to hierarchically relate primitive data types

based on their metatype, size, and signedness (if ap-
plicable). More general types are located higher in
the lattice while more specific types are located closer
to the leaves. A type lattice may be used to deter-
mine whether two primitive data types are equiva-
lent or share a common parent type. Our framework
leverages a modified version of the ARTISTE primi-
tive type lattice defined in Caballero et. al (Caballero
et al., 2012) and shown in Figure 2.

We next define a subset relationship between two
data types. For a given complex data type X and an-
other data type Y with a given offset (possibly 0) be-
tween the location of X and Y in memory, Y is con-
sidered a subset type of X if Y is equivalent to a “por-
tion” of X, consistent with the offset between X and Y.
For example, if X is an array, any sub-array or element
of X such that elements are aligned and the element
types are equivalent to X is considered a subset of X.
If X is a struct or union, any sub-struct or member
with proper alignment and equal constituent elements
is considered a subset of X.

Comparison Logic. Suppose we have two
DataType objects X (ground truth) and Y (decom-
piler) with offset k from the start of X to the start of
Y. The goal is to compute the data type comparison
level for the given comparison. The possible values
for the comparison level are as follows, from lowest
equality to highest equality:

• NO MATCH: No relationship could be found be-
tween X and Y.

• SUBSET: Y is a subset type of complex type X.
• PRIMITIVE COMMON ANCESTOR: In the

primitive type lattice, Y is an ancestor of X. This
indicates that the inferred type Y is a conservative
(more general) form of the ground truth type X.

• MATCH: All properties of X and Y match includ-
ing metatype, size, and possibly subtypes (appli-
cable to pointers, arrays, structs, and unions).

We first check the equality of X and Y. If X and Y are
equal, we assign the MATCH comparison code. In the
case that X and Y are both primitive types, we attempt
to compute their shared ancestor in the primitive type
lattice. If Y is an ancestor (more general form) of
X, we assign PRIMITIVE COMMON ANCESTOR. If
X is a complex type, we employ an algorithm to de-
termine whether Y is a subset of X at offset k by
recursively descending into constituent portions of
X starting at offset k (sub-structs, sub-arrays, ele-
ments, members) and checking for equality with Y.
If a subset relationship is found, we assign the SUB-
SET compare level. In all other cases, we assign the
NO MATCH compare level.

A Framework for Assessing Decompiler Inference Accuracy of Source-Level Program Constructs

231



4.4.2 Variable (Varnode) Comparison

There are two main contexts where variable compari-
son occurs. The first context is at the top level, where
the set of ground-truth global variables is compared
to the set of decompiler global variables. The second
context for variable comparison is within the context
of a function when we compare local variables be-
tween the ground-truth and the decompiler. In either
case, comparing sets of variables starts with the de-
composition of each Variable object from the DSL
into a set of Varnode objects in our extended DSL.

A Varnode ties a Variable to a specific storage lo-
cation and the range of PC addresses. The varnodes
for a given variable are directly computed from the
variable’s live ranges discussed previously. In unop-
timized binaries, it is the case that a single Variable
shall decompose into a single Varnode.

With each variable decomposed into its associ-
ated varnodes, we next partition the varnodes from the
ground-truth information and the decompiler based
on the “address space” in which they reside. These
address spaces include the absolute address space, the
stack address space, and the register offset address
space (for a given register). The stack address space
is a special case of the register offset address space
where the offset register is the base pointer which
points to the base of the current stack frame.

For the set of varnodes in each address space, we
first order them based on their offset within the ad-
dress space. Next, we attempt to find overlaps be-
tween varnodes from the two sources based on their
location and size. If an overlap occurs between two
varnodes, we compute a data type comparison tak-
ing into account the offset between the start locations
of the two varnodes. The data type comparison ap-
proach is described in the previous section. Based
on the overlap status and data type comparison of a
ground-truth varnode X, one of the following varn-
ode comparison levels are assigned (see Figure 3):

• NO MATCH: X is not overlapped with any varn-
odes from the other source.

• OVERLAP: X overlaps with one or more varnodes
from the other space, but the data type compar-
isons are level NO MATCH.

• SUBSET: X overlaps with one or more varn-
odes and each of its compared varnodes has data
type comparison level equal to SUBSET. In other
words, the compared varnode(s) make up a por-
tion of X.

• ALIGNED: For some varnode Y from the other
source, X and Y share the same location and size
in memory; however, the data types of X and Y do

not match. The data types comparison could have
any comparison level less than MATCH.

• MATCH: For some varnode Y from the other
source, X and Y share the same location and size
in memory, and their data types match exactly.

Figure 3: The derivation of varnode comparison level from
varnode recovery status and data type comparison.

The inference of variables with complex data types in-
cluding structs, arrays, and unions proves to be a ma-
jor challenge for decompilers. Recognizing this, we
develop an approach to compare the sets of ground
truth and decompiler variables (varnodes) in their
most “decomposed” forms. An analysis of this sort
helps to recognize how well a decompiler infers the
primitive constituent components of complex vari-
ables. Furthermore, this allows us to recognize the
aggressiveness and accuracy of complex variable syn-
thesis from more primitive components.

Our approach to recursively decompose complex
types into their primitive components is illustrated in
Figure 4. We first implement an approach to recur-
sively strip away the “complex layers” of a varnode
to its most primitive decomposition. This primitive
decomposition produces a set of one or more primi-
tive varnodes as they would appear in memory. For
example, an array of elements is broken down into
a set of its elements (decomposed recursively). A
struct is broken down into a set of varnodes associated
with each of its members (decomposed recursively).
Unions present a special case since the members share
a common, overlapping region of memory. Hence, to
decompose a union, we transform it into an UNDE-
FINED primitive type with the same size as the union.

We apply this primitive decomposition to each
varnode in the sets of ground truth and decompiler
varnodes. With the two sets of decomposed varnodes,
we leverage the same variable comparison approach
described previously to compare the varnodes in these
sets. The resulting comparison information is treated
as a separate analysis from the unaltered varnode sets.

ICISSP 2023 - 9th International Conference on Information Systems Security and Privacy

232



typedef struct {
int day;
int month;
int year;

} Date;

typedef struct {
char* name;
int ssn;
float height;
float weight;
Date dob;

} Person;

Person people[2];

(a) The definition of a high-
level variable.

(b) The decomposition of a high-level varnode into primitive components.

Figure 4: An example of the recursive decomposition of a high-level varnode.

4.4.3 Function Comparison

The first step in function comparison is to deter-
mine whether each ground-truth function is found by
the decompiler. We first order the functions from
each source by the start PC address of the function.
Next, we attempt to match the functions from the two
sources based on start address. Any functions from
the ground-truth that are not matched by a decompiler
function are considered “missed”. For any missed
functions, we consider its associated parameters, lo-
cal variables, and data types to also be “missed”.

For each matched function based on start PC ad-
dress, we compute and store information including
the return type, parameter, and local variable com-
parisons. These sub-comparisons leverage the data
type and variable (varnode) comparison techniques
described previously.

5 EVALUATION

To demonstrate our evaluation framework, we target
the Ghidra decompiler (version 10.2). We use all
105 GNU Core Utilities programs (version 9.1) as our
set of benchmarks. For each of the benchmark pro-
grams, we evaluate the accuracy of Ghidra decom-
pilation with the program compiled in three ways:
(1) stripped, (2) standard (not stripped, no debugging
symbols), and (3) DWARF debug symbols included.
We use the results from each of these cases to discern
how the amount of information included in the binary
affects the Ghidra decompiler’s inference accuracy.
To limit the scope of our analysis, we only consider

unoptimized binaries. We use the GCC compiler (ver-
sion 11.1.0) to compile the benchmark programs. The
architecture and operating system of the testing ma-
chine are x86-64 and Ubuntu Linux (version 20.04),
respectively. Figure 5 illustrates our process for gath-
ering evaluation metrics on an individual benchmark
program under each of the compilation conditions.

Figure 5: The process used to gather evaluation metrics on
the Ghidra decompiler for a given benchmark program.

5.1 Function Recovery

Table 1 summarizes of the function recovery statistics
accumulated over all benchmark programs. We find
that over the 18139 functions present in the ground
truth, the stripped and standard compilation cases pro-
duce 100% function recovery while the debug case

A Framework for Assessing Decompiler Inference Accuracy of Source-Level Program Constructs

233



fails to recover four functions, resulting in a 99.9%
recovery rate. Upon further examination, we find that
all four functions missed are from the factor program.

Table 1: Function recovery by compilation case.

Ground
truth

Functions
found

Functions
missed

Recovery
fraction

strip 18139 18139 0 1.0000
standard 18139 18139 0 1.0000
debug 18139 18135 4 0.9998

To determine the cause of the missed functions,
we further investigate the Ghidra decompilation of
factor and find that each of the missed functions re-
sults in a decompilation error, “Low-level Error: Un-
supported data-type for ResolveUnion”. This indi-
cates that an error occurred when attempting to re-
solve a union data type within the decompilation of
these functions. Since this error only occurs in the de-
bug compilation case, it is clear that Ghidra’s parsing
and interpretation of DWARF information contributes
to this error. This same union data type causing the
error is successfully captured and represented in our
ground truth program information and, thus, this is
likely a bug within Ghidra’s resolution logic.

5.2 High-Level Variable Recovery

To evaluate the variable (varnode) recovery accuracy
of the Ghidra decompiler, we first measure the in-
ference performance of high-level varnodes, includ-
ing varnodes with complex and aggregate types such
as arrays, structs, and unions. We further measure
the varnode inference accuracy by metatype to deci-
pher which of the metatypes are most and least ac-
curately inferred by the decompiler. This analysis
is performed under each compilation configuration
(stripped, standard, and debug).

In all our varnode evaluation tables, the Varnode
comparison score metric is defined as follows: For
each varnode comparison level, we first linearly as-
sign an integer representing the strength of the varn-
ode comparison (NO MATCH = 0, OVERLAP = 1,
SUBSET = 2, ALIGNED = 3, MATCH = 4). We then
normalize these scores to fall within the range zero to
one. Then, for each ground truth varnode, we com-
pute this normalized score. We take the average score
over all ground truth varnodes to obtain the resulting
metric. This metric approximates how well, on aver-
age, the decompiler infers the ground truth varnodes.

In Table 2, we show the high-level varnode recov-
ery metrics for each of the compilation conditions, ag-
gregated from each of the benchmark programs. We
find that Ghidra at least partially infers 97.2%, 99.3%,

and 99.6% and precisely infers 36.1%, 38.6%, and
99.7% of high-level varnodes for each of the stripped,
standard, and debug compilation cases, respectively.
In addition, the varnode comparison scores for each
compilation case are 0.788, 0.816, and 0.998, respec-
tively. These metrics indicate that the standard com-
pilation case slightly outperforms the stripped case
in varnode inference while the debug compilation
case results in significant improvements over both the
stripped and standard cases, particularly in exact varn-
ode recovery.

In Table 3, we show the inference performance
of high-level varnodes broken down by the metatype
for each compilation configuration. From the stripped
and standard compilation cases, we observe that varn-
odes with metatype INT are most accurately recov-
ered when considering varnode comparison score,
fraction partially recovered, and fraction exactly re-
covered. In the stripped case, the inference of AR-
RAY varnodes shows the worst performance with a
varnode comparison score of 0.315. In the standard
case, varnodes with metatype STRUCT are least ac-
curately recovered with a varnode comparison score
of 0.560, followed closely by ARRAY and UNION.
We see that, for both the stripped and standard compi-
lation cases, the complex (aggregate) metatypes, AR-
RAY, STRUCT, and UNION, show the lowest recovery
accuracy with respect to varnode comparison score.
Among the primitive metatypes, FLOAT shows the
worst recovery metrics for these two cases.

The debug compilation case demonstrates high
relative recovery accuracy across varnodes of all
metatypes when compared to the stripped and stan-
dard cases. Of the primitive metatypes, varnodes of
the FLOAT metatype are perfectly recovered while
varnodes of the INT and POINTER metatypes show
exact recovery percentages of 99.8% and 99.9%, re-
spectively. The complex (aggregate) metatypes, on
average, display slightly lower recovery metrics than
primitive metatypes in the debug compilation case.
The ARRAY metatype reveals the worst varnode com-
parison score at 0.986. The UNION metatype demon-
strates the lowest exact match percentage at 87.5%.

5.3 Decomposed Variable Recovery

In this section, we repeat a similar varnode recovery
analysis over all varnodes; however, we first recur-
sively decompose each varnode into a set of primitive
varnodes (see Section 4). We perform this analysis
over all benchmarks for all three compilation cases.

Similar to the high-level varnode analysis, we
show the inference of the decomposed varnodes for
each benchmark and for each compilation configu-

ICISSP 2023 - 9th International Conference on Information Systems Security and Privacy

234



Table 2: A summary of high-level varnode recovery by compilation case.

@Level
NO MATCH

@Level
OVER-
LAP

@Level
SUBSET

@Level
ALIGNED

@Level
MATCH

Compare
score

Partial
recovery
fraction

Exact
recovery
fraction

strip 1000 1662 1001 18570 12550 0.788 0.971 0.361
standard 249 1450 613 19029 13442 0.816 0.993 0.386
debug 23 52 24 7 34677 0.998 0.999 0.997

Table 3: A summary of high-level varnode recovery by compilation case and metatype.

@level
NO-
MATCH

@level
OVER-
LAP

@level
SUB-
SET

@level
ALIG-
NED

@level
MATCH

Compare
score

Partial
recovery
fraction

Exact
recovery
fraction

strip

INT 66 48 0 12204 8681 0.850 0.997 0.413
FLOAT 0 56 0 113 22 0.632 1.000 0.115
POINTER 53 4 0 5834 3513 0.839 0.994 0.374
ARRAY 729 597 565 19 228 0.315 0.659 0.107
STRUCT 152 955 432 390 106 0.419 0.925 0.052
UNION 0 2 4 10 0 0.625 1.000 0.000

standard

INT 23 48 0 12248 8680 0.851 0.999 0.413
FLOAT 0 56 0 113 22 0.632 1.000 0.115
POINTER 44 4 0 5836 3520 0.840 0.995 0.374
ARRAY 181 578 352 45 982 0.625 0.915 0.459
STRUCT 1 762 257 777 238 0.560 1.000 0.117
UNION 0 2 4 10 0 0.625 1.000 0.000

debug

INT 13 27 0 4 20955 0.998 0.999 0.998
FLOAT 0 0 0 0 191 1.000 1.000 1.000
POINTER 3 0 0 1 9400 1.000 1.000 1.000
ARRAY 5 17 24 0 2092 0.986 0.998 0.978
STRUCT 2 8 0 0 2025 0.996 0.999 0.995
UNION 0 0 0 2 14 0.969 1.000 0.875

Table 4: A summary of decomposed varnode recovery by compilation case.

@Level
NO MATCH

@Level
OVER-
LAP

@Level
SUBSET

@Level
ALIGNED

@Level
MATCH

Compare
score

Partial
recovery
fraction

Exact
recovery
fraction

strip 139776 31280 0 231267 131593 0.586 0.738 0.246
standard 40187 56605 0 303527 133597 0.703 0.925 0.250
debug 10547 128 0 5 523236 0.980 0.980 0.980

ration in Table 4. Naturally, we expect to see lower
recovery metrics compared to the high-level varnode
analysis since each complex varnode is now analyzed
as a set of its constituent parts. Hence, as a sin-
gle “missed” high-level varnode is translated into a
set of primitive varnodes, each of its constituent is
“missed” in this analysis. As a result, all our scor-
ing metrics, including the varnode comparison score,
varnodes fraction partially recovered, and varnodes
fraction exactly recovered show lower values than in
the high-level analysis. We see that the decomposed

varnode comparison scores for the strip, standard, and
debug compilation cases are 0.586, 0.703, and 0.980,
respectively. The varnodes fraction partially recov-
ered are 73.8%, 92.5%, and 98.0% while the varn-
odes fraction exactly recovered are 24.7%, 25.0%,
and 98.0% across the compilation cases, respectively.
Interestingly, in the stripped compilation case, we find
that the number of “missed” decomposed varnodes
(139937) exceeds the number of “exactly matched”
decomposed varnodes (131719). This is largely due
to the quantity of high-level ARRAY and STRUCT

A Framework for Assessing Decompiler Inference Accuracy of Source-Level Program Constructs

235



varnodes that are missed in the stripped case.
We partition the decomposed varnodes by

metatype and show these results in Table 5. The ta-
ble shows that the stripped and standard compilation
cases demostrate the poorest inference performance
in terms of varnode comparison score for varnodes of
metatype FLOAT. However, we find that the percent-
age of “missed” INT varnodes is worse than that of
FLOAT in the standard and debug compilation cases,
and is nearly the same in the stripped case. This may
be explained by the prevalence of integer (or charac-
ter) arrays in the Coreutils benchmark programs when
compared to other array types. Recovery accuracy
of the POINTER metatype is comparable to the INT
metatype across the three compilation cases.

5.4 Data Bytes Recovery

Following from our varnode inference analysis, we
next assess the accuracy of the Ghidra decompiler
with regards to the total number of data bytes re-
covered across all varnodes. This analysis provides
an important perspective on data recovery as we can
now correctly account for the size of an improperly in-
ferred varnode. For example, a large array and a sin-
gle character are each represented by a varnode, but
the quantity of data present in the array is often much
greater than that of a character. Hence, it is important
to capture this nuanced view of data recovery.

In Table 6, we show the aggregated data bytes re-
covery metrics across the benchmarks for each com-
pilation case. We see that Ghidra recovers 61.3%,
80.6%, and 99.5% of data bytes in the stripped, stan-
dard, and debug compilation cases, respectively.

5.5 Array Inference Accuracy

The last major analysis we perform targets the array
inference accuracy of the Ghidra decompiler. We aim
to measure the total number of arrays inferred, the
length and size discrepancies, and the similarity of el-
ement types of compared arrays. The descriptions of
the metrics are as follows:

• Ground truth varnodes (metatype=ARRAY): The
number of ground truth varnodes with metatype
of ARRAY.

• Array comparisons: The number of array com-
parisons made when comparing the ground truth
with the decompiler. The decompiler may infer
0 or more array varnodes for each given ground
truth array varnode.

• Array varnodes inferred as array: This measures
how many ground truth array varnodes are com-

pared to at least one decompiler-inferred array
varnode.

• Array varnodes inferred as array fraction: Equiv-
alent to Array varnodes inferred as array divided
by Ground truth varnodes (metatype=ARRAY).
This expresses the fraction of ground truth array
varnodes that are associated with at least one de-
compiler array inference.

• Array length (elements) average error: For each
array comparison, we find the absolute difference
in the number of elements inferred by the decom-
piler as compared to the ground truth. We then
average these differences over all array compar-
isons to arrive at this metric.

• Array length (elements) average error ratio: For
each array comparison, we first find the absolute
difference in the number of elements inferred by
the decompiler as compared to the ground truth.
We then divide this error by the length of the
ground truth array to get the error as a ratio of
the array size. The average of these ratios over all
array comparisons produces this metric.

• Array size (bytes) average error: This metric is
similar to Array length (elements) average error
but measures the error in bytes instead of number
of elements.

• Array size (bytes) average error ratio: This metric
is similar to Array length (elements) average error
ratio but computes the error in bytes instead of
array elements.

• Array dimension match score: This metric is the
number of array comparisons where the decom-
piler inferred the correct number of dimensions
divided by the total number of array comparisons.

• Array average element type comparison score:
Each data type comparison level is first mapped
to an integer as follows: NO MATCH = 0, SUB-
SET = 1, PRIMITIVE COMMON ANCESTOR =
2, MATCH = 3. We then normalize these values
such that the range is scaled from 0 to 1. We refer
to this as the data type comparison score. Then,
for each array comparison, we compute the data
type comparison score and subsequently average
the scores across all array comparisons to gener-
ate this metric.

We perform our analysis across all our benchmarks
and for each compilation configuration, resulting in
the data presented in Table 7.

Across all benchmarks, there are 2138 ground
truth arrays present. For each of the stripped, stan-
dard, and debug compilation cases, the number of

ICISSP 2023 - 9th International Conference on Information Systems Security and Privacy

236



Table 5: A summary of decomposed varnode recovery by compilation case and primitive metatype.

@level
NO-
MATCH

@level
OVER-
LAP

@level
SUB-
SET

@level
ALIG-
NED

@level
MATCH

Compare
score

Partial
recovery
fraction

Exact
recovery
fraction

strip
INT 132910 28812 0 217923 125159 0.586 0.737 0.248
FLOAT 72 73 0 103 22 0.435 0.733 0.081
POINTER 6725 2057 0 13208 6332 0.591 0.763 0.224

standard
INT 40017 46846 0 290436 127505 0.707 0.921 0.253
FLOAT 0 145 0 103 22 0.502 1.000 0.081
POINTER 132 9245 0 12955 5990 0.636 0.995 0.211

debug
INT 10533 124 0 4 494143 0.979 0.979 0.979
FLOAT 0 0 0 0 270 1.000 1.000 1.000
POINTER 14 2 0 1 28305 0.999 1.000 0.999

Table 6: A summary of data bytes recovery.

Ground
truth

Bytes
found

Bytes
missed

Recovery
fraction

strip 1183691 725144 458547 0.613
standard 1183691 954105 229586 0.806
debug 1183691 1177221 6470 0.995

ground truth arrays recognized as arrays by the de-
compiler are 774 (36.2%), 1530 (71.6%), and 2128
(99.5%), respectively. We see that the numbers of ar-
ray comparisons for each compilation case are greater
than these metrics indicating that Ghidra infers some
ground truth arrays to be more than one array.

From the array comparisons, we observe that the
average absolute differential in array length (num-
ber of elements) for the stripped, standard, and de-
bug compilation cases are 134.7, 151.2, and 9.4, re-
spectively. When scaling these errors with respect
to the length of the ground truth arrays in the com-
parisons, the error ratios are 2.84, 5.44, and 0.11
for the compilation cases, respectively. This reveals
that, in the debug case for example, the lengths of
decompiler-inferred arrays are off by an average of
9.4 elements and roughly 11% (greater or less than) of
the size of the ground truth arrays they are compared
to. These metrics, however, fail to capture whether
the decompiler-inferred array has element types of the
correct length. Thus, a similar analysis on the size
(number of bytes) errors yields errors and error ra-
tios of 458.6 (0.91), 239 (0.47), and 9.41 (0.11) for
each compilation case, respectively. This, for exam-
ple, shows that arrays inferred in the standard compi-
lation case have an average absolute byte differential
of 239 and a relative error of 47% compared to the
size of the ground truth array they are compared to.

In this analysis, we also capture a measure of
the array dimension match score for each compila-
tion case. This metric measures the fraction of ar-
ray comparisons where the decompiler-inferred ar-

ray has the same dimensionality (one-dimensional,
two-dimensional, etc.) as the ground truth array.
The stripped and standard compilation cases display
dimensionality match ratios of greater than 97.4%,
while the debug case shows 100% dimensionality in-
ference accuracy.

The last portion of our array recovery analysis fo-
cuses on the element type inference accuracy of the
decompiler-inferred arrays when compared to the el-
ement types of the ground truth arrays. We compute a
data type comparison score between the element types
from each array comparison and average these across
all array comparisons derived from our benchmark
programs. This data type comparison score is sim-
ilar in concept to the varnode comparison score and
is described in Section 4. We find that decompiler-
inferred arrays in the stripped, standard, and debug
compilation cases show 0.781, 0.670, and 0.999 av-
erage element type comparison scores, respectively.
The better performance demonstrated in the stripped
case compared to the standard case appears to be a
data artifact resulting from fewer array comparisons
present in the stripped analysis.

5.6 Debug Compilation Case Discussion

Upon examination of our results, the reader may won-
der why the debug compilation case does not produce
100% recovery for varnodes and data bytes across all
benchmarks. The same DWARF information used to
generate the ground truth program information is also
provided to the Ghidra decompiler in this case and
therefore, theoretically, Ghidra should be able to pre-
cisely capture the same program information.

We explore the causes of misses and partial misses
in the debug case across the benchmark programs and
find that Ghidra possesses a major limitation in ex-
pressing local variables declared in lexical scopes be-
low the top level of a function. A compiler such

A Framework for Assessing Decompiler Inference Accuracy of Source-Level Program Constructs

237



Table 7: A summary of array recovery by compilation case.

Ground
truth
array
varn-
odes

Array
com-
par-
isons

Array
varn-
odes
in-
ferred
as
array

Array
varn-
odes
in-
ferred
as
array
frac-
tion

Array
length
(ele-
ments)
aver-
age
error

Array
length
(ele-
ments)
aver-
age
error
ratio

Array
size
(bytes)
aver-
age
error

Array
size
(bytes)
aver-
age
error
ratio

Array
dimen-
sion
match
score

Array
aver-
age
ele-
ment
type
com-
par-
ison
score

strip 2138 823 774 0.362 134.695 2.845 458.575 0.912 0.979 0.781
standard 2138 1579 1530 0.716 151.156 5.442 239.023 0.475 0.975 0.670
debug 2138 2226 2128 0.995 9.416 0.110 9.416 0.110 1.000 1.000

as GCC may reuse stack address space for variables
associated with disjoint (non-overlapping and non-
nested) lexical scopes. This is a problem for the
Ghidra decompiler as we observe that all variable
declarations are placed at the top level of the func-
tion, ultimately preventing these scope-specific vari-
ables from being precisely captured. From our man-
ual analysis of the decompiled benchmark programs,
we find that this is the cause of the majority of par-
tially missed variables and data bytes in the debug
compilation case. This limitation affects the stripped
and standard compilation cases as well. We consider
this to be a shortcoming and an area of future im-
provement for the Ghidra decompiler.

6 CONCLUSION

In this work, we develop a novel framework for eval-
uating decompiler tools based on the recovery ac-
curacy of high-level program constructs, including
functions, variables, and data types. This framework
includes a domain-specific language (DSL), devel-
oped in Python, to represent and compare sources of
high-level program information and their association
with binary-level information. In addition, we devise
quantitative metrics for expressing the recovery accu-
racy of high-level program constructs. We leverage
our framework to perform an in-depth evaluation of
the Ghidra decompiler with respect to high-level func-
tion, variable, and data type recovery. This evaluation
is performed over the GNU Core Utilities programs
under three compilation conditions. We also discover
and discuss the implications of two key issues present
in the Ghidra decompiler.

In future work, we will extend our framework to
support the evaluation of optimized binary programs.
We also plan to develop techniques to evaluate be-

havioral correctness and overall clarity of decompiler
output (Liu and Wang, 2020; Naeem et al., 2007). Fi-
nally, we will use our framework to analyze and com-
pare other decompilers.

REFERENCES

Balakrishnan, G. and Reps, T. (2007). Divine: Discovering
variables in executables. In Proceedings of the 8th In-
ternational Conference on Verification, Model Check-
ing, and Abstract Interpretation, VMCAI’07, pages
1–28, Berlin, Heidelberg. Springer-Verlag.

Bendersky, E. (2022). pyelftools.
Caballero, J., Grieco, G., Marron, M., Lin, Z., and Urbina,

D. I. (2012). Artiste: Automatic generation of hybrid
data structure signatures from binary code executions.

Caballero, J. and Lin, Z. (2016). Type inference on executa-
bles. ACM Comput. Surv., 48(4).

DWARF Standards Committee (2022). The dwarf debug-
ging standard.

ElWazeer, K., Anand, K., Kotha, A., Smithson, M., and
Barua, R. (2013). Scalable variable and data type de-
tection in a binary rewriter. In Proceedings of the 34th
ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI ’13, pages
51–60.

Hex-Rays (2022). Ida pro.
Lee, J., Avgerinos, T., and Brumley, D. (2011). Tie: Princi-

pled reverse engineering of types in binary programs.
In Network and Distributed System Security Sympo-
sium.

Lin, Z., Zhang, X., and Xu, D. (2010). Automatic reverse
engineering of data structures from binary execution.
In Proceedings of the 11th Annual Information Secu-
rity Symposium, CERIAS ’10.

Liu, Z. and Wang, S. (2020). How far we have come: Test-
ing decompilation correctness of c decompilers. In
Proceedings of the 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA
2020, pages 475–487.

ICISSP 2023 - 9th International Conference on Information Systems Security and Privacy

238



Naeem, N. A., Batchelder, M., and Hendren, L. (2007).
Metrics for measuring the effectiveness of decom-
pilers and obfuscators. In 15th IEEE International
Conference on Program Comprehension (ICPC ’07),
pages 253–258.

National Security Agency (NSA) (2022). Ghidra.
Noonan, M., Loginov, A., and Cok, D. (2016). Polymor-

phic type inference for machine code. In Proceedings
of the 37th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI
’16, pages 27–41.

PNF Software (2022). Jeb.

A Framework for Assessing Decompiler Inference Accuracy of Source-Level Program Constructs

239


