Modelling Adaptive Systems with Nets-Within-Nets in Maude

Lorenzo Capra' © and Michael Kéhler-Bussmeier

2(b

LDipartimento di Informatica, Universita degli Studi di Milano, Via Celoria 18, Milan, Italy

2University of Applied Science Hamburg, Berliner Tor 7, Hamburg, Germany

Keywords:

Abstract:

Adaptive Systems, Maude, Nets-Within-Nets.

Systems able to dynamically adapt their behaviour gain growing attention to raising service quality by reduc-

ing development costs. On the other hand, adaptation is a major source of complexity and calls for suitable
methodologies during the whole system life cycle. A challenging point is the system’s structural reconfigu-
ration in front of particular events like component failure/congestion. This solution is so common in modern
distributed systems that it has led to defining ad-hoc extensions of known formal models (e.g., the pi-calculus)
But even with syntactic sugar, these formalisms differ enough from daily programming languages. This work
aims to bridge the gap between theory and practice by introducing an abstract machine for the “nets-within-
nets” paradigm. Our encoding is in the well-known Maude language, whose rewriting logic semantics ensures
the mathematical soundness needed for analysis and an intuitive operational perspective.

1 INTRODUCTION

Systems with the ability to dynamically adapt/reor-
ganise in front of varying execution environments are
becoming increasingly popular, to raise service qual-
ity without increasing development costs. On the
other hand, system adaptation is complex to manage
and therefore requires suitable models/methodologies
both at design time and runtime. In this context, for-
mal methods can play an important role. (Weyns
et al., 2012), (Hachicha et al., 2019) present a sur-
vey of formal methods for modelling/analysis of self-
adaptive systems. Significant examples are (Iglesia
and Weyns, 2015), specifying MAPE-K templates for
a family of self-adaptive systems, and (Weyns and
Iftikhar, 2022), presenting an end-to-end approach for
engineering self-adaptive systems during the life cy-
cle of a feedback loop.

In this paper, we focus on a challenging point,
namely, the structural reconfiguration of a system
against particular events like component failure/con-
gestion. This solution has become so common in
modern distributed systems, that it has led to a spe-
cialisation of known formalism, e.g. the wt-calculus or
nets-within-nets. But even with syntactic sugar, these
formalisms are far enough from ‘daily’ programming

https://orcid.org/0000-0002-1029-1169
@ nhttps://orcid.org/0000-0002-3074-4145

Capra, L. and Kohler-Bussmeier, M.
Modelling Adaptive Systems with Nets-Within-Nets in Maude.
DOI: 10.5220/0011860000003464

languages, in which reconfiguration often boils down
to add- and delete operations.

This work aims to bridge the gap between theory
and practice by presenting an abstract machine for the
nets-within-nets approach, used in the last decade to
model adaptive and mobile processes/agents. Our for-
malisation uses the well-known Maude language since
specifications given in rewriting logic enjoy the math-
ematical soundness needed for analysis and provide
developers with an intuitive operational perspective
(in (Bruni et al., 2012) Maude has been used to formal-
ize adaptive strategies). We focus on the base class of
nets-within-nets, namely, Elementary Object Systems
(E0s) since they make a reasonable trade-off between
expressivity and analysis complexity. This initial for-
malization, however, fosters further interesting exten-
sions.

We first briefly introduce PT nets and Nets within
Nets in Section 2. Section 3 presents (after a short
background) the Maude formalization of EOS, fo-
cusing on the key aspects. Section 4 describes our
running example: the specification of an adaptable
production-line system. We sketch the Maude en-
coding (which is annexed) and present a few signif-
icant examples of formal verification. Section 5 sum-
marises the lessons learned so far and gives insights
into current research.

487

In Proceedings of the 18th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2023), pages 487-496

ISBN: 978-989-758-647-7; ISSN: 2184-4895

Copyright (© 2023 by SCITEPRESS — Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

2 BACKGROUND

Petri Nets. PN are a reference model for concur-
rent systems. We hereafter focus on enriched Place-
Transitions nets (PT). A PT net is a kind of bipartite
multi-graph N := (P,T,1,0,H), where: P and T are
finite, disjoint sets holding the places —state variables,
drawn as circles— and the transitions —events chang-
ing the state, drawn as bars, respectively; Letting
Bag[P] be the set of multisets on P, {I,0,H} : T —
Bag|P] represent the input/output/inhibitor edges, re-
spectively. The distributed state of a PT, or marking,
is, in turn, m € Bag[P]. PT have intuitive semantics
(in the sequel, we use the operator natural extension
to multisets): t € T is enabled in m if and only if:
I(t) <mAH(t) > m (> is restricted to the support
of H(z)). If t is enabled in m it may fire, leading to
m =m+0(t)—1(1).

A PT system is a pair (N,mp). Its semantics is a
T-labelled directed graph whose nodes are the mark-
ings reachable from mg and whose edges match direct
state transitions. Enriched PT systems are Turing-
powerful.

Nets-Within-Nets. In recent years, adaptable dis-
tributed systems have been deeply studied in the con-
text of the object-net formalism (Kohler-BuBBmeier
and Rolke, 2004; Kohler-BuBmeier and Heitmann,
2009), which follows the pioneering nets-within-nets
model proposed by Valk (Valk, 2003). With object-
nets, we mean PN where tokens (graphically denot-
ing a PN marking) are nets in turn, i.e., we have
nested markings. The Maude formalisation we are go-
ing to present refers to elementary object-net systems
(Eos) (Kohler-BuBmeier and Rolke, 2004), the two-
level specialisation of object-nets (Kohler-BuBmeier
and Rolke, 2004; Kohler-BuBmeier and Heitmann,
2009).

HORNETS (Kohler-BuBBmeier, 2009) are a further
extension with algebraic operators making it possible
to modify the structure of net tokens through transi-
tion firing. For complexity studies, elementary HOR-
NETS (Kohler-BuBBmeier and Heitmann, 2013) have
been introduced, which have a two-level nesting in
analogy to E0sS. It turns out that elementary HOR-
NETS have greater complexity than EOS, though more
expressive: On the one hand, most problems (in-
cluding reachability and liveness) for safe EOS are
PSPACE-complete (Kohler-BuBSmeier and Heitmann,
2011; Kohler-BuBmeier, 2014). Namely, safe Eos are
no more complex than PT nets for this kind of prob-
lem. On the other hand, the reachability problem re-
quires exponential space for safe, elementary HOR-
NETS (Kohler-BuBBmeier and Heitmann, 2016).

488

Elementary Object-Net System. Let’s informally
describe EOs by referring to Figure 1. An EOS con-
sists of a system-net whose places may hold net-
tokens of a certain type. In our encoding, the graph
structure of both the system net and net-tokens is the
same as a PT net. This uniform representation of the
two levels has advantages both in terms of modelling
(e.g., a further extension with an arbitrary nesting of
nets is natural) and analysis (e.g, we can use the same
structural techniques). In the current implementation,
however, net-tokens do not allow a further nesting of
nets, i.e., they are PT systems.

In the example given in Figure 1 there are two dif-
ferent types of net-tokens (that we call nety, net,) cor-
responding to colours yellow and grey; The system-
net and the net-tokens consist of single transitions;
Only weight-one input/output edges are present.

Eo0s events are nested, accordingly. There may be
three different kinds of events:

1. System-autonomous: A system-net transition (as-
sume ¢) fires by consistently “moving” net tokens
from its preset places (p;, i : 1...3) to its postset
(pj, j:4...6), without changing the net tokens
marking.

2. Object autonomous: A net-token (assume that of
type net; in the system-net place p,) transition
(e.g., 11) fires by moving (“black’) tokens from
its preset (ap) to its postset (b1). The net token
doesn’t move.

3. Synchronisation (illustrated in Figure 1): When-
ever we add matching synchronisation inscrip-
tions, e.g., between the system-net transition # and
the nested transitions 71, #,, then they fire in a fully
coordinated way: The net-tokens move from the
preset to the postset of #; at the same time, the
black tokens inside nested nets move from the
pre-set to the post-set of nested transitions (¢1,12).
Transitions involved in a synchronisation cannot
fire autonomously.

Notice that there may be several independent fir-
ing instances for a system-net transition: If many net-
tokens of a certain type are in the transition’s pre/post-
set, their cumulative marking is computed and dis-
tributed on postset places of the same type (possibly
after a nested firing step, in the case of a synchroniza-
tion). Each possible way of distributing the net-tokens
(cumulative) marking results in a separate transition
instance. Therefore, there is another possible instance
of transition ¢ (other than that illustrated in Figure 1)
in which the net-tokens in ps and pg are swapped. We
give further details in Section 3.

Modelling Adaptive Systems with Nets-Within-Nets in Maude

Figure 1: An Elementary Object Net System (E0S).

Maude. Maude (Clavel et al., 2007) is an expres-
sive, purely declarative language with a rewriting
logic semantics (Bruni and Meseguer, 2003). State-
ments are (conditional) equations (eq) and rules (r1).
Both sides of a rule/equation are terms of a given
kind that may contain variables. Rules and equa-
tions have simple rewriting semantics in which in-
stances of the left-hand side are replaced by corre-
sponding instances of the right-hand side. Maude’s
expressivity is achieved through matching modulo as-
sociativity; user-definable operator syntax/evaluation
strategy; sub-typing; generic types; reflection.

A Maude functional module (fmod) contains only
equations and is a functional program defining one
or more operations through equations, used as sim-
plification rules. A functional module (with all the
imported modules) specifies an equational theory in
membership equational logic (Bouhoula et al., 2000).
Formally, such a theory is a pair (X,E UA), where
¥ is the signature, that is, the specification of all the
(sub)sort, kind!, and operator declarations; E is the
set of (conditional) equations and membership ax-
ioms, and A is the set of operator equational attributes
(assoc, comm,..). The model of (¥,EUA) is the ini-
tial algebra (denoted Ty /g 4), which is both junk- and
confusion-free and mathematically corresponds to the
quotient of the ground term algebra. Under certain
conditions on E and A, the final values (canonical
forms) of all ground terms form an algebra isomor-
phic to the initial algebra, i.e., the denotational and
operational semantics coincide.

A Maude system module (mod) contains rewrite
rules and possibly equations. Rules represent lo-
cal transitions in a concurrent system. Formally, a
system module specifies a generalized rewrite the-
ory (Bruni and Meseguer, 2003), a four-tuple X =
(Z,EUA,0,R) where (X,EUA) is a membership
equational theory; ¢ specifies, for each operator in

A kind is an equivalence class grouping sorts directly
or indirectly related by subsort ordering; terms in a kind
without a specific sort are undefined or error terms.

Y, the frozen arguments; and R is a set of rewrite
rules A rewrite theory specifies a concurrent system.
(X,EUA) defines the algebraic structure of the states.
R and ¢ specify the system’s concurrent transitions.
The initial model of & associates to each kind k
a labeled transition system (category) whose states
are Ty/puar> and whose transitions take the form:

1] ' 1), with [1], '] € T jsase and [o] an equiva-
lence class of rewrites modulo the equational theory
of proof-equivalence. Executability of system mod-
ules maps to ground coherence, which ensures that a
rewriting strategy in which terms are first reduced to
the canonical form and then rewritten according to the
rules is both sound and complete.

3 MAUDE IMPLEMENTATION OF
Eos

In this section, we describe the Maude formalization
of Eos. It relies on and extends that given in (Capra,
2021; Capra, 2022b), which provides an efficient op-
erational semantics for rewritable PT nets. Accord-
ing to EOS definition, however, dynamic adaptation
comes down to net-tokens manipulation. Reconfigu-
ration of the system net is ongoing work. We use a
few Maude code excerpts and refer to Figure 1 as a
starting example of encoding. The full list of Maude
source files is available at github.com/lgcapra/rewpt/
new/EOS. We here focus on the non-deterministic fir-
ing rule of EOS.

The PT formalization in (Capra, 2021) relies
on o three generic functional modules, BAG{X},
MAP+{X,Y}, SET+{X} (the last two extensions of
built-in modules). They may be arbitrarily nested
using a flexible mechanism of parameterized views
instantiating the modules’ type parameters. Differ-
ently from other Maude formalizations of PNs (Stehr
et al., 2001; Padberg and Schulz, 2016), bags are not
merely represented as free monoids on sets. Specific
bag operators guarantee much more abstraction and

489

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

efficiency: _._, _+_, _[_] -, <=, _>'_, set,
*. The first two are constructors, i.e., appear in
canonical forms. We thus conveniently represent a
bag as a commutative/associative weighted sum, e.g.,
3 .a+ 1. b. The module MAP+ defines a map
term as a “set” of entries built using the associa-
tive/commutative juxtaposition _;_. Sub-sort Entry
of Map has as a unique constructor _|->_. Module
MAP+ supplies, among others, a predicate verifying the
uniqueness of a map’s keys which is widely exploited
in membership equations implementing consistency
checks.

PT nodes are denoted by indexed/labelled terms,
e.g., p(2,"netl"), t(l,"sys"). A transition’s
incidence matrix is a triplet (constructor [_,_,_]
defined in module IMATRIX) of terms of sort
Bag{Place}. The modules PT-NET and PT-SYS
hold the signature of a PT net/system. A net
is a term of sort Map{Tran,Imatrix} (renamed
Net), i.e., a semicolon-separated set of entries
t(k,"lab") |-> [i,0,h],eachentrybeing a term in
subsort ImatrixT < Net. A PT system is the juxta-
position (__ : Net Bag{Place} -> [System]) of
a Net term and Bag{Place} term representing the
marking. Using a kind as the operator’s range means
that it defines a partial function: the net sub-term must
be a consistent, non-empty map. A membership ax-
iom characterizes well-defined System terms. This
solution is a trade-off between rewriting efficiency
and coding elegance.

A system module (PT-EMU) formalizes the opera-
tional semantics of PT systems by exploiting the al-
gebraic representation of PT nets. The conditional
rule firing implements the PT firing rule. All the
involved operators are bag-operators. The matching
equation (t := t’) in rule’s condition ensures com-
pactness.

mod PT—EMU is
prPT-SYS .
var T : Tran.
vars I O H S : Bag{Place} .
var NN’ : Net .
crl [firing] :NS=>NS+0—-IifT|->[I,0,H];N :=
NAI<=s/A\H>"S.
endm

The model-specific part consists of a system mod-
ule importing PT-EMU and PT-SYS and containing two
zero-arity operators of range Net and Bag{Place}.

3.1 EOS Specification

The E0s specification extends and reflects in part that
of (rewritable) PT systems. A few functional modules
specify the EOS algebraic structure. A system mod-

490

ule (EOS-EMU) specifies the (non-trivial) EOS opera-
tion semantics. Some auxiliary operators are needed
to mime the inner steps of transition firing, in particu-
lar, the computation of firing instances of a system-net
transition and the consequent (non-deterministic) dis-
tribution of net-tokens on its post-set. Finally, a spe-
cific system module instantiates a given EOS model.
For the reader’s convenience, we mix the textual de-
scription with a few code excerpts. We use Figure 1
to illustrate the main concepts.

Eos Net. A term describing an EoOS
net (module EOS-NET) is the empty juxta-
position of three sub-terms of sorts Net,
Map{String,Net} (renamed NeTypeS) and
Map{Tran,Map{String,Bag{Tran}}} (renamed
Syncmap). The resulting whole term is of kind
[Sysnet] (because of possible inconsistencies
among its components). The 2nd and 3rd sub-terms
specify the types of net tokens and the synchroniza-
tion between system- and object-net transitions (for
each object-net type), respectively. These sub-terms
are equipped with ad-hoc operators and separately
defined (modules NET-TYPES and SYNCHRO). Note
that, according to EOS definition, a system-net
transition may synchronize with multiple occurrences
of object-net transitions.

The type of net-tokens a system-net place may
hold is associated with the place’s label in NeTypeS
sub-term. If there is no association, the system-net
place may only hold “black-tokens”. Instead, the
three categories of events possible in a EOS meet the
following conventions.

1. System-autonomous: system transitions not oc-
curring in the Syncmap sub-term.

2. Object autonomous: nested transitions for which
the predicate

op synchronized : Syncmap Tran -> Bool

evaluates to false (this predicate checks that a
given transition appears among the values -that
are maps, in turn- of Syncmap sub-term).

3. Synchronisations: defined implicitly by exclu-
sion.

A membership-axiom connotes well-formed
Eos as terms of sort Sysnet. Predicate
coherent (Sy, Ty) checks that every nested
transition occurring in Syncmap belongs to the
corresponding net-type).

cmb N Ty Sy : Sysnet if welldef(N) and—then welldef(
Ty) and—then not(repeatedKeys(Sy)) and—then
coherent(Sy, Ty)

Using a uniform syntax for the system-net and net-
tokens is convenient in terms of description/algebraic
manipulation and significantly enhances EOS expres-
sivity. Furthermore, the adopted signature may be
easily adapted to support an arbitrary nesting of nets.

Eos System. The EOS dynamics is mimed using
a structured state representation, in which the ba-
sic generic types are reciprocally nested. A term
of sort Map{Place,Bag{Bag{Place}}} specifies an
EO0s marking as a map from system-net places to
nested multisets of net-token places: a term of sort
Bag{Place}, indeed, represents a marking of the
net-token type associated to a certain system-net
place, its multiplicity in the top multiset the num-
ber of net-tokens in the system-net place with that
marking. The nil ground term (representing the
empty Bag{Place}) may also denote -without any
ambiguity- anonymous tokens in untyped system-net
places. For example, the EOS marking in Figure 1 is
described by the term ("netl", "net2" refer to the
net-token types):

—>1.nil+1.(1.p(1,7a1”) +1.p(2, bl

p(1,’netl”)

p(27net1”) |=> 1. 1. p(1,7al”) ; p(3. net2”)
p(1,7a2”) + 1. p(2, "b27))

->1.01

A marked EoS is formally described by the
empty juxtaposition of a Sysnet sub-term and a
Map{Place,Bag{Bag{Place}}} sub-term (module
EO0SYS). Due to possible inconsistencies, the opera-
tor’s arity is the kind [Eosystem]. As usual, we
use a membership axiom to connote terms of sort
Eosystem as those in which every system-net place is
a key in the EOS marking sub-term. No check is done
on net-token places, for the sake of efficiency and co-
herently with the fact that (in a mutable context) they
may contain isolated places.

var S : Sysnet . var M: Map{Place,Bag{Bag{Place}}}.
cmb S M: Eosystem if not(repeatedKeys(M)) and—then
places(net(S)) subset keySet(M).

In the perspective of allowing an arbitrary nesting
of nets, generalized multisets (whose elements may
be bags in turn) should be used instead of nested bags.

Eo0Ss Operational Semantics. According to the ar-
chitecture of EOS, two rewrite rules specify the
firing of system-net transitions —taking account of
synchronizations— and autonomous transitions in
nested nets. Both rely on the PT firing rule.

The former has some trickiness due to the intrinsic
nondeterminism: Similarly to High-Level PN transi-
tions, a system-net transition ¢ may fire in different

Modelling Adaptive Systems with Nets-Within-Nets in Maude

instances in a EOS marking m (inhibitor edges cur-
rently have a merely numerical interpretation). An
instance of ¢ has the same algebraic representation as
m, i.e., it is a Map{Place,Bag{Bag{Place}}} term
whose map’s keys are the ¢’s preset. In other words,
an instance of ¢ is a sub-multiset of m.

The system-net firing rule exploits two main oper-
ators (module EOSYS):

op firingmap : Eosystem —> Map{Tran, Set{Map{
Place,Bag{Bag{Place}}}}}.
op firings: ImatrixT Map{Place, Bag{Bag{Place

}}} Syncmap —> [Set{Map{Place, Bag{Bag{

Place}}}}].

firingmap computes the enabled firing instances
for every system-net transition, taking account of syn-
chronizations. It builds on a few auxiliary operators
defined in generic modules BAG-SPLIT, MAP-PROD, in
particular:

op split : Bag{X} Nat —> Set{Bag{x}}
op prod : Map{X,Set{Y}} —> [Set{Map{X,Y}}]

The former divides a bag into sub-bags of given
cardinality, the latter performs a kind of Cartesian
product of maps having sets as values. In the event
of synchronization, #’s instances are filtered accord-
ing to the enabled synchronized nested transitions.

The firing of an instance of ¢ may be non-
deterministic, i.e., result in alternative multisets of
net-tokens to distribute on #’s post-set (Sect. 1). Oper-
ator firings calculates this set for a system-net tran-
sition instance (the transition’s incidence matrix and
the synchronization map are the other arguments). It
builds on:

op distribute : Bag{Place} Bag{Place} —> [Set{Map
{Place,Bag{Bag{Place}}}}]

that distributes the (pre-calculated) cumulative mark-
ing obtained by an instance of ¢ (Ist arg) to ¢’s post-
set (2nd arg), assuming that the two arguments refer
to system-net places of the same type. This operation
is tricky and reduces to enumerate the partitions of a
multiset.

The system module EOS-EMU formalizes the EOS
operation semantics.

mod EOS—EMU is

pr EOSYS .

inc PT-EMU .

var FM : Map{Tran, Set{Map{Place,Bag{Bag{Place
}13}} . s whole firing map

var TI : Entry{Tran, Set{Map{Place,Bag{Bag{Place
}}3}}} . s transition instance

var NeFS : NeSet{Map{Place,Bag{Bag{Place}}}}.

output firing set

vars I OMM : Map{Place,Bag{Bag{Place}}} . s
firing instance/EOS marking

491

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

vars NN’ : Net . var T : Tran . var Ty : NeTypeS . var Sy :
Syncmap .
var Q : Imatrix . var S: String. vars JK: NzNat .
vars B B’ : Bag{Place} . var B2 : Bag{Bag{Place}}.
rl [select] : I UNeFS => I. k% non—deterministic
extraction of an instance
crl [inst] :NTy SyM=>NTy Sy M—I)+0if N’ ; T |[->
Q:=N/\ firingmap(N Ty Sy M)[T]=> I /\
firings(T |[->0Q,I,Sy)=>0.
crl [aut] : SN (p(J,S) |-> K . B + B2) => SN (p(J,3) |-> (
K.B—1.B)+1.B +B2)if N(S|-> (T |->Q;N’)
; Ty) Sy := SN /\ not(synchronized(Sy, T)) /\
(T|->QB=>(T|->0Q)P .

endm

Rules inst and aut encode the firing of a system-
net transition and of an autonomous nested transition,
respectively; inst relies on the auxiliary rule select
which emulates the non-deterministic selection of an
instance (from a set). We exploit the opportunity
that conditional rewrite rules can have very general
conditions involving matching equations, member-
ships and also other rewrites. Rule inst implements
double non-determinism: first for selecting an (en-
abled) instance of ¢, then for choosing one of the
possible output markings generated by that instance.
The rule uses the operators _+_, _-_ defined on
Map{Place,Bag{Bag{Place}}} terms. In the event
of synchronization, the operator firings embeds the
changes to net tokens markings. Rule aut exploits the
synchronized predicate and the PT firing rule.

Example. As a concrete example of Maude for-
malization of E0S, we include the system module
SIMPLE-EOS which specifies the EOS in Figure 1,
where we assume that only the system-net places
{pi},i:1...3, are marked.

mod SIMPLE—EOQS is

inc EOS—EMU .

ops net typel type2 : —> Net .

op netype : => NeTypeS .

opm0 : —> Map{Place,Bag{Bag{Place}}}.

op eosnet : —> Sysnet .

Oop sync : —> Syncmap .

eqnet =t(1,’sys”) |[->[1.p(1,"net1”) + 1.p(2,”
net1”)+1.p(3,’net2”), 1.p(4, net1”)+1.p
(5,net2”)+1.p(6,’net2”), nil].

eq typel =t(1,”) |[->[1.p(1,”al”), 1. p(2,"b1"),
nil].

eqtype2 =t(2,”) |->[1.p(1,°a2”) + 1. p(2,’02”7),
1.p(3,c2”), nil].

eq netype ="net1” |-> typel ; "net2” |-> type2 .

eq sync =t(1,’sys”) |-> ("net1” |->1.t(1,””);”
net2” |->1.t(2,”")).

eq eosnet = net netype sync.

eqm0 =p(1,’netl”) [->1.nil+1.(1.p(1,7al”) +

1.p(2,017)); p(2,netl”) |->1.1.p(1,°al”);
p(3,’net2”) [->1.(1.p(1,7a2”) + 1. p(2,"b27)) .
endm

492

We refer to the EOS with the term eosnet m0 us-
ing simple aliasing. By running the inline reduce
command of the Maude interpreter

Maude> red firinginstances(eosnet m0, t(1, ”sys”))

we get two enabled instances for the system-net tran-
sition t (1, "sys"), in accordance with the two net-
tokens of type "netl" in place p (1, "netl") (Fig-
ure 1).

The following command searches for reachable fi-
nal () states.

Maude> search eosnet m0 =>! X:Eosystem.

The command has four matches which express the
non-determinism of EOS transition firing: For each
instance of t (1, "sys") there are indeed two possi-
ble output-markings, as the ways to distribute the net-
token of type "net2" on places ps, pe.

4 THE PRODUCTION LINE

We consider a FMS with two production lines as an
example. This scenario has been used as a case study
for Rewritable PT Nets in (Capra, 2021). Here, we
will model the scenario in terms of nets-within-nets.

In the scenario we have raw material and two op-
erations, 71 and 72, working on pieces of those. We
have two production lines (i.e. robots), both being ca-
pable of performing #1 and t2. We assume that the
two lines have different qualities for these operations,
i.e., it is better to execute 71 in line 1 and 2 in line
2. This is the standard production plan. It is possi-
ble that during the execution one of the two lines gets
faulty. A double failure has a negligible probability
and is not modelled here.

The scenario is well suited for a EOS-model as we
have two obvious levels in our model: the production
site and the production plans. The model is speci-
fied in the syntax of the RENEW tool (Kummer et al.,
2004).

The system level shown in Figure 2 describes the
two production lines, the execution life cycle of the
production plan, and the dropout of lines.

In the system net, the place p0 indicates normal
operation. In this mode the transition 0 takes two
tokens (i.e. the raw material) from place pl and ac-
tivates the normal production plan, i.e. it generates a
net-token of type plan via the inscription x:new plan.
The two production lines are shown as blocks. Their
transitions are side-conditions for the place produc-
tion plan. They synchronise via the channel inscrip-
tions of the form x:linel _ti().

These channels have a counterpart in the net-
tokens (e.g. the net plan — shown in Figure 3 — has

Modelling Adaptive Systems with Nets-Within-Nets in Maude

fall back to line 2

Production Line 1

x:linel_t2()

X

life cycle

x:line2_t2()

Production Line 2

C

Uit
p6
o1y gt > ,.<
iili |
llarg] X X %)
o X:new plan)7r<pmduﬂion x:do_t3()
p! plan -

f Qp7 fall back to line 1 \
0 a -p7 R

Production Line 1

x:linel_t2()

P6
(O, xinew fallbacky
o}
- X bl X ido 130
O life cycle

[e2] x:line2_t20

Production Line 2 /

2N i J

Figure 2: The System Net modelling the Production Lines.

the corresponding inscription linel t1()). Therefore,
we have a synchronous firing of the transition in the
production line and in the production plan.

Net-tokens describe the different production
plans: That for normal operation is given as the net
plan shown in Figure 3, while we also have two fall
back plans fallback 1 and 2 for the case of dropouts.
Specifically, the given production plan from Fig-
ure 3 specifies a synchronisation via linel _t1() and via
line2_t2(), so we will execute 71 in line 1 and 72 in line
2. When the production plan is finished we synchro-
nise via do_t3() and delete the net token, i.e. the plan.
For simplicity, the scenario restarts this production
via the transition 4 which regenerates two raw ma-
terials again on place pl. This reset makes the main
loop of the model live.

Now, we will look at the adaption part and how
the model preserves liveness even in the event of
dropouts. On the left part of Figure 2 (the yellow
nodes), we have the adaption part: Transitions #5 and
16 model the dropout of one production line. When-
ever we have a drop the standard production plan is
not executable anymore. Therefore, the transitions
fall back to production line 1/2 withdraws them. Af-
ter a dropout, the places p7 and p8 indicate which of
the two lines is down. According to this information,
we will select the appropriate fallback plan, i.e. in the
case of a dropout in line one (p7 is marked) we switch
to the fallback plan 2 and vice versa. The two fallback
blocks have almost the same structure as the original
block. The only difference is that we generate a dif-
ferent net-token via x:new fallback! in the case of the
side condition p8 and via x:new fallback2 in the case
of the side condition p7. To avoid lots of crossing arcs
we use the RENEW feature of so-called virtual places,
i.e., places with a double outer line. They denote a
reference to the original place.

The two fallback plans fallback I and 2 are not
shown here as they look almost identical to the ba-

sic plan in Figure 2. The only difference are the used
channels: The plan fallback 1 works only with the
production line 1, which is expressed by using the
channels linel tI() and via linel t2(). Analogously
for fallback 2.

The modular Maude specification of the adaptable
Production Line may be found in github.com/lgcapra/
rewpt/tree/main/new/EOS. We got it by composing
atomic sub-nets through the associative/commutative
net-juxtaposition operator (*;).

4.1 Model’s Analysis

Below we give some evidence of formal verification
with the only intent of showing the potential of an ap-
proach based on Maude. Since we specify adaptation
in a way to preserve the liveness of the production
process, we focus on this kind of property. We use
the two basic analysis tools, namely the reduce com-
mand, which prints out the canonical form of a ground
term, and the search state-space explorer (both avail-
able inline).

As usual, we manage wordy terms using intu-
itive aliasing. For example, the net term describes
the system-net component of the EOS, whereas the
eosnet term includes the net-token description and
synchronizations. Terms m0 and eosm0 denote the ini-
tial marking of the net (seen as a PT system) and of
the EOS.

We can use the reduce command both to unfold
these aliases and to perform a preliminary formal val-
idation: If it assigns the canonical form a specific sort
(i.e., Eosystem), it means that the initial term repre-
sents a well-defined EOS specification:

reduce in PLINE-EOS : eosnet eosmO.
result Eosystem: (... unfolded term)

The next two searches operate on the PT-system
we obtain from the system-net by replacing net-
tokens with anonymous tokens. One of the advan-

493

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

p2 :linel t1(pa

O
P2 line2_t20) ps

Figure 3: The Object Net plan modelling the standard Production Plan.

tages of EOS, indeed, is that we can separately con-
sider and analyse the two EOS levels.

The first one verifies a state invariant which char-
acterizes the production plan’s life-cycle, in a con-
figuration where place p; initially holds four tokens.
The search has indeed no matches (solutions), con-
sistently with the fact that we search for a counter-
example. It is worth noticing two things. An im-
plicit outcome of the command is that the PT system
derived from the system net is bounded because the
state space turns out to be finite. The invariant is ac-
tually structural, i.e., it holds for any configuration
with 2 % K tokens initially in place p; (K being the
model’s parameter). We cannot prove parametric in-
variants using state-space exploration.

The second search, instead, checks the absence
of final (dead) states. Again, there are no matches.

Maude> search in pline-SYS net m0 =>*
X:System such that marking (X:

System) [p(1,"")] + 2 * marking(X:
System) [p(2,"plan")] + 2 * marking(
X:System) [p(2,"fb1"™)] + 2 * marking
(X:System) [p(2,"fb2")] + 2 *
marking (X:System) [p(6,"")] =/= 4

Maude> search in pline-SYS net m0 =>!

X:System

Analogously, we can start searching from an
Eosystem term specifying the whole EOS. The fol-
lowing (unmatched) search is much more signifi-
cant than the previous ones because it formally ver-
ifies that the whole EOS (including the nested nets)
is deadlock-free (and implicitly, bounded). Both the
state space and the execution time grow up.

Maude > search in pline-EOS eosnet

eosm0 =>! E:Eosystem

Table 1 reports the performances of the last
search, as the system’s parameter varies. The data
refer to an Intel Core 17-6700 equipped with 32 GB
of RAM.

Model-checking techniques suffer from the pos-
sible state-space explosion, which may be only al-
leviated using some heuristics, e.g., by carrying out
bounded searches (the search command has a num-
ber of options) or making some abstractions (as we

494

Table 1: Performance of search command.

K i states # rewrites time (ms)
2 262 19801 38

5 2802 180539 453

10 13932 995724 3192

20 104007 19737494 56090

50 4186132 111564504 906253

did in the first two searches). The canonization tech-
nique for rewritable PT systems recently presented in
(Capra, 2022a) might represent an effective approach
to scale the model’s complexity. Using this technique
(which requires a slight adaption to work with EOS)
the state sizes reported in Table 1 would approxi-
mately halve, due to the PL symmetry. Overall, it
would be possible to model-check more realistic con-
figurations with many PL working in parallel and syn-
chronizing at some point, which would be otherwise
intractable. Another drawback of model-checking is
that, in general, we cannot infer parametric outcomes
(not depending on the initial state).

PT structural analysis, which considers the PT
graph structure, is an effective alternative (comple-
mentary) to state-space inspection. We may use it
to infer parametric outcomes, e.g., structural state-
invariants (semiflows). Structural analysis of EOS
looks promising because it may take advantage of the
fact that the types of net tokens flowing through the
system net places are finite.

S SUMMARY AND OUTLOOK

In this paper we have defined a Maude representation
of nets-within-nets, more concretely: EOS.

What are the Strengths of the Approach? The
Maude formalization presented here is an extension of
(rewritable) PT specification (Capra, 2021). There-
fore a lot of code could be reused, which is beneficial
for the implementation’s reliability and efficiency as
well.

The formalisation preserves central design issues
of EOS by supporting a uniform view: The system-
net and net-tokens have the same structure in Maude,

which is essential as the same is true for EOS. This
aspect is relevant when the architecture is extended
from the two-level case to an unbounded nesting of
net-tokens in a marking (Kohler-BuBmeier and Heit-
mann, 2009) or HORNETS (Kohler-BuB3meier, 2009).
Standard Maude facilities for formal verification (e.g.,
state-space search and model-checking) may be used
with no additional costs.

Additionally, the EOS firing rule is defined in a
way that moving net-tokens around cannot be distin-
guished from moving ordinary tokens in PT. There-
fore, we can easily define abstractions on the system’s
state (e.g. forgetting about the marking of net-tokens),
which is essential to perform state space exploration
efficiently.

Our approach fosters model extensions. Passing
to Object-nets should be almost for free (using gen-
eral Bags, with an arbitrary nesting). While the ex-
tension from EOS to HORNETS is a rather large step,
which involves new constructs like net-algebra oper-
ators, the formalizing of HORNETS in Maude seems
very simple. We may easily go one step forward, to-
wards “rewritable” EOS, where the structure of both
the system net and of net-tokens may change over
time.

Advantages of the Proposed Approach.

» The approach builds on an existing Maude for-
malization of (rewritable) PT nets: massive code-
reuse, implementation reliability, efficiency, uni-
form view (system-nets and net-tokens have the
same structure), easy abstractions (the system-net
may be mimed as an ordinary net)

* The built-in Maude facilities for formal verifica-
tion (e.g., state-space search and model-checking)
may be exploited.

* The approach promotes updates and extensions.
A natural extension is the use of PT nets (with
inhibitor arcs both) at system-net level and at net-
token level. Passing to Object-nets should be al-
most for free (using general Bags, with an arbi-
trary nesting level, would be required). Formaliz-
ing Hornets should be simple as well, even if the
system-net definition would be closer to an alge-
braic PN.

* We may easily go one step forward, towards
“rewritable” EOS where both the structure of the
system net and that of net-tokens may change over
time.

What Was Complex? The most challenging aspect
of the formalisation was the integration of the so-
called firing modes. Roughly speaking, the firing rule

Modelling Adaptive Systems with Nets-Within-Nets in Maude

of a system-autonomous event in an EOS collects the
tokens of all net-tokens coming from the system net
places in the preset. When the system net transition
fires it distributes all these tokens on freshly generated
net-tokens in the postset. The firing rule allows any
of these possible distributions — an aspect which re-
quires some tricky handling of the binding in Maude.
In summary:

* Formalizing the EOS firing mechanism shows
some trickiness.

* The use of nested generic types in Maude requires
some expertise.

Limitations. The current formalisation fulfils the
requirement that it provides a link to the world of pro-
gramming. But we have to admit that like in any al-
gebraic specification, terms describing EOS may be
wordy, structurally complex and (consequently) diffi-
cult to read and manage. A systematic aliasing mech-
anism might greatly help a modeller. Also, syntac-
tic sugar would sweeten the approach. An automated
translation from a high-level (graphical) description
of EOS to the corresponding Maude module would be
highly desirable.

Ongoing Work. In this paper, we were concerned
with the Maude encoding of EOS. Our main motiva-
tion for this is to obtain a representation closer to the
usual programming language world. Our intention is
also to benefit from the advantages of a formal specifi-
cation, i.e. the possibility to apply analysis techniques
more easily. In the case of Maude the first idea is to
apply state-space techniques, like LTL model check-
ing. We also like to integrate structural PN techniques
for EOS (Kohler-BuBBmeier and Moldt, 2009).

For the analysis of EOS, we need to struggle with
scalability as the state space of EOS grows even worse
than that of PT nets. Possible approaches are the can-
onization of net-tokens and the use of abstractions to
obtain condensed state spaces. Canonization of net-
tokens allows us to capture symmetries in their be-
haviour. For that purpose, we have slightly adapted
the canonization technique for rewritable PT systems
defined in (Capra, 2022a), fully integrated into Maude.
According to this technique, a PT system is seen as a
coloured graph and put into a “minimal” isomorphic
form by incrementally permuting node indices. The
latter approach (state abstraction) can be expressed
quite easily in Maude by adding additional equations
on markings.

495

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

REFERENCES

Bouhoula, A., Jouannaud, J.-P., and Meseguer, J. (2000).
Specification and proof in membership equational
logic. Theoretical Computer Science, 236(1):35-132.

Bruni, R., Corradini, A., Gadducci, F., Lluch Lafuente,
A., and Vandin, A. (2012). Modelling and analyz-
ing adaptive self-assembly strategies with maude. In
Durén, F., editor, Rewriting Logic and Its Applica-
tions, pages 118-138, Berlin, Heidelberg. Springer
Berlin Heidelberg.

Bruni, R. and Meseguer, J. (2003). Generalized rewrite the-
ories. In Baeten, J. C. M., Lenstra, J. K., Parrow, J.,
and Woeginger, G. J., editors, Automata, Languages
and Programming, pages 252-266, Berlin. Springer-
Verlag.

Capra, L. (2021). A maude implementation of rewritable
petri nets: a feasible model for dynamically reconfig-
urable systems. In Gleirscher, M., Pol, J. v. d., and
Woodcock, J., editors, Proceedings First Workshop on
Applicable Formal Methods, virtual, 23rd November
2021, volume 349 of Electronic Proceedings in The-
oretical Computer Science, pages 31-49. Open Pub-
lishing Association.

Capra, L. (2022a). Canonization of reconfigurable pt nets
in maude. In Lin, A. W., Zetzsche, G., and Potapov,
L., editors, Reachability Problems, pages 160-177,
Cham. Springer International Publishing.

Capra, L. (2022b). Rewriting logic and petri nets: A natu-
ral model for reconfigurable distributed systems. In
Bapi, R., Kulkarni, S., Mohalik, S., and Peri, S.,
editors, Distributed Computing and Intelligent Tech-
nology, pages 140-156, Cham. Springer International
Pub.

Clavel, M., Duran, F., Eker, S., Lincoln, P., Oliet, N. M.,
Meseguer, J., and Talcott, C. (2007). All About Maude
- A High-Performance Logical Framework: How to
Specify, Program, and Verify Systems in Rewriting
Logic. Lecture Notes in Computer Science. Springer.

Hachicha, M., Halima, R. B., and Kacem, A. H. (2019).
Formal verification approaches of self-adaptive sys-
tems: A survey. Procedia Computer Science,
159:1853-1862. Proceedings of KES2019.

Iglesia, D. G. D. L. and Weyns, D. (2015). Mape-k for-
mal templates to rigorously design behaviors for self-
adaptive systems. ACM Trans. Auton. Adapt. Syst.,
10(3).

Kohler-BuBmeier, M. (2009). Hornets: Nets within nets
combined with net algebra. In Wolf, K. and Frances-
chinis, G., editors, International Conference on Appli-
cation and Theory of Petri Nets (ICATPN’2009), vol-
ume 5606 of LNCS, pages 243-262. Springer-Verlag.

Ko&hler-Buimeier, M. (2014). A survey on decidability re-
sults for elementary object systems. Fundamenta In-
Sformaticae, 130(1):99-123.

Kohler-BuBmeier, M. and Heitmann, F. (2009). On the
expressiveness of communication channels for object
nets. Fundamenta Informaticae, 93(1-3):205-219.

Kohler-BuBmeier, M. and Heitmann, F. (2011). Live-

496

ness of safe object nets. Fundamenta Informaticae,
112(1):73-87.

Kohler-BuBBmeier, M. and Heitmann, F. (2013). Complexity
results for elementary Hornets. In Colom, J.-M. and
Desel, J., editors, PETRI NETS 2013, volume 7927 of
LNCS, pages 150-169. Springer-Verlag.

Kohler-Buimeier, M. and Heitmann, F. (2016). An upper
bound for the reachability problem of safe, elementary
hornets. Fundamenta Informaticae, 143:89-100.

Kohler-Buflmeier, M. and Moldt, D. (2009). Analysis of
mobile agents using invariants of object nets. Elec-
tronic Communications of the EASST: Special Issue
on Formal Modeling of Adaptive and Mobile Pro-
cesses, 12.

Kohler-BuBBmeier, M. and Rolke, H. (2004). Properties of
Object Petri Nets. In Cortadella, J. and Reisig, W.,
editors, International Conference on Application and
Theory of Petri Nets 2004, volume 3099 of LNCS,
pages 278-297. Springer-Verlag.

Kummer, O., Wienberg, F., Duvigneau, M., Schumacher, J.,
Kohler, M., Moldt, D., Rolke, H., and Valk, R. (2004).
An extensible editor and simulation engine for Petri
nets: Renew. In Cortadella, J. and Reisig, W., editors,
International Conference on Application and Theory
of Petri Nets 2004, volume 3099 of LNCS, pages 484
— 493. Springer-Verlag.

Padberg, J. and Schulz, A. (2016). Model checking recon-
figurable petri nets with maude. In Echahed, R. and
Minas, M., editors, Graph Transformation, pages 54—
70, Cham. Springer International Publishing.

Stehr, M.-O., Meseguer, J., and Olveczky, P. C. (2001).
Rewriting Logic as a Unifying Framework for Petri
Nets, pages 250-303. Springer-Verlag.

Valk, R. (2003). Object Petri nets: Using the nets-within-
nets paradigm. In Desel, J., Reisig, W., and Rozen-
berg, G., editors, Advanced Course on Petri Nets
2003, volume 3098 of LNCS, pages 819-848. Sprin-
ger-Verlag.

Weyns, D., Iftikhar, M. U., de la Iglesia, D. G., and Ahmad,
T. (2012). A survey of formal methods in self-adaptive
systems. In Proceedings of the Fifth International C*
Conference on Computer Science and Software En-
gineering, C3S2E ’12, page 67-79, New York, NY,
USA. Association for Computing Machinery.

Weyns, D. and Iftikhar, U. M. (2022). Activforms:
A formally-founded model-based approach to engi-
neer self-adaptive systems. ACM Trans. Softw. Eng.
Methodol.

