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Abstract: Investigation of curriculum elements in terms of knowledge content organisation can be based on two entities 
that support the process of knowledge acquisition: concepts and learning outcomes. Motivated by this 
structure of knowledge organisation, we construct curriculum knowledge content as a bipartite network of 
concepts and learning outcomes. Furthermore, we examine the applicability of centrality estimates in 
detecting key knowledge entities of curriculum content as well as possibilities to rethink the knowledge 
organisation and teaching. Results have shown that centrality analysis is particularly suitable for identifying 
concepts and learning outcomes that are key landmarks for managing cognitive load and improving learning 
retention. 

1 INTRODUCTION 

Many real-world systems can be represented as a 
large collection of interconnected elements, i.e., 
complex networks. Modelling systems as networks has 
found its application in transportation and navigation, 
medicine, criminology, biochemistry, electrical 
engineering, computer science, operations research, 
etc. Studies in educational sciences have also shown 
that network science techniques can reveal the 
relational nature of knowledge (Siew, 2020). 

Knowledge involves the intricate relationships 
among a set of knowledge elements and is not simply 
a collection of unrelated facts about a subject.  

How knowledge is acquired depends largely on 
the curriculum model, the role of experts in 
promoting knowledge acquisition, and the method of 
information transfer. In this study we examine the 
quality of design and relevance of outcome-based 
curriculum, as well as its linkage to effective teaching 
strategies, learning processes, and information 
content delivery. Learners are expected to 
demonstrate mastery of a number of interrelated 
information, skills, and attitudes within an outcome-
based curriculum. Because curriculum plays a crucial 
role in enabling high-quality learning and in defining 
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and supporting education, curriculum frameworks 
should cover cross-cutting competencies in addition 
to subject-specific capabilities. 

Consequently, knowledge domains can be 
perceived as complex systems consisting of clusters 
and subsystems. Therefore, we opt that the complex 
nature of educators’ knowledge and expertise can be 
explored through network models and that the 
structural properties of this knowledge representation 
can lead to insights. The aim of this paper is to explore 
the applicability of bipartite network representation to 
curriculum knowledge design and subdomain 
recognition. To this end, we construct a bipartite 
network from the content of IoT educational 
programme (Veleri – OI IoT School, 2021) and 
perform an analysis of the corresponding network 
topology. To the best of our knowledge, this is the 
first work that shows how to represent and analyse the 
knowledge organisation of a study programme 
curriculum as a bipartite network model. 
Furthermore, we examine the network science 
approach to curriculum content analysis to answer the 
following research questions: 

RQ1 - Can curriculum knowledge content be 
modelled through a bipartite network of concepts and 
learning outcomes? 
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RQ2 - How can centrality score indicate the key 
learning outcomes and curriculum knowledge content 
that can potentially overwhelm working memory and 
increase cognitive load?  

The difficult part in creating a quality curriculum 
is integrating multidisciplinary in planning, 
architecture, and design (Centre for teaching 
excellence, n.d.). There are many design examples 
where subject content focuses on key knowledge 
areas but does not reinforce the application of 
knowledge elements from one subject area to another. 
Identifying strategies that allow students to develop 
more consistent thinking patterns across subjects, 
could support the development of skills, attitudes and 
values in more than one subject or discipline. 

2 RELATED WORK 

The application of network science in educational 
research has found numerous use cases mostly 
focusing on the study of students' knowledge 
structure - the internal structure of the conceptual 
representations that learners acquire, the analysis of 
social interactions between learners/actors in the 
educational setting, the quantification of knowledge 
structures and the uncovering of differences in the 
structural properties of the knowledge representations 
of experts and novices, and the conduct of network-
based analyses in the context of curriculum design 
and education (Siew, 2019, 2022; Gera et al., 2021; 
Kubsch et al., 2020, Koponen & Pehkonen, 2010; 
O’Meara & Vaidya, 2021; Sun et al., 2020; Ireland & 
Mouthaan, 2020) 

Network structure has also been widely studied in 
languages, leading to new insights in phonetics, 
lexical processing, word learning, cognitive science, 
syntactic structures or learning grammar (Siew & 
Vitevitch, 2019; Siew, 2022; Castro et al., 2017; 
Goldstein & Vitevitch, 2017; Hills & Siew, 2018; 
Citraro et al., 2022; Vitevitch, 2020; Teixeira et al., 
2021; Lynn & Bassett, 2020) 

Knowledge is often described as a map (diagram), 
a web, or a network, in which conceptual components 
are interconnected and form a comprehensive and 
dynamic system (Novak, 2010; Koponen, 2021; 
Monahan et al., 2019; Kubsch et al., 2020; Koponen 
& Nousiainen. 2014; Lynn & Bassett, 2020; Ireland 
& Mouthaan, 2020) The network science approach 
aims to model a structure (e.g., a semantic relation) in 
which nodes (vertices) represent different knowledge 
elements or concepts and edges (or links) denote a 
relationship between pairs of concepts (entities or 
elements).  

Educational researchers have long been interested 
in understanding human cognition - particularly the 
organization of knowledge, the influence of 
experience on understanding, and the difference in 
acquiring expert-like practices and knowledge in a 
subject area. An increasing number of studies have 
emphasised the need of shifting from traditional 
(linear) education to an interconnected model of 
education that provides a networked (nonlinear) view 
of knowledge organization (Sun et al., 2020; Siew & 
Guru, 2022; Gera et al., 2021; Gera et al., 2022) 

Understanding the nature of expertise and expert 
knowledge representations is a crucial task in 
curriculum development because it greatly influences 
the effectiveness of instruction and the degree to 
which “educational engineering” is brought about in 
the learners. 

Furthermore, educational outcomes are expressed 
through the flow of information and the application 
of effective instructional techniques that can help 
students build and organize knowledge structures 
(Vukić et al., 2020). In addition, curriculum design is 
complex and should be motivated by the way 
knowledge is organised, especially in conjunction 
with educational outcomes for more engaged, longer 
lasting, and more effective learning. 

A fundamental thesis of expertise research is that 
experts and novices have different representations of 
knowledge, while experts are able to use their 
understanding of the deep structure of subject matter 
to solve a wide range of problems related to their area 
of expertise (Siew & Guru, 2022).  

Researchers emphasise the relevance and 
usefulness of centrality analysis as a means of 
quantifying different levels of expertise (Siew & 
Guru, 2022), identifying key nodes (Lommi & 
Koponen, 2019; Koponen & Nousiainen, 2019), and 
measuring the importance of concepts for cohesion 
(Koponen & Nousiainen, 2014). 

O’Meara & Vaidya (2021) explored the role of 
network theory in an effort to outline meaningful 
curricular connections and discuss the nature of 
connectivity in education, illustrated by the example 
of pre-calculus textbook. Textbooks can be seen as 
educational repositories of information enabling 
transfer of expert domain knowledge. The authors 
emphasise that uncovering an inherently complex 
nature of connectivity between specific curriculum 
topics could improve the aggregation of successful 
curricula across the subject and influence the 
understanding of scientific concepts and conceptual 
systems  

Vukić et al. (2020) introduced the multidimen-
sional knowledge network (MKN) based on the 
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learning outcomes (Bloom's taxonomy), key concepts 
in the subject matter domain and the principles of 
representation and analysis of how domain 
knowledge (concepts) can be modelled across four 
levels of knowledge. 

Planning, organising and implementing the 
teaching process requires adopting a 
multidisciplinary approach. Understanding the nature 
of domain-specific (or subject-specific) knowledge 
structures has become an important issue in 
educational science. 

Recent changes due to digitization, networked 
resources, and interdisciplinary shifts require a 
rethinking and reconceptualization of knowledge 
organization. Wheeler (1980) considers two types of 
relationships between learning experiences: vertical 
organization of knowledge (concepts learned within 
one subject area during an academic year) and 
horizontal organization of knowledge (concepts from 
one subject are related to concepts in other subjects as 
an attempt to develop an interrelationship between 
various subjects or disciplines). According to 
Thagard (1988) understanding the meaning of a 
concept's significance comes from its application to 
different problems and not just from studying its 
definitions and rules. Therefore, Thagard (1988) 
emphasizes, concepts need relate to other concepts in 
”various inductive, hierarchical, non-definitional 
ways. This is how meaning emerges.”. Thus, 
understanding grows as networks expand and 
connections are strengthened by mutually reinforcing 
experiences across different subject areas and more 
tightly structured networks.  

In addition, representing concepts and their 
interrelationships as a complex network is more 
consistent with our intuition that knowledge is 
inherently relational in nature, and that expertise is 
reflected in an interconnected, cohesive organization 
of concepts in a given domain.  

Detecting modules, courses or communities of 
concepts/learning outcomes, allows for quantitative 
investigation of relevant knowledge subdomains that 
may have different properties than the aggregate 
properties of the network as a whole, e.g., monolayer 
representation of knowledge organisation in 
curricula. Informally, a network community is a 
subgraph whose vertices are more likely to be 
connected to each other than to vertices outside the 
subgraph (Barber, 2007). 

As mentioned earlier, most network analysis 
methods and literature refer to unipartite networks, or 
networks with a single node type. Consequently, it is 
studied that in process of transformation from 
bipartite networks into unipartite networks, the loss of 

information is evident. Bipartite networks have a very 
particular structure that conflicts with representation in 
form of square adjacency matrices. In other words, 
they consist of two different types of nodes, with each 
edge connecting a node of one type to a node of the 
other type. In fact, a bipartite network can be used to 
represent any feature type that can be expressed by a 
categorical variable. Examples of these categories 
come from various research areas: scientific 
publications and authors (Newman, 2001), public 
transportation routes and stations served (Von Ferber, 
2009), food and its ingredients (Ahn et al., 2011), paper 
and author (Newman, & Park, 2003), article and 
concept (Palchykov & Holovatch, 2018), etc.  

As a case study, Palchykov & Holovatch (2018) 
uses the structure of concept-related networks of 
scientific knowledge in the field of physics where 
they consider a bipartite article-to-concept network 
with its two one-mode projections as the basic 
network representation of the publication system. In 
their research, they have shown how concept features 
(e.g. subject classes) may be derived from articles and 
how community detection or clustering approaches 
may be used to extract groups or modules in such 
knowledge systems. 

3 METHODOLOGY 

This paper explores unweighted directed bipartite 
graph as a formal network representation of the 
Veleri-OI IoT School international education 
programme, which is used to identify the desirable 
design of knowledge organisation. The subject of our 
analysis was a collection of concepts and learning 
outcomes from seven modules (courses): 

M1. Business idea development 
M2. Documentation of user requirements 
M3. Setting up a development environment 
M4. Non-relational databases 
M5. Web application development 
M6. Hybrid mobile applications development 
M7. Arduino embedded (IoT) systems 

In our previous work (Vukic et al., 2023), we 
defined several steps for data collection and the 
construction of a monolayer network. Following the 
defined procedure and the corresponding input data, 
we extracted unique entities from the aggregated IoT 
education programme edge list which contains 
concept pairs and associated learning outcomes. Two 
types of network nodes were identified from the 
module curriculum content: concepts and learning 
outcomes (LO). The semantics of the connection 
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between the nodes is that the concept contributes to 
the achievement of the learning outcomes.  

Accordingly, we created an edge list for the entire 
IoT education programme - the raw data was 
modified according to the use case and tool 
instructions for input data.  

In general, bipartite graphs are graphs in which 
the set of nodes can be partitioned into two disjoint 
sets such that each edge connects a vertex of one 
partition to a vertex of the other partition. 

The vertex set U has two types of vertices, which 
represent concepts or LO. Mathematically, U = A ∪ 
B where A = {a1, a2, ..., am} is the set of vertices 
representing concepts, where m is the number of 
concepts in this IoT education programme, and B = 
{b1, b2, ..., bn} is the set of vertices representing LO, 
where n is the number of LO. According to previous 
studies, three main analytic tasks have been 
highlighted for this network model (Xu et al., 2014; 
Yang et al., 2022): i) measuring the importance or 
role of a node within a given network; ii) identifying 
clusters of similar elements in one node set in terms 
of their connections to elements in another node set 
and vice versa; iii) understanding the connections 
between clusters in both node sets A and B. 

An advantage of this type of network is the ability 
to quantify the connections between actors and their 
relationships, rather than relying only on attribute 
data. In addition, a relational model between entities 
can be created that provides details about the 
properties of the network and the interactions of the 
actors. 

Our analysis of the bipartite network of education 
programme focuses on the topology analysis 
quantified by the network metrics of degree 
centrality. Gephi tool was used to visualize and 
analyse node’s centrality for bipartite graph (Bastian 
et al., 2009)  

Exploring node’s number of neighbours can be 
easily done by using degree centrality which simply 
counts the total number of connections of a node . For 
a node i, its normalised degree value is given by 
(Newman, 2018): ݀ܿ௜ = ∑ ௄೔ೕೕಿసభேିଵ  (1)

where ܭ௜௝	is the ij-th element of the adjacency 
matrix K of the graph and N is the number of vertices 
in the graph. 

Degree centrality is a useful indicator of a node’s 
total number of connections, but it does not always 
provide information about a node's importance in 
terms of linkage to other nodes or its degree of 
centrality within a larger group (Golbeck, 2013). 

Although this preliminary research focuses only on 
the analysis of node centrality and its degree, the 
importance of nodes in a bipartite network can be 
investigated using metrics designed specifically for 
this type of network, which we will discuss in the 
final chapter of this paper. 

4 RESULTS 

In this section, we present bipartite representation of 
the IoT education programme, the application of the 
defined model to the subject matter area, and the 
results of the network measures. 

4.1 Bipartite Network Representation 

The result of the bipartite network representation 
(RQ1) is partially shown in Figure 1, which 
demonstrates a bipartite network in which one set of 
nodes represents concepts from the teaching content 
(pink) and the other set represents learning outcomes 
of the teaching content (green) filtered according to 
the node’s degree for the value 13-30 (maximum 
number of neighbours of the node) i.e. nodes that 
have between 13 and 30 connections to the nodes are 
shown. We chose this interval so that we can clearly 
present the nodes, i.e. two sets of nodes. The 
semantics of the connection between nodes is that the 
concept contributes to the achievement of learning 
outcomes.  
 

Table 1: Example of data input for bipartite network. 

LO Concepts 

M2.I1.1.describe 
the phases of 
requirements 
management 

user needs 
user requirement 

user requirement analysis 
requirements management 

system requirements 
requirements management 

requirement elicitation 
requirement specification 

requirement validation 
requirement negotiation 

M5.I3.3. Ensure 
access to web 

services by 
creating routes 

creating a route 
HTTP protocol 

REST 
Node.js 
Express 

JavaScript 
requirements management 

HTTP protocol 
API call 

REST architecture 
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Table 1 shows an example of data input for 
bipartite network pairing the learning outcome node 
type with the concept node type concept. Based on 
these two rows, two nodes of the learning outcome 
type would be created: M2.I1.1. Describe the phases 

of requirements management and M5.I3.3. Ensure 
access to web services by creating routes that are 
connected to ten Concept type nodes from the 
corresponding line. 

 

 

Figure 1: Bipartite network representation of the IoT education programme. 
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Also, it is evident that among these 10 concepts is a 
concept: requirements management which is a link to 
both learning outcomes mentioned above.  

4.2 Bipartite Network Analysis 

Table 2 presents the results of the global 
characterization of the structural properties for the 
bipartite network of the IoT programme: total number 
of learning outcomes (LO), total number of identified 
concepts (C) and total number of edges (E). 
Furthermore, we explore top five nodes from each set 
in terms of the number of neighbours they are 
connected to. 

Table 2: Basic characteristics of the dataset 

Bipartite 
network 

LO C E 

IoT 
education 

programme 
112 399 799 

The subject of our analysis was a collection of LO 
and concepts listed in the Veleri-OI IoT School 
international education programme module’s 
curriculum. The curriculum contains 511 unique 
nodes. 112 of these nodes are learning outcomes and 
399 are concepts.  

Exploration of the module networks shows 
variations in the number of nodes from network sets. 
In other words, the learning outcome set has a 
significantly smaller number of nodes.  

Table 3: The top five ranked nodes by degree (݀ܿ௜) for node 
type: concept.  

Concept  ࢏ࢉࢊ 
NoSQL database 15 

client server architecture 9 

database 9 

HTTP protocol 9 

Firestore 9 

The degree of a node represents the largest 
number of connections (neighbours) that a node has 
in the network. Figure 1 presents nodes filtered by 
range of degree 13-30. If a concept node is connected 
with multiple links to different sets of LO, it means 
that this concept contributes to different learning 
outcomes at the level of the teaching unit. 

Table 4: The top five ranked nodes by degree (݀ܿ௜) for node 
type: learning outcome. 

Learning outcomes  ࢏ࢉࢊ  
M5.I1.5 Implement the entire application logic 
of the web application including work with user 

routes and their defense against unauthorized 
access 

30 

M1.I2.1 Identify customer needs 27 
M3.I2.2 set initial development environment on 

a serverless platform in a cloud using web 
browser and CLI from a local computer 

26 

M5.I2.1 Create the application logic of the web 
service during which suitable external packages 

will be selected 
26 

M6.I3.1 Set up a development environment for 
the development of hybrid mobile applications 

24 

For example, the concept NoSQL database (Table 
3) is associated with a large number of outcomes and 
contributes to the achievement of multiple learning 
outcomes. The centrality analysis shows that this 
concept can be crucial in integrating a 
multidisciplinary study that allows students to 
develop important transferable skills such as critical 
thinking and synthesis of ideas. Therefore, it can be 
concluded that revisiting key concepts across 
multiple learning outcomes may increase the 
likelihood of retaining knowledge in a student's long-
term memory and improve learning retention (RQ2). 
In addition, the LO node M5.I1.5 Implement the 
entire application logic of the web application 
including work with user routes and their defense 
against unauthorized access (Table 4) which has a 
degree value of 30 represents a learning outcome to 
which 30 different concepts contribute. Using this 
network approach we can determine the complexity 
of LO based on the number of concepts that 
contribute to this outcome.  

Expert knowledge reflects structured, intricately 
interwoven cognitive schemas that include one's 
knowledge and abilities and are a necessary 
component of a well-organized long-term memory. 
Knowledge organisation which supports a reduction 
in cognitive load during learning and problem 
solving, leads to increased competence. Processing 
new information results in “cognitive load” on 
working memory and can affect learning outcomes 
(Kalaš, & Mittermeir, 2011). Overload occurs in 
learning settings where a large number of items are 
thought of at once. For any outcome with a large 
number of concepts, educators should consider 
decomposing learning outcomes into less cognitively 
complex learning outcomes or systematically 
organising knowledge content (concepts) to facilitate 
complex learning.  
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5 CONCLUSIONS 

The essential role of curriculum is to enable quality 
learning and to provide a foundational framework for 
achieving high-quality learning outcomes. The 
curriculum as a complex network consists of several 
types of elements and exhibits multiple relations 
between them, which is emphasised by the fact that 
the node objects are heterogeneous and the edge types 
are diverse. Acknowledging the multivariate nature of 
the network, we move from the simple monolayer 
representation to a more powerful abstraction for 
modelling – the bipartite network model. Hence, we 
extract entities from the curriculum knowledge 
content - concepts and LO into two sets and construct 
an unweighted directed bipartite network (RQ1). To 
demonstrate and apply relationships between related 
subjects, learning processes should enable students to 
draw meaningful connections between subjects and 
integrate multiple subjects into larger learning 
domains. As a result, it would also encourage the 
growth of more intricate cognitive interconnections 
and structures, and consequently, of competences and 
skills within and across domains. Centrality analysis 
has shown that achieving the learning outcomes with 
large number of concepts is highly correlated with 
cognitive load during learning of new and yet 
strongly interwoven concepts (RQ2). Measuring the 
importance of nodes in bipartite graphs could be 
easily bypassed by projecting the bipartite graph onto 
a unipartite network and calculating the centrality 
values using, for example, the PageRank or 
Eigenvector centrality algorithms, which may lead to 
information loss and distortion of the network 
topology, resulting in misleading results. Therefore, 
in our future work, we will investigate centrality 
metrics designed specifically for bipartite networks - 
BiRank, HITS, CoHITS and BGRM centrality index 
and their comparison with unipartite network model 
for the IoT education programme. The representation 
of knowledge networks as bipartite network, apart 
from enabling the key entity detection, allows the 
study of the effective knowledge organisation, in 
terms of optimal information transfer that student can 
absorb and retain effectively provided in such a way 
that it does not “overload” their mental capacity. 
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