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Abstract: For pattern classification problems, there is ensemble learning method that identifies multiple weak classifiers
by the learning data and combines them together to improve the discrimination rate of testing data. We have
already proposed pdi-Bagging (Possibilistic Data Interpolation-Bagging) which improves the discrimination
rate of testing data by adding virtually generated data to learning data. In this paper, we propose a new
method to specify the generation area of virtual data and change the generation class of virtual data. As a
result, the discriminant accuracy is improved since five new bagging methods which generate virtual data
around correct discrimination data and error discrimination data are formulated, and the class of virtual data
is determined with the proposed new evaluation index in multidimensional space. We formulate a new pdi-
Bagging algorithm, and discuss the usefulness of the proposed method using numerical examples.

1 INTRODUCTION

Recently, ensemble learning methods(Polikar, 2006;
Rokach, 2009), which are useful for pattern clas-
sification problems, have been proposed. The en-
semble method learns multiple weak classifiers us-
ing training data and can improve the classification
accuracy of the evaluation data by combining multi-
ple weak classifiers over the layers. Ensemble learn-
ing can be broadly categorized into two types: the
classifier combination model and the attribute com-
bination model. In particular, the classifier combi-
nation model can be classified into an independent
type in which each classifier is combined indepen-
dently and a dependent type in which each classifier is
combined while maintaining a dependency relation-
ship. In the independent type, each classifier is trained
with individual training data, so it is possible to inte-
grate them independently and obtain a high classifica-
tion rate. The independent type includes the bagging
method(Breiman, 1996), Random Forests(Breiman,
2001), Error-Correcting Output Codes(Dietterich and
Bakiri, 1995). The bagging method represents boot-
strap aggregation. The learning data for a classi-
fier are obtained via bootstrap sampling, and multiple
classifiers are learned independently from the learn-
ing data. Finally, the final result is obtained based on
the majority vote involving all the integrated classi-
fiers. Since the bagging method is a simple ensemble

method that uses multiple classifiers, the algorithm
is simple and offers high applicability. For exam-
ple, it is often used as a clustering model for medical
data(Breiman, 1996).

On the other hand, there are boosting
method(Freund and Schapire, 1997; Friedman
et al., 2000) and adaptive mixture method of local
experts(Jacobs et al., 1991) as the dependent type of
classifier combination model. Boosting is a method to
improve the classification rate by sequentially learn-
ing weak classifiers. In particular, AdaBoost(Freund
and Schapire, 1997) is particularly useful and has
the advantage of being easy to analyze features of
datasets. In this way, the dependent type, represented
by boosting, is trained by multiple weak classifiers
while maintaining sequential interdependence with
the training data and can identify the input-output
relationship with the dependence. On the other hand,
in the independent type, represented by bagging, the
weak classifier is independent for each training data,
but the processing algorithm is relatively simple and
has high accuracy.

We have proposed a new bagging algorithm for
the generation and interpolation of data around mis-
classified data using a specified membership func-
tion(Hayashi and Tsuruse, 2010; Hayashi et al.,
2012). We name this method possibilistic data in-
terpolation bagging (pdi-bagging). The interpola-
tion of data around misclassified data is called vir-
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tual data. In pdi-bagging, data misclassified by the
classifier model are not weighted as in AdaBoost,
nor are they added to the next training data. The
classes of virtual data are estimated from their lo-
cations(Irie and Hayashi, 2019b; Irie and Hayashi,
2020) and the virtual data are added to training data
to estimate discriminant lines using weak classifiers
based on fuzzy inference(Nomura et al., 1991; Irie
and Hayashi, 2019a). Similarly, in the next layer,
the class of virtual data is estimated and added to the
training data to estimate the discriminant line. This
series of operations is repeated, and finally, the clas-
sification rate for the evaluation data is obtained by a
majority vote of multiple weak classifiers. Since the
number of data increases with the addition of virtual
data during training, the amount of data in each class
is equalized by eliminating the bias in the amount of
data between classes, which improves the accuracy of
identifying the discriminant line. In this paper, we
formulate five types of virtual data generation meth-
ods and discuss their usefulness using numerical ex-
amples.

2 pdi-Bagging

A conceptual diagram of pdi-bagging is shown in
Fig.1. In pdi-Bagging, first, weak classifiers M0 of
fuzzy inference are learned using training data prob-
abilistically extracted from all datasets, and the dis-
criminant rate of the training data T RD is calculated.
Next, virtual data are generated around the misclas-
sified data using membership functions. The gener-
ated virtual data is added to the original training data
to increase the number of training data T RD. Using
original training data and virtual data, the classifica-
tion rate is calculated by a weak classifier M1 based
on fuzzy inference. Because of increasing the number
of T RD improves the discriminant accuracy of weak
classifiers. The repeating of operations is finished at
the L times when the end judgment is satisfied. Fi-
nally, the evaluation data (CHD) are input to L weak
classifiers M0,M1, · · · ,Ml , · · · ,ML, and the final result
is then calculated by majority rule. Since pdi-Bagging
adds virtual data to training data and calculates the
discriminant rate by multiple weak classifiers, its dis-
criminant rate is higher than the conventional bagging
method and AdaBoost(Hayashi and Tsuruse, 2010;
Hayashi et al., 2012).

In pdi-Bagging, fuzzy clustering by simple fuzzy
inference(Nomura et al., 1991) is adopted as a weak
classifier. Fuzzy inference is excellent in learning
ability and can realize visualization of learning re-
sults using rule description. Therefore, the fuzzy in-

ference is adopted here as a weak classifier. Simpli-
fied fuzzy inference expresses rules in if-then form,
uses fuzzy sets defined by membership functions in
the antecedent part, and defines the consequent part
in singleton form with real numbers. We use here a
trapezoidal fuzzy set as the membership function.
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Figure 1: pdi-Bagging Algorithm.

Let z be the output variable and pi be the sin-
gleton in the consequent part, the fuzzy rule, ri, i =
1,2, · · · ,R, is expressed as follows.

ri : if x1 is µFi1(x1) and · · · and xn is µFin(xn)

then C = {Cik | z = pi}
where C is the output class, and Cik indicates that the
class value is Ck in rule ri.

Suppose we have obtained the input data x =
(x1,x2, · · · ,xn). The input data x is input to the an-
tecedent part of the i-th fuzzy rule ri, and the degree
of the antecedent part, µi(x) = µFi1(x1) ·µFi2(x2) · · · · ·
µFin(xn), is calculated. The result of fuzzy inference,
ẑ, and class C are calculated by the following equa-
tions.

ẑ =
∑

R
i=1 µi(x) · pi

∑
R
i=1 µi(x)

C = {Ck | min |ẑ− z|}
Now, let’s explain how to generate virtual data in

pdi-Bagging. Let xD(d) = (xD
1 (d),x

D
2 (d), · · · ,xD

j (d),
· · · ,xD

n (d)) denote the d-th data in the data set D con-
sisting of W data. Virtual data xV (d) are generated
around correctly discriminated data(correct-classified
data) xC(d) and misclassified data xE(d). For a cer-
tain real number h, 0 ≤ h ≤ 1, the virtual data xV

j (d)
of the j-th attribute of xV (d) is generated using the
membership function µF(x j) of the fuzzy number F
as follows.

xV
j (d) = {x j | µF(x j) = h, µF(xS

j(d)) = 1}
h ∼ N(1,1), 0≤ h≤ 1

where, xS
j(d) means correct-classified data xC

j (d) or
misclassified data xE

j (d). In addition, the membership

pdi-Bagging: A Proposal of Bagging-Type Ensemble Method Generating Virtual Data

957



function µF(x j) is defined by the following normal
distribution whose center is xS

j(d) and whose standard
deviation is σ.

µF(x j) =
1√

2πσ2
exp(−

(x j− xS
j(d))

2

2σ2 ) (1)

We propose the following five methods for gener-
ating virtual data.

(1) CA: Virtual data generation method with
correct classified data in the whole space
When the training data xS(d) is correctly clas-
sified by the weak classifier, virtual data xV (d)
are generated around the correct classifying data
xC(d).

(2) CC: Virtual data generation method with
correct classified data at the cluster center
When the training data xS(d) is misclassified by
the weak classifier, the midpoint between the clos-
est correct classified data and the farthest cor-
rect classified data from xE(d), whose classes are
same as the misclassified data xE(d) is calculated.
Virtual data xV (d′) are generated around the cor-
rect classified data xC(d′) closest to the midpoint.

xC(d′) = {xC(e) | min
e
|xC(e)− 1

2
(max

f
|xE(d)

−xC( f )|+min
g
|xE(d)−xC(g)|)|,

f or ∀e, f ,g}

(3) E: Virtual data generation method with
misclassified data
When the training data xS(d) is discriminated as
misclassified by the weak classifier, virtual data
xV (d) are generated around the misclassified data
xE(d).

(4) MA: Virtual data generation method by
mixing correct classified data and
misclassified data in the whole space
By alternately using CA type and E type in each
layer of bagging, virtual data xV (d) is generated
around xC(d) and xE(d).

(5) MC: Virtual data generation method by
mixing correct classified data and
misclassified data at the cluster center
By alternately using CC type and E type in each
layer of bagging, virtual data xV (d) is generated
around xC(d) and xE(d).

In particular as to CC, we explain about how to gen-
erate virtual data arround the correct classified data at

the cluster center using Fig.2. We assume the classter-
ing problem of a total of 8 data into two classes, green
class and yellow class, in Fig.2. The training data with
a green frame in yellow located at the bottom of the
figure is misclassified as the green class, although the
true class is the yellow class. Since the true class of
the misclassified data xE(d) is yellow class, the mid-
point between the closest correct classified data and
the farthest correct classified data from xE(d), whose
classes are yellow is calculated. Virtual data xV (d′)
are generated around the correct classified data xC(d′)
whose class is yellow closest to the midpoint. Ac-
cording to the generation method, many virtual data
in the CC method tend to generate near the center of
the cluster. Therefore, we should note that the gener-
ation of virtual data by the CC method tends to affect
the discriminant line, compared to the CA that gen-
erates virtual data in the entire space. In addition, it
is possible to control the degree of influence on the
discriminant line by moving the coordinate posision
currently set as the midpoint to an arbitrary interpola-
tion point or extrapolation point from the endpoints.

!"#$!%&" '&&()*+&#

!"#$"%&" '&&()*+&#

!!,#-
!"#$./01#1&$.0((#2&

./311)4)#5$63&3

!"#$73(&"#1&$.0((#2&

./311)4)#5$63&3

!"#$%&'()&$&

.0((#2&$

./311)4)#5$63&3

.0((#2&$./311)4)#5$63&3

.0((#2&$./311)4)#5$63&3

!",$-

!",%-

!",#&-

!#,#&-

!",#&-

8 90(:3/

6)1&()*+&)0;

8 <;)40(:

6)1&()*+&)0;

=)12/311)4)#5$63&3

:)5>0);&

Figure 2: Generation of Virtual Data with Correct Data
around Cluster Center.

3 FORMULATION FOR CLASS
MODIFICATION

We propose here a new class determination method
for assigning correct classes to virtual data. Suppose
that virtual data xV (d) are generated from the correct
classified data xC(d) and the misclassified data xE(d).
Basically, the class of the virtual data xV (d) should
be the same as the output class of the source data
xS(d) = {xC,k(d), xE,k(d)}. However, virtual data
may generate at locations far from the source data.
In addition, virtual data may generate in areas where
different classes of data are dense. herefore, the class
k∗ of the virtual data xV (d) is determined by the inte-
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gration evaluation formula using the following three
evaluation criteria. Therefore, the class k∗ of the vir-
tual data xV (d) is determined by the integration evalu-
ation formula using the following three evaluation cri-
teria; the evaluation of the correct/misclassified data
(E1), the evaluation of the class centers (E2), the eval-
uation of neighborhood data classes (E3).

(1)Evaluation of Correct/Misclassified Data(E1)
The evaluation value E1 is defined by the distance
between the virtual data xV (d) and the source data
xS,k(d) with class k. The smaller this evaluation value
E1, the higher the dependence of xV (d) on class k.

Ek
1 =

|xV (d)−xS,k(d)|
maxe |xS,k(d)−xD+V (e)|−min f |xS,k(d)−xD+V ( f )|

,

f or ∀e, f

E p
1 = 1−Ek

1 , f or p 6= k

(2)Evaluation of Class Centers(E2)

The evaluation value E2 is defined by the distance be-
tween the virtual data xV (d) and the center of the class
k. The smaller this evaluation value E2, the higher the
dependence of xV (d) on class k. Now, when the cen-
ter of class k is represented by xk

c,

Ek
2 =

|xV (d)−xk
c|

maxe, f |xD+V (e)−xD+V ( f )|
, f or ∀e, f

(3)Evaluation of Neighborhood Data Classes(E3)

The evaluation value E3 is defined by the distance
between the virtual data xV (d) and the closest cor-
rect/misclassified data xS,k(e) with class k. The
smaller this evaluation value E3, the higher the de-
pendence of xV (d) on class k.

Ek
3 =

mine |xV (d)−xS,k(e)|
max f ,g |xD+V ( f )−xD+V (g)|

, f or ∀e, f ,g

According to these three criteria, the evaluation
E1 is higher when the virtual data generate near the
source data. On the other hand, the evaluation E2 is
high when the virtual data generate near the center of
the class.

By integrating these three evaluation criteria, the
overall evaluation value Ek is obtained. The virtual
data xV (d) has the class k∗ that minimizes the follow-
ing overall evaluation value Ek.

k∗ = {k|min
k

Ek = min
k
(w1Ek

1 +w2Ek
2 +w3Ek

3)} (2)

where w1,w2,w3 are the weights of each evaluation
value.

We formulate the pdi-Bagging algorithm as fol-
lows.

Step 1 We assume that the W data D is obtained. Data
D are categorized into two types of datasets:
W T RD training data DT RD and WCHD check
data DCHD. In addition, interpolated data are
represented by DV .

Step 2 The training data DT RD are used as input to the
l-th weak classifier Ml , and the discriminant
rate rT RD

l is obtained. where M0 is the initial
weak classifier.

Step 3 The d-th data that was correctly or misclassi-
fied is temporarily extracted from DT RD. As-
sume that the d-th data point is misclassified.
For the j-th attribute value xS

j(d) of the correct
classified data or the misclassified data, virtual
data xV

j (d) are generated by the membership
function µF(x j).

Step 4 Calculate the class k∗ of the virtual data xV (d)
by the equation (2). Remove the virtual data
xV (d) from the l−1th DV with l > 2, and adds
virtual data xV (d) with class k to the lth DV .

Step 5 Extract v pieces of virtual data from DV by
random number and add them to DT RD.

Step 6 Steps 2 to 4 are repeated with l = l + 1, and
the algorithm is terminated at K = l satisfying
rCHD

l ≥ θ for threshold θ. Alternatively, the
algorithm ends when l ≥ K is satisfied for the
number of weak classifiers L and the number
of iterations K, K ≤ L.

Step 7 To obtain the final discrimination result, DCHD

is applied to M0, M1, · · · , Ml , · · · , MK , and
then the discriminant rate rCHD

K is obtained by
majority rule.

4 VERIFICATION AND
DISCUSSION USING
NUMERICAL DATA

To explain the pdi-bagging algorithm, we discuss the
two-dimensional classification problem. It is assumed
that 200 training data points and 200 checking data
points exist in a two-dimensional space of the inter-
val [0,1], and that these data can be categorized into
two classes. Fig. 3 shows the numerical data used
for training data and checking data. These numerical
data were constructed by adding the value ±0.05 to
the basic data using random numbers. We deal with
two-input and two-classes discrimination problems as
numerical data. For this discriminant problem, the
real value of the consequent part of the fuzzy infer-
ence rules are set to 2.0 (red,©) and 3.0 (blue,4).
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Simplified fuzzy inference is used as the weak clas-
sifier, and five types of trapezoidal membership func-
tions are set for each input interval [0, 1]. Since the
data space is two-dimensional, the 25 rules are con-
stracted in the whole area of the space. In addition,
in order to verify the classification rate when rules
are added to the data space as specific areas, 49 rules
are added to G1 = {(x1,x2) | [0.4,0.7]× [0.4,0.7]}
as the specific area G1, and 4 rules are added to
G2 = {(x1,x2) | [0.7,0.8]× [0.3,0.7]} as the specific
area G2. As a result, the total number of rules is 78.
The addition of the rules improves the accuracy of the
discriminant rate in regions away from the discrim-
inant line where the data are dense, and the overall
discriminant rate is improved. The discriminant rate
was here calculated for a total of three types: no ad-
ditional rule, membership function set in the trape-
zoidal shape, and membership function defined in the
right-angled trapezoidal shape at both ends of specific
regions. When the membership function in the spe-
cific region are set as right-angled trapezoid type at
both ends of specific regions, the size of the specific
region does not change even if the membership func-
tions are learned. On the other hand, when trapezoidal
membership functions are set at both ends of specific
regions, the size of the region changes as the mem-
bership functions are learned. Therefore, when the
right-angled trapezoidal membership function are set
in the additional rules, the membership functions do
not move outside the specific region even when the
membership functions are learned, and it is learned
intensively within the specific region.

!"#$%&'()*+",$-."'/,($0"1"$$2 !3#$%&'()*+",$-."'/,($0"1"$4

Figure 3: Numerical Example Training and Testing Data.

The initial value of the antecedent part of the fuzzy
reasoning is set by the default method, and the learn-
ing order of the antecedent and consequent parts is
that the consequent part is learned first, and then the
antecedent part and the consequent part are alternately
learned. In the learning process, the learning coeffi-
cients of the x-coordinates xb and xc of the two ver-
tices of the upper bases of the trapezoidal membership
function denote Kb and Kc, and were set to 0.01(Irie

and Hayashi, 2019a). In addition, the learning co-
efficients of the difference α and β between the x-
coordinates of the upper and lower bases denote Kα

and Kβ, and were set to 0.01(Irie and Hayashi, 2019a).
On the other hand, the learning coefficient Kp of the
singleton of the consequent part was set to 0.4 for
the first consequent learning and 0.6 for the alternate
learning. The number of epochs of the consequent
part is set to 10, and the alternating learning of the
consequent part is set to (10, 10).

As a membership function µF(x j) for generating
virtual data, the normal distribution of Equation (1)
with a standard deviation of σ = 0.5 was selected,
andthe number of virtual data generated was basically
one. However, in preliminary experiments, the dis-
criminant rate of fuzzy inference was about 87%. As
a result, about 26 out of 200 checking data are er-
roneously classified, and about 8 virtual data are re-
quired to make the total number of virtual data equal
to 200 training data. Therefore, we also discussed the
discriminant rate when the number of generated vir-
tual data was changed from 1 to 10.

The evaluation values weight for class estimation
of virtual data are (w1,w2,w3) = {(1/3, 1/3, 1/3), (0.2,
0.4, 0.4), (0.2, 0.3, 0.5) , (0.2, 0.5, 0.3), (0.5, 0.25,
0.25), (0.01, 0.495, 0.495), (0.05, 0.475, 0.475)}. In
determining the weight, the weight w1 of the dis-
tance from the source data has a large effect on the
class estimation. Therefore, we discussed the dis-
criminant rate for a total of 7 types: w1 = 1/3 when
w1 = w2 = w3, w1 = 0.5, and 5 types with the value
of w1 reduced.

The algorithm is terminated by the termination rule
whose number of iterations K = 5. In the mixed dis-
criminant type, the type for the misclassified data was
adopted in the odd layers, and the type for the correct
classified data was adopted in the even layers. In the
learning process of fuzzy inference, the order of data
is changed by random numbers every epoch. Since
the number of epochs for the learning of the conse-
quent part and the alternate learning of the antecedent
part and the consequent part is 10 and (10, 10), re-
spectively, the total number of epochs is 150 in the
five-layer learning. Since 2-fold cross-validation is
used here, 150 epochs of epoch learning for each data
set to result in a total of 300 epochs of learning. We
compared the average discriminant rates obtained in
10 trials for each of the different types, CA, CC, E,
MA, and MC.

The discriminant rate for evaluation data by 5 types
of virtual data generation methods: type of correct
classified data in the whole space(CA), type of correct
classified data at the cluster center(CC), type of mis-
classified data(E), mixing type of correct classified
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data and misclassified data in the whole space(MA),
and mixing type of correct classified data and mis-
classified data at the cluster center(MC) are shown in
Table 1 and Figures 4-6. Table 1 shows the discrim-
inant rate for each weight with respect to the eval-
uation index, with and without additional rules, and
with respect to the shape of the membership function
within a specific region. We also calculated the differ-
ence from the discriminant rate when 25 rules were
set with the trapezoidal membership function. Fig-
ures 4 to 6 show the average discriminant rate for the
weight with respect to the evaluation index, with and
without additional rules, and with respect to the shape
of the membership function within a specific region.
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Figure 4: Average Discriminant Rates of 5 Methods in 25
Basic Rules.

First, from the results in Table 1 and Fig. 4, the
following characteristics of the discriminant rate are
clear for the case of 25 rules with trapezoidal mem-
bership functions. The discriminant rate by 2-fold
cross validation of fuzzy inference with 25 rules was
84.40%. The discriminant rate of all five methods that
generate virtual data is higher than the result of this
fuzzy inference, so the generation of virtual data is
effective in improving the discriminant rate.

In the case of 25 rules in the trapezoidal member-
ship function, the discriminant rate is not necessarily
high. On the other hand, the discriminant rates of 5
methods are higher than that of the 25 rules. In the
types of correct classified data, the discriminant rate
of CC is higher than that of CA, and even in the mix-
ing types of correct classified data, the discriminant
rate of MC is higher than that of MA. The reason is
that in CC and MC, the virtual data are generated near
the center of the cluster, so the fuzzy rules near the
center of the class are learned with high accuracy.

Table 1 and Fig.5 show the characteristics of the
discriminant rate of the 78 rules added within the
specific region by the trapezoidal membership func-
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Figure 5: Average Discrimination Rates of 5 Methods in 78
Total Rules Added by Trapezoidal Membership Function.

tion. The discriminant rate of 2-fold cross valida-
tion of simple fuzzy inference with 78 rules using the
trapezoidal membership function was 89.68%. On the
other hand, among the five types of virtual data gen-
eration methods, the discriminant rates of three types,
CC, E, and MC are higher than simple fuzzy infer-
ence. Therefore, methods other than generating vir-
tual data in the entire space are effective.
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Figure 6: Average Discrimination Rates of 5 Methods in
78 Total Rules Added by Right Trapezoidal Membership
Function.

In addition, Table 1 and Fig.6 show the character-
istics of the discriminant rate of the 78 rules added
within the specific region by the right-angled trape-
zoidal membership function. The discriminant rate
of 2-fold cross validation of simple fuzzy inference
with 78 rules using the right-angled trapezoidal mem-
bership function was 89.73%. Among the five types
of virtual data generation methods, the discriminant
rates of four types, CC, E, MA, and MC are higher
than simple fuzzy inference. In particular, the MC and
the CC are higher than 0.45%. Therefore, in the case
of 78 rules with right-angled trapezoidal membership
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Table 1: Comparison of Discriminante Rates According to 5 Methods.

Rule Format
Evaluation Values CA (%) CC (%) E (%) MA (%) MC (%)

Weight Dis.R. Dif. (a) Dif. (b) Dis.R. Dif. (a) Dif. (b) Dis.R. Dif. (a) Dif. (b) Dis.R. Dif. (a) DIf. (b) Dis.R. Dif. (a) Dif. (b)

(a) Trap.M.F.
25 Rules

1/3, 1/3, 1/3 86.73 — — 87.70 — — 86.61 — — 87.05 — — 87.29 — —
0.2, 0.4, 0.4 86.50 — — 87.60 — — 87.03 — — 87.28 — — 87.52 — —
0.2, 0.3, 0.5 87.00 — — 87.55 — — 86.70 — — 87.03 — — 87.10 — —
0.2, 0.5, 0.3 86.85 — — 87.70 — — 86.70 — — 87.08 — — 87.15 — —

0.5, 0.25, 0.25 86.40 — — 87.45 — — 86.95 — — 86.85 —- — 87.40 — —
0.01, 0.495, 0.495 87.18 — — 87.55 — — 86.55 — — 86.58 — — 86.88 — —
0.05, 0.475, 0.475 87.45 — — 87.48 — — 86.85 — — 86.63 — — 87.30 — —

Average 86.87 — — 87.58 — — 86.77 — — 86.93 — — 87.23 — —

(b) Trap,M.F.
78 Rules

1/3, 1/3, 1/3 89.53 2.80 — 89.83 2.13 — 89.80 3.18 — 89.78 2.73 — 89.79 2.50 —
0.2, 0.4, 0.4 89.33 2.83 — 89.93 2.33 — 90.15 3.13 — 90.00 2.73 — 89.95 2.43 —
0.2, 0.3, 0.5 89.03 2.03 — 90.15 2.60 — 90.30 3.60 — 89.78 2.75 — 89.93 2.83 —
0.2, 0.5, 0.3 88.95 2.10 — 89.65 1.95 — 90.05 3.35 — 89.85 2.78 — 89.83 2.67 —

0.5, 0.25, 0.25 89.18 2.77 — 89.48 2.03 — 90.05 3.10 — 89.38 2.53 — 90.23 2.83 —
0.01, 0.475, 0.475 87.40 0.22 — 89.80 2.25 — 88.63 2.08 — 88.55 1.97 — 89.43 2.55 —
0.05, 0.475, 0.475 88.70 1.25 — 90.00 2.52 — 89.83 2.97 — 89.85 3.23 — 89.85 2.55 —

Average 88.87 2.00 — 89.83 2.26 — 89.83 3.06 — 89.60 2.67 — 89.86 2.62 —

(c) R.A.Trap.M.F.
78 Rules

1/3, 1/3, 1/3 90.03 3.30 0.50 90.33 2.63 0.50 89.93 3.32 0.14 90.23 3.18 0.45 90.15 2.86 0.36
0.2, 0.4, 0.4 89.83 3.33 0.50 90.20 2.60 0.27 90.35 3.33 0.20 90.28 3.00 0.27 90.28 2.76 0.32
0.2, 0.3, 0.5 90.45 3.45 1.43 90.10 2.55 -0.05 90.05 3.35 -0.25 90.10 3.08 0.32 90.30 3.20 0.37
0.2, 0.5, 0.3 89.95 3.10 1.00 90.35 2.65 0.70 90.05 3.35 0.00 90.30 3.23 0.45 89.98 2.82 0.15

0.5, 0.25, 0.25 90.18 3.78 1.00 90.28 2.83 0.80 89.93 2.97 -0.13 90.05 3.20 0.67 90.35 2.95 0.13
0.01, 0.475, 0.475 87.55 0.37 0.15 90.40 2.85 0.60 88.63 2.07 0.00 88.40 1.82 -0.15 90.18 3.30 0.75
0.05, 0.475, 0.475 89.83 2.37 1.13 90.35 2.87 0.35 89.95 3.10 0.12 90.03 3.40 0.17 90.03 2.73 0.17

Average 89.69 2.81 0.81 90.29 2.71 0.45 89.84 3.07 0.01 89.91 2.99 0.31 90.18 2.94 0.32

functions, the average discriminant rate is high for
CC and MC. From the differences in the discriminant
rates of the 25 rules of the trapezoidal membership
function, the average discriminant rate increased by
2.71% to 3.07% for all five methods. However, the
rate of increase in the average discriminant rate of CA
and CC is slightly lower than the other methods. In
addition, the average discriminant rate of the 78 rules
of the right-angled trapezoidal membership function
is 0.38% higher than that of the 78 rules of the trape-
zoidal membership function. On the other hand, the
maximum discriminant rate was 90.35% for CC when
the weight of the evaluation index was (0.2, 0.5, 0.3)
and MC when the weight of the evaluation index was
(0.5, 0.25, 0.25). In the specific area, there are a lot
of singular point data, so the learning of the rules in
this area increases the overall discriminant rate. In ad-
dition, when the right-angled trapezoidal membership
functions are set in this specific region, the size of the
specific region does not change, so the membership
functions are efficiently learned within the specific re-
gion, and the overall discriminant rate increases.

Table 2: Results of t-Test between 5 Methods in 25 Basic
Rules.

Virtual Data CA CC E MA MCGeneration Method

CA — 1© 1© 2© 1© 2© 1© 2©0.1779

CC 1© — 1© 2© 1© 2© 2©
0.1779 0.0291

E 1© 2© 1© 2© — 2© 1© 2©0.1978

MA 1© 2© 1© 2© 2© — 1©
0.1978 0.2106

MC 1© 2© 2© 1© 2© 1© —
0.0291 0.2106

Table 2 shows the results of the t-test of the dis-
criminant rate by five virtual data generation methods
using 25 rules of the trapezoidal membership func-
tion. The numerical data in Fig.3 were used alter-
nately as training data and checking data by 2-fold
cross validation. In Table 2, the significance of each
data is indicated by 1© and 2© when there is a sig-
nificant difference between the five methods in the
one-tailed t-test with a significance level of 5%. In
addition, the average value of p is shown when only
one of 1© and 2© is significant. From Table 1, the
discriminant rates of CA, E, and MA are low, and the
discriminant rates of CC and MC are high. Therefore,
CC and MC are useful methods with higher discrimi-
nant rate than other methods.

Summarizing the results, the methods with the
highest discriminant rate were CC and MC with
78 rules using right-angled trapezoidal membership
functions in specific regions. In the two methods,
the discriminant rate was improved by adding rules to
specific regions where singularity data exists. In ad-
dition, since the membership function was defined by
a right-angled trapezoid, the specific region was not
expanded, and the membership function was learned
intensively. These reasons have led to high discrimi-
nant rates.

5 CONCLUSIONS

In this paper, we discussed a method of generating
virtual data and a method of changing classes in pdi-
Bagging. In addition, we discussed the accuracy of
the generation method of virtual data and the class
change using numerical examples.
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In the future, it is necessary to discuss how to gen-
erate virtual data when there is a bias in the amount
of data between classes, and how to generate virtual
data with directionality. In addition, it is necessary
to discuss the usefulness of pdi-Bagging in practical
applications using actual measurement data.

ACKNOWLEDGEMENTS

This work was partly supported by JST SPRING,
Grant Number JPMJSP2150. In addition, this work
was partly supported by JSTS KAKENHI Grant
Numbers JP20K11981 of the Grant-in-Aid for Sci-
entific Research(C). This work was also partly sup-
ported by Kansai University Fund for Supporting
Outlay Research Centers, and Kansai University Fund
for Domestic and Overseas Research Fund.

REFERENCES

Breiman, L. (1996). Bagging predictors. Machine Learn-
ing, 24(2):123–140.

Breiman, L. (2001). Random forests. Machine Learning,
45(1):5–32.

Dietterich, T. G. and Bakiri, G. (1995). Solving mul-
ticlass learning problems via error-correcting output
codes. Journal of Artificial Intelligence Research,
2:263–286.

Freund, Y. and Schapire, R. E. (1997). A decision-theoretic
generalization of on-line learning and an application
to boosting. Journal of Computer and System Sci-
ences, 55(1):119–139.

Friedman, J., Hastie, T., and Tibshirani, R. (2000). Addi-
tive logistic regression: A statistical view of boosting.
Annals of Statistics, 28(2):337–374.

Hayashi, I. and Tsuruse, S. (2010). A proposal of boosting
algorithm for brain-computer interface using proba-
bilistic data interpolation. IEICE Technical Report,
109(461):303–308 (in Japanese).

Hayashi, I., Tsuruse, S., Suzuki, J., and Kozma, R. T.
(2012). A proposal for applying pdi-boosting to brain-
computer interfaces. In Proceedings of 2012 IEEE
International Conference on Fuzzy Systems (FUZZ-
IEEE2012) in 2012 IEEE World Congress on Com-
putational Intelligence (WCCI2012), pages 635–640.

Irie, H. and Hayashi, I. (2019a). Design evaluation of learn-
ing type fuzzy inference using trapezoidal member-
ship function. Journal of Japan Society for Fuzzy
Theory and Intelligent Informatics, 31(6):908–917 (in
Japanese).

Irie, H. and Hayashi, I. (2019b). Performance evaluation
of pdi-bagging by generation of correct - error vir-
tual data. In The 29th Symposium on Fuzzy, Artifi-
cial Intelligence, Neural Networks and Computational

Intelligence(FAN2019), pages Paper ID:No.A3–3 (in
Japanese).

Irie, H. and Hayashi, I. (2020). Proposal of class determina-
tion method for generated virtual data in pdi-bagging.
In The 34th Annual Conference of the Japanese Soci-
ety for Artificial Intelligence, pages Paper ID:No.103–
GS–8–04 (in Japanese).

Jacobs, R. A., Jordan, M. I., Nowla, S. J., and Hinton, G. E.
(1991). Adaptive mixtures of local experts. Neural
Computation, 3:79—-87.

Nomura, H., Hayashi, I., and Wakami, N. (1991). A self-
tuning method of fuzzy control by descent method.
In The 4th International Fuzzy Systems Association
Congress, Engineering, pages 155–158.

Polikar, R. (2006). Ensemble based systems in deci-
sion making. IEEE Circuits and Systems Magazine,
6(3):21–45.

Rokach, L. (2009). Taxonomy for characterizing ensemble
methods in classification tasks: A review and anno-
tated ibliography. Computational Statistics & Data
Analysis, 53(12):4046–4072.

pdi-Bagging: A Proposal of Bagging-Type Ensemble Method Generating Virtual Data

963


