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Abstract: Due to the recent advent of high-resolution mobile and camera devices, it is necessary to develop an opti-
mal solution for saving the new video content instead of traditional compression methods. Recently, video
compression received enormous attention among computer vision problems in media technologies. Using
state-of-the-art video compression methods, videos can be transmitted in a better quality requiring less band-
width and memory. The advent of neural network-based video compression methods remarkably promoted
video coding performance. In this paper, an Invertible Neural Network (INN) is utilized to reduce the infor-
mation loss problem. Unlike the classic auto-encoders which lose some information during encoding, INN
can preserve more information and therefore, reconstruct videos with more clear details. Moreover, they don’t
increase the complexity of the network compared to traditional auto-encoders. The proposed method is eval-
uated on a public dataset and the experimental results show that the proposed method outperforms existing
standard video encoding schemes such as H.264 and H.265 in terms of peak signal-to-noise ratio (PSNR),
video multimethod assessment fusion (VMAF), and structural similarity index measure (SSIM).

1 INTRODUCTION

Nowadays, many web activities and web-based ap-
plications such as real-time communications and live
streaming include a large number of video content.
Video contents contribute to about 80% of the In-
ternet traffic (Networking, 2016). As high-quality
video content such as 4k videos become more preva-
lent, more sophisticated video compression meth-
ods are required to save the communication band-
width/storage space while offering high-quality video
encoding with less loss. Moreover, the higher quality
of encoded videos enhances computer vision schemes
such as object tracking and action recognition.

Among different recent methods developed for
compression, deep learning-based compression meth-
ods gained more interest and attention. There are sev-
eral traditional compression methods like JPEG (Wal-
lace, 1992) and JPEG 2000 (Skodras et al., 2001),
which are not optimized; because each module is opti-
mized independently. In these methods, they map the
input to latent feature representation linearly. In con-
trast, deep neural network-based methods are capable
of using highly non-linear transformations and end-
to-end training on a large scale to optimize compres-
sion. Some of the recent deep learning-based models
are reviewed comprehensively in (Liu et al., 2021).

Recently, INNs got more popular than previous
auto-encoder frameworks and they concentrate on
learning the forward process, using additional la-
tent output variables to capture the information that
would otherwise be lost, in contrast to classical neu-
ral networks that attempt to solve the ambiguous in-
verse problem directly (Kingma and Dhariwal, 2018),
(Dinh et al., 2016), (Ardizzone et al., 2018). Although
autoencoders are very capable of choosing the signif-
icant information for reconstruction, some amount of
information is completely lost; while using INN for
encoding and decoding helps to preserve the informa-
tion. Specific features of INN are: it has a bijective
mapping between input and output and its inverse ex-
ists; it is possible to compute both forward and in-
verse mapping efficiently; and there is a tractable Ja-
cobian of both mappings that makes it possible to cal-
culate posterior probabilities explicitly. The work in
(Ardizzone et al., 2018) demonstrated theoretically
and practically that INNs are an effective analysis tool
by using both synthetic data and real-world issues
from astronomy and medicine categories. Another
work on image generation (Ardizzone et al., 2019)
used conditional INN architecture which performs
better than variational autoencoders (VAEs) and gen-
erative adversarial networks (GANs). In (Lugmayr
et al., 2020), INN is employed to more effectively
address the ill-posed issue of super-resolution com-
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pared to GAN-based frameworks. Similarly, for im-
age rescaling in (Xiao et al., 2020), an invertible bi-
jective transformation is used to reduce the ill-posed
nature of image upscaling.

In each image or frame of a video, there are some
parts that are less important, and by compressing them
more than other parts and using fewer bits for them,
it is not easy to notice the difference with the origi-
nal one unless by pixel by pixel comparison. There-
fore, each image/video frame can be grouped into
perceptually significant and perceptually insignificant
areas. Sorting the areas based on significance is
called texture analyzer which is used in many com-
pression methods, and the inverse process is called
texture synthesizer, which restores the pixels (Ding
et al., 2021). This type of analysis/synthesis method is
used in our video compression model. The proposed
method, inspired by (Minnen et al., 2018), (Kingma
and Dhariwal, 2018), (Xie et al., 2021), (Shi et al.,
2016), (Cheng et al., 2020) incorporates four different
modules: feature enhancement which is used to im-
prove the nonlinear representation, INN which helps
to reduce information loss, attention squeeze which is
used to stabilize the training process instead of using
unstable sampling technique (Wang et al., 2020), and
hyperprior which performs analysis/synthesis and en-
tropy coding.

To validate the performance of our method, we
tested the model on the YouTube UGC video com-
pression dataset (Wang et al., 2019) and reported the
results by using PSNR, VMAF, and SSIM quality
metrics under a similar setting. The results are re-
ported and compared numerically and visually. The
visual results demonstrate that under the same BPP,
reconstructed video frames using our method has
more clear details.

The paper is organized as follows. The video cod-
ing method is described in detail in Section 2. Experi-
mental results are presented in Section 3, followed by
concluding remarks in Section 4.

2 APPROACH

The proposed method consists of four modules: fea-
ture enhancement, INN, squeeze module, and main
module. The architecture is shown in Fig. 1. Let
V = { f1, f2, ..., fT} be the video sequences and ft be
the video frame f at time t. The input frame f has
dimensions of (3, H, W). The first step, feature en-
hancement, adds non-linearity to each input frame
and turns it to j with the same dimension of (3, H,
W). The second step, INN, turns j to q with dimen-

sions of (3×44,
H
24 ,

W
24 ) in the forward pass. Third

step, attention-squeeze module, leads q to turn into

y with dimensions of (
3×44

α
,

H
24 ,

W
24 ) in which α

is the compression ratio. For the rest of the model,
the hyperprior of (Minnen et al., 2018) paper is used
in which Minnen presented an autoregressive context
model with a mean and scale hyperprior; In the hyper-
prior, using a mean and scale gaussian distribution,
the quantized latent features ŷ is parameterized with
an analysis transform hyper encoder and a synthesis
transform hyper decoder. The hyper encoder consists
of three convolution layers with Leaky Relu activation
between them. Analysis hyper encoder takes y to gen-
erate side information z and synthesis hyper decoder
takes quantized side information ẑ. Asymmetric nu-
meral system (ANS) (Duda, 2009) is used for entropy
coding. Each frame loss is calculated based on the
following equation (Minnen et al., 2018):

L = R(ŷt)+R(ẑt)+λ ·D( ft , f̂t) =

E[− log2 pŷ(ŷt)]+E[− log2 pẑ(ẑt)]+λ ·D( ft , f̂t)
(1)

In which rate R is the entropy of quantized latent
features, λ is the Lagrange multiplier and its differ-
ent values correspond to different bit rates, D is the
distortion term which can represent mean squared er-
ror (MSE) for MSE optimization, or 1−MS-SSIM for
MS-SSIM optimization (Wang et al., 2003), and here
it represents mean squared error.

The inverse for the decoding process is as follows:
squeeze module copies ŷ for alpha times and reshapes
it to q̂. Then q̂ is passed to the INN inversely and
turned to ĵ and finally, after the inverse of feature en-
hancement, the reconstructed video with frames f̂ is
generated. The detail of each module is elaborated in
this section:

2.1 Feature Enhancement

Feature enhancement module is used to improve
the nonlinear representation of the network because
INNS are not often capable of nonlinear representa-
tion (Dinh et al., 2015). This module includes a Dense
block (Huang et al., 2016) with input channel size of
3 and output channel size of 64, three convolution lay-
ers, and another Dense block with input channel size
of 64 and output channel size of 3. Convolution lay-
ers have input channel size of 64, output channel size
of 64, stride 1, and kernel sizes of 1, 3, and 1.
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Figure 1: Structure of our video compressor.

2.2 INN

There are two invertible layers in the INN module
which are the down-sampling layer and the coupling
layer. A down-sampling layer includes a pixel shuf-
fling layer (Shi et al., 2016) and an invertible 1x1 con-
volution layer (Kingma and Dhariwal, 2018). Four
invertible blocks are utilized for down-sampling and
up-sampling similar to the method proposed in (Min-
nen et al., 2018). Each of them consists of one down-
sampling layer and three coupling layers. Using
these four blocks, the input is down-sampled by 16
times (the down-sampling factor in each pixel shuf-
fling layer is 2). Affine coupling layer (Dinh et al.,
2016) is defined as following equations:

ji+1
t,1:d = ji

t,1:d ⊙ exp(σc(g2( ji
t,d+1:D)))+h2( ji

t,d+1:D)
(2)

ji+1
t,d+1:D = ji

t,d+1:D ⊙ exp(σc(g1( ji+1
t,1:d)))+h1( ji+1

t,1:d)
(3)

In the above equations, ji
t,1:D is the D dimensional

input at time frame t to the ith coupling layer which
is divided into two parts with dimensions d and D-d.
The functions h1, h2, g1, g1 are Convolutions with
stride one with activation functions. Each of them
consists of a convolution with kernel size 3, leaky

relu, convolution with kernel size 1, leaky relu, and
another convolution layer with kernel size 3. Also, ⊙,
exp, and σc show the Hadamard product, exponential,
and center sigmoid functions respectively.

The inverse process is similar;

ĵi
t,d+1:D =( ĵi+1

t,d+1:D−h1( ĵi+1
t,1:d)⊙exp(−σc(g1( ĵi+1

t,1:d)))
(4)

ĵi
t,1:d = ( ĵi+1

t,1:d −h2( ĵi
t,d+1:D))⊙ exp(−σc(g2( ĵi

t,d+1:D)))
(5)

2.3 Attention-Squeeze Module

INN does not change the size of input while many of
the pixels are useless for compression. So, the chan-
nel dimension of the INN’s output is reduced through
the Squeeze layer. If the output tensor of INN has the

size of (D, H, W), it is reshaped into (r,
D
r

, H, W) in
which r is the compression ratio. Then, it takes the
average on the first dimension to turn the tensor into

size (
D
r

, H, W) and passes it to the attention mod-
ule; Attention module helps the model to pay more
attention to challenging parts and reduce the bits of
simple parts (Cheng et al., 2020). The inverse module
in the decompression phase has an attention module
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and then it copies the quantized tensor r times and re-
shapes it to the size of (D, H, W).

3 EXPERIMENTS

Experiments are performed on a Tesla V100-SXM2-
16GB GPU. The network is trained for 550 epochs us-
ing a batch size of 16, learning rates of 0.0001 for the
first 450 epochs and 0.00001 for the rest, with Adam
optimizer (Kingma and Ba, 2015) on Pytorch frame-
work.

3.1 Dataset

To train our video compression model, the Vimeo-90k
dataset is used (Xue et al., 2019) which is a large
dataset developed for different kinds of video pro-
cessing tasks. The dataset includes 89800 clips with
different contents in different categories. 5000 video
clips from different categories are used to train our
model. The resolution of the videos is cropped to 256
x 256 pixels.

To test the method and report the results, YouTube
UGC Dataset (Wang et al., 2019) is used. There are
1500 video clips with the length of 20 seconds in dif-
ferent categories such as gaming, sports, animation,
and lecture. Each clip is available in 4:2:0 YUV for-
mat and resolutions of 360P, 480P, 720P, and 1080P.
To test the method, we selected 40 videos in differ-
ent categories with 720P resolution. Also, another
public dataset of Ultra Video Group (UVG) (Mercat
et al., 2020) is used which includes 16 versatile 4K
(3840 × 2160) video sequences. Each video is 50 or
120 frames per second available in 4:2:0 YUV format.
To test the videos, the 1920 x 1080 resolution of the
dataset is used.

3.2 Evaluation Method

To measure the performance of the proposed frame-
work, peak-signal-to-noise ratio (PSNR), video mul-
timethod assessment fusion (VMAF), and structural
similarity index measure (SSIM) quality metrics are
used. A higher PSNR value shows a higher image
quality (Horé and Ziou, 2010), and SSIM (Dossel-
mann and Yang, 2005) measures the similarity be-
tween two images and is better correlated with the
human perception of distortion. Compared to PSNR
and SSIM, VMAF is a subjective measure of the hu-
man eye perception and so it is a pivotal measure in
real-world applications (Rassool, 2017).

Table 1: Performance comparison of the methods applied
to the YouTube UGC dataset. The proposed method outper-
forms others in terms of PSNR, VMAF, and SSIM.

Quality Metric PSNR VMAF SSIM
Proposed 45.5 98.9 0.982
H.264 43.9 97.5 0.975
H.265 40.6 93.4 0.96

Table 2: Performance comparison of the methods applied to
the UVG dataset. The proposed method outperforms others
in terms of PSNR, VMAF, and SSIM.

Quality Metric PSNR VMAF SSIM
Proposed 43.9 97.4 0.971
H.264 43.1 94.5 0.96
H.265 41.5 91.5 0.955

3.3 Results

The average PSNR, VMAF, and SSIM of the pro-
posed model on the UGC dataset are 45.5, 98.9, and
0.982, respectively, which outperforms H.264 (Wie-
gand et al., 2003) and H.265 (Sullivan et al., 2012)
as can be seen in Table 1. The average bit per pixel
(BPP) for all test sets in the UGC dataset is 0.6.

Fig. 2 shows samples of the outputs of our frame-
work and H.264 and H.265 on the UGC dataset. In
the first example of the lecturer 2a, the text on the
laptop is sharper and more clear using our method.
In the second example 2b, the edge of the shapes is
more quantized in H.264 and more blurry in H.265.
Also, in the third example of a television clip 2c, the
face of the person is less quantized, sharper, and more
clear using our method.

The average PSNR, VMAF, and SSIM of the pro-
posed model on the UVG dataset are 43.9,97.4, and
0.971, respectively, which outperforms H.264 and
H.265 as can be seen in Table 2. The average bit per
pixel (BPP) for all test samples in the UVG dataset is
0.4.

Fig. 3 shows samples of the outputs of our frame-
work and H.264 and H.265 on the UVG dataset. In the
first example of the honey bee among flowers 3a, the
output of H.264 is more quantized and the honey bee
in the output of H.265 is more blurry while using our
method it is more clear and sharper. In the second ex-
ample 3b, the numbers are more quantized and more
blurry in H.264 and H.265 than in our method.

4 CONCLUSION

A video compression method based on INN has been
introduced. First, a feature enhancement method
is used for enhancing the nonlinear representation.
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(a)

(b)

(c)

Figure 2: Samples of the proposed method, H.264, and H.265 outputs. The data used here are from the UGC dataset. (a) The
text on the laptop is sharper and more clear using our method. (b) The edge of the shapes is more quantized in H.264 and
more blurry in H.265. (c) The face of the person is less quantized, sharper, and more clear using our method.
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(a)

(b)

Figure 3: Samples of the proposed method, H.264, and H.265 outputs. The data used here are from the UVG dataset. (a)
The output is sharper and more clear using our method than H.264 and H.265. (b) The numbers are more quantized and more
blurry in H.264 and H.265 than in our method.

Then, INN is used to decrease the information loss
problem. Compared with traditional auto-encoders
which lose information in the encoding process, INN
can persevere the information and leads to recon-
structed videos with more clear details without mak-
ing the network more complex. To solve the problem
of unstable training in INNs, attention-squeeze mod-
ule is used which makes the feature dimension adjust-
ment stable and tractable.

The results of the method are reported and com-
pared numerically and visually. Evaluations of the
proposed method on two standard public datasets
show better quality (under the same setting) in terms
of PSNR, VMAF, and SSIM as compared to the rec-
ognized methods such as H.264 and H.265. The vi-
sual comparison of the output of the proposed method

shows that it has more clear details than the outputs of
H.264 and H.265.

To improve the method in future works, it may be
possible to deploy more kinds of layers for feature
enhancement module or even replace the newer pub-
lished hyperpriors instead and use them with INNs.
Also, the idea of current model can be used for simi-
lar applications such as video denoising.
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