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Abstract: Studies on game-playing agents have made various attempts to develop agents with characteristic playstyle.
Most of these studies either generated agents with predetermined playstyles or simultaneously generated dif-
ferent playstyles without defining a specific playstyle for single-player complete information games. However,
the generation of agents with different playstyles for multi-player imperfect information games has not been
thoroughly investigated. Therefore, in this study, we have proposed an automatic playstyle generation method
for a two-player imperfect information game called Geister. The basic idea is to use a genetic algorithm to
optimize agents whose genes represent parameters that determine the manner of guessing hidden information.
By clustering the genes with high fitness, obtained using this process, agents with different playstyles are
generated simultaneously. From the results of the experiments, our proposed method generated five different
playstyles with cyclic dominance relationships.

1 INTRODUCTION

Research on game-playing agents is developing
rapidly, with the performance of some agents, such as
AlphaZero (Silver et al., 2018) and Libratus (Brown
and Sandholm, 2018), surpassing professional human
players. In addition, there are significant interests
in developing these agents to achieve broader ob-
jectives, not just their strengths (Lara-Cabrera et al.,
2015; Hoover et al., 2019; Fan et al., 2019). Among
these, there exist studies on the generation of agents
with characteristic playstyles (Tychsen and Canossa,
2008; Tampuu et al., 2017; Ishii et al., 2018). A
playstyle refers to a set of characteristic behaviors of
the player. However, most of these studies predefined
the playstyles they wanted to generate, which makes it
difficult to identify playstyles that cannot be assumed
in advance.

To address this issue, Iwasaki et al. (Iwasaki and
Hasebe, 2021) proposed a framework called C-NEAT
to generate different playstyles simultaneously with-
out predefining any styles. This framework consisted
of an evolutionary computation called NeuroEvlution
of Augmenting Topologies (NEAT) (Stanley and Mi-
ikkulainen, 2002) and clustering, which optimizes
gameplay while classifying the characteristic behav-
ior of the agents by clustering. However, that study
focused on a roguelike game, which is a complete
information game for a single player. Generation of

agents with different playstyles for multiplayer imper-
fect information games has not yet been thoroughly
investigated.

In this study, we have proposed an automatic
playstyle generation framework for a two-player im-
perfect information game. Here, we focus on Geis-
ter, a chess like game, in which the colors of the
pieces (red and blue) are hidden from the opponent.
In this game, the optimal action varies depending on
the color of the the opponent’s pieces; therefore, it is
important to advance the game while guessing them.
However, it is not possible to perfectly identify the
color of the piece using only the revealed information,
and the effective guessing method changes depending
on the opponent’s strategy. Based on the above obser-
vations, we focus on the playstyles that determine the
guessing manner.

To simultaneously generate the playstyles defined
above, we propose a framework using genetic al-
gorithms and clustering based on the concept of C-
NEAT. Specifically, many agents are generated that
have parameters of a function for guessing the color
of the opponent’s piece and, while they are played
against each other, agents with a high winning rate
(i.e., high fitness) are repeatedly retained. After natu-
ral selection, the set of genes possessed by the elites
from all generations are clustered. Then, for each
cluster, the average value of the genes was evaluated,
resulting in different playstyles.
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To demonstrate the effectiveness of the proposed
method, an experiment was conducted using a sim-
plified Geister with 4× 5 board. We observed that
five different playstyles with dominant cyclic relation-
ships were generated.

The remainder of this study is organized as fol-
lows. Section 2 presents the related work. Section
3 provides an overview of the rules of Geister. Sec-
tion 4 describes the proposed framework for gener-
ating playstyles for a Geister. Section 5 presents the
experimental results. Finally, Section 6 concludes the
paper and presents future work.

2 RELATED WORK

Significant research has been conducted to develop
agents capable of playing games with characteristic
playstyles. One of the earliest studies on playstyles
in games was conducted by Tychsen et al. (Tychsen
and Canossa, 2008). The authors defined a player’s
playstyle to be a set of their characteristic behav-
iors. Based on this definition, they focused on the
game, Hitman: Blood Money, and identified different
playstyles by analyzing various playlogs.

Ishii et al. (Ishii et al., 2018) developed agents
with different characteristic playstyles (personas) for
the fighting game, FightingICE. Their fundamental
idea was to determine the agent’s actions via Puppet-
Master Monte Carlo Tree Search (MCTS), which is
an extension of general MCTS, using evaluation func-
tions pertaining to one of two playstyles: short-range
attack and long-range attack.

Tampuu et al. (Tampuu et al., 2017) generated
agents with two playstyles, cooperative and adversar-
ial, for the video game called Pong. They demon-
strated that both cooperative and adversarial game-
play can be achieved by agents based on Deep-Q-
Network (Mnih et al., 2013) using a unified reward
scheme.

In all of the aforementioned studies, playstyles
were predefined based on the authors’ expectations.
Therefore, generation of playstyles not defined in ad-
vance is difficult using these methods. In contrast we
attempt to generate multiple playstyles automatically
without defining them in advance.

Studies on similar topics have been conducted by
Iwasaki et al. (Iwasaki and Hasebe, 2021; Iwasaki and
Hasebe, 2022). They generated multiple playstyles
for the roguelike game, MiniDungeons, using evolu-
tionary computation and clustering. The game was a
single-player complete-information game so the envi-
ronment of the game visible to the player was fixed.
In contrast, we focus on applying the framework pro-

Figure 1: Board of Geister (left) and an example of the ini-
tial board setting from the viewpoint of the player on the
bottom (right).

posed by Iwasaki et al. to a two-player imperfect-
information game. This challenge raises several new
issues, such as changes in fitness depending on the op-
ponent even with the same pointing, and appropriate
handling of imperfect information.

3 OVERVIEW OF GEISTER

Geister is a two-player chess-like game in which play-
ers take turns moving their pieces on a 6× 6 board.
However, in this study, in order to reduce computa-
tional time, the size of the board is reduced to 4× 5,
as depicted in Figure 1, without loss of generality.

On the board, the left- and right-most cells (indi-
cated by icons in the left picture in Figure 1) of the
farthest row of the board, as seen by each player, are
special cells called “exits.” Each player initially con-
trols four pieces, two of which are blue and the other
two are red. The color of each piece is only visible
to its owner. Before starting the game, each player
places two of their four pieces in the 2× 2 region at
the center of the two rows closest to them (marked in
gray in the left picture in Figure 1 for the player on the
bottom). An example of an initial board configuration
from the perspective of the player on the bottom is de-
picted in the right picture in Figure 1.

During the game, the players take turns moving
their pieces. During each player’s turn, they can move
any one piece to a vertically or horizontally adjacent
square, unless it takes the piece outside the board or
onto a square already occupied by another of their
pieces. If a piece is moved onto a square occupied
by an opponent’s piece, the latter is removed from the
game and may not be reused (henceforth referred to
as being captured). Further, each player can make a
special move called “escape” on the following turn if
one of their pieces is on one of their exits during the
current turn.

The first player to achieve any of the following
conditions wins.

1. Have one of their blue pieces escape.
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2. Capture all of their opponent’s blue pieces.
3. Have their opponent capture all of their red pieces.

4 FRAMEWORK FOR
PLAYSTYLE GENERATION

4.1 Overview

In Geister, the optimal move on a given board state
depends on the colors of the opponent’s pieces, thus
guessing them is integral to one’s strategy. However,
since it is not possible to deduce the colors of the
opponent’s pieces based only on the revealed infor-
mation, there is no single correct method of guess-
ing. Thus, the usefulness of guessing methods is
likely to depend on the opponent’s guessing strategy.
Therefore, optimization of play is not expected in-
duce convergence to a single guessing method, but,
instead, yield multiple methods of guessing. Based
on the above considerations, in this study, we define
playstyle in terms of the guessing method used to es-
timate the colors of the opponent’s pieces.

A more detailed definition of the playstyle is pre-
sented below. The agent determines its move on each
turn by evaluating the likelihoods of the opponent’s
pieces being of certain colors and searching for the
best move on the probabilistic board. The former is
determined using a special function (called a guess-
ing function), which involves some parameters, that
takes into account the specific movements of enemy
pieces on the board. The latter is performed using
the Expectimax algorithm (Michie, 1966), which is
a variant of the Min-Max search algorithm with in-
corporated probabilistic state transitions. The evalua-
tion function for Expectimax is taken to be one whose
usefulness has been confirmed in preliminary exper-
iments. Therefore, the moves of the agent are deter-
mined based solely on the parameters of the guessing
function and the search algorithm.

We obtain the desired playstyles using genetic al-
gorithm and clustering by considering the parameters
of the guessing function used by the agent as genes.
The detailed procedure is given by the following al-
gorithm. (Figure 2 illustrates the procedure, where
the numbers correspond to the step numbers presented
below.)

1. Generate multiple agents with random guessing
parameters.

2. Match the generated agents with other agents se-
quentially and measure the corresponding win-
ning rates, which are considered to be measures
of fitness.

Figure 2: Procedure for obtaining playstyles.

3. Retain agents with high fitness and remove others.

4. Create a new generation of agents based on the
retained agents via mutation and crossover.

5. Repeat steps 2-4 and save all agents with high fit-
ness in each generation.

6. Cluster the parameters of all saved agents as fea-
ture values.

7. Determine individual playstyles based on the av-
erage values of all parameters in each cluster.

4.2 Guessing Colors of Opponent’s
Pieces

In Geister, the colors of one’s opponent’s pieces can-
not be guesses solely by considering one’s own per-
spective. That is, the opponent’s estimation of the
colors of one’s own pieces must also be accounted for.
Therefore, the proposed agent formulates one guess,
e(popp

i ), for the color of each piece, popp
i (1≤ i≤ 4),

of the opponent, and another, e(ppro
i ), for the oppo-

nent’s guess for the color of each piece, ppro
i (1≤ i≤

4), owned by themselves. The guessed values lie in
the range, [0,1], with values close to 1 correspond-
ing to guesses of blue with high conviction, and those
close to 0 corresponding to guesses of red with high
conviction. Each initial value is set to 0.5.

Guessed values are updated after the movement
of pieces during each turn. In particular, each agent
involves three parameters g1,g2, and g3, with values
in the range, [−0.5,0.5], which correspond to the fol-
lowing movements.

• g1: Move to a cell adjacent to an enemy piece.

• g2: Move away from an adjacent enemy piece.

• g3: Move closer to the exit.

These three actions are related to Geister’s victory
conditions, and various playstyles can be defined by
combining different configurations of the parameters.
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During the updating process, the availability of
actions corresponding to these parameters are veri-
fied for each move. In case of availability, the value
of the corresponding parameter is added to the guess
value of the piece moved. For example, if the oppo-
nent’s move on their t-th turn is to move the piece,
popp, adjacent to a piece of the agent, the guess value,
et(popp), is updated using the following formula:

et(popp) := g1 + et−1(popp).

Then, the guess values are adjusted to satisfy:
Σ4

i=1e(ps
i ) = 2 (for s ∈ {opp, pro}) and ∀iet(ps) ∈

[0,1].
However, in the exceptional case in which a piece

adjacent to an exit is not moved to the exit, the cor-
responding guess value is set to 0 and is not changed
thereafter. This is because, if the color of the piece
were blue, the only rational move would have been to
move it to the exit.

4.3 Decision of Moves

Based on the guess values, the agent determines
the optimal move during each turn using an exten-
sion of the Expectimax algorithm. Expectimax is
an exhaustive, depth-first game tree search algorithm,
which is often used to determine moves in imperfect-
information games. Both Expectimax and its exten-
sion are described below.

The nodes in the search tree of the Min-Max al-
gorithm are classified into two types: Max nodes and
Min nodes. Nodes of the former type represent the
player’s turn and transition to a child node with the
maximum evaluation value, while those of the latter
type represent the opponent’s turn and transition to a
child node with the minimum evaluation value. In ad-
dition, in Expectimax, a chance node is inserted be-
tween Min and Max nodes when the transition des-
tination node changes depending on the probability.
The evaluation value of a chance node is given by a
weighted sum of evaluation values, with the transition
probabilities of its child nodes as coefficients. In Ex-
pectimax, the evaluation value, V (n), of a node, n, is
calculated using the following formula.

V (n) = ∑
ci∈C(n)

P(n,ci)×V (ci),

where C(n) represents the set of child nodes of node
n, P(n,c) represents the probability of reaching node c
from node n, and V (c) represents the evaluation value
for node c.

We now consider applying Expectimax to Geis-
ter. If a move reveals the color of an opponent’s piece
(e.g., when an opponent’s piece is captured), the state

Figure 3: Expectimax game tree.

after the move transitions stochastically depending on
the likelihood of the color of the opponent’s piece.
Thus, a chance node is inserted after such a move.

As explained previously, Expectimax can be used
to determine moves in this way. However, better
moves can be found by considering the information
regarding the colors of one’s own pieces. For exam-
ple, let us consider the search tree depicted in Fig-
ure 3. If the color of the piece, say p, is red and
the opponent chooses a move that induces a transi-
tion from node B to node E, then the transition node
is known to be F. At this time, from the opponent’s
perspective, V (E) = 5.9, as they do not know the
color of p. However, from the player’s perspective,
V (E) = V (F) = 50, as the color of p is known to be
red. Therefore, if the opponent chooses a move to
transition to node E from node B, it is possible to tran-
sition to a state where it is better to choose the move
to transition to node B from node A.

In order to utilize the aforementioned information
asymmetry between the proponent and the opponent
during optimal move search, we extend Expectimax
by incorporating the real value, which is the evalua-
tion value from one’s own perspective, and the pre-
tense value, which is the evaluation value from the
opponent’s perspective.

In the extended Expectimax, nodes are selected to
increase the real value at the MAX node and reduce
the pretense value at the MIN node. If the transition
destination at a chance node is known, its real value
becomes the real value of the transition destination
node. The pretense value of the chance node is always
a weighted sum of the pretense values, with the tran-
sition probabilities of the child nodes of the chance
node as coefficients.
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Figure 4: Evaluation tables for blue (left) and red (right)
pieces.

4.4 Genetic Manipulation and
Clustering

In our framework, genetic manipulation is performed
based on mutation and crossovers, as in several exist-
ing genetic algorithms. As depicted in Figure 2, in
Step 5 of the genetic algorithm, individuals with high
fitness are saved. Once a sufficient number of agents
with high fitness have been generated, the parameters
of guessing functions of all stored agents are clustered
using the k-means method. Further, the average value
of the parameters of all agents within each cluster is
representative of the playstyle corresponding to that
cluster.

5 EXPERIMENTS

5.1 Parameter Configuration

In this research, the following experiments are per-
formed to verify that the proposed framework actually
generates multiple playstyles in Geister.

5.1.1 Optimal Move Search

In our experiments, the depth of optimal move search
is set to 3. The evaluation function used in the search
is defined as the sum of values assigned to each piece
by its position. In particular, values are assigned to
blue and red pieces as depicted in Figure 4. As ex-
plained previously, in Geister, the first player to move
a blue piece to the exit wins. Therefore, we assume
that high proximity between the blue pieces and the
exits is desirable. Further, we assume that the value
of a red piece is high when it is positioned to protect
a blue piece near the exit without blocking its course
to it. The table depicted in Figure 4 lists the highest
winning rates in matches conducted during prelimi-
nary experiments using various similar tables.

On the other hand, we assume low proximity be-
tween the opponent’s pieces and the exits to be de-
sirable. Therefore, during the evaluation of the oppo-

Figure 5: Clustering result.

nent’s pieces, we used the inverted version of Figure
4, with negative values weighted by the guess value.

5.1.2 Agent Generation

During the execution of genetic algorithm, the num-
ber of agents in each generation is taken to be 100,
and 30 agents with high fitness are retained in each
subsequent generation. During the generation of new
agents based on agents with high fitness, mutation and
crossover are performed with probabilities of 0.6 and
0.4, respectively. Moreover, generation of excessively
weak agents is avoided by allowing each generated
agents to play against an agent taking random actions
100 times in advance, and deleting those with win
rates less than 90%.

5.1.3 Clustering

The parameters of 1,500 experimentally obtained
agents over 50 generations are subsequently classified
via clustering. A non-hierarchical k-means method is
adopted as the clustering algorithm. Preliminary ex-
periments varying the number of clusters confirmed
that only 3-5 playstyles with a high winning rate were
generated even when the number of clusters was in-
creased, so the number of clusters was set to 5 in this
study. This process yields five agents with different
playstyles. We also determine the compatibilities be-
tween these playstyles via round-robin matches.

5.2 Results

Figure 5 depicts the three-dimensional plot obtained
by color-coding the 30 individuals with highest fit-
ness in each generation via clustering. Figure 6 illus-
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Figure 6: Change in the ratio of the number of agents for
each playstyle.

Table 1: Parameters of cluster representative.

Estimated Parameters

Adjacent Distancing GoalDirected

Cluster A 0.2685 -0.2646 -0.2592
Cluster B 0.3847 0.2832 -0.3515
Cluster C -0.0794 0.1240 -0.3194
Cluster D 0.1012 0.2411 0.1975
Cluster E -0.3819 0.0200 0.1309

trates the variation in the ratios of different playstyles
in each generation.

The representative parameters of the generated
clusters are presented in Table 1. In this table, a posi-
tive (negative, resp.) value is adopted while determin-
ing that a piece that has made a move corresponding
to each parameter is a blue (red, resp.) piece.

Further, Table 2 presents the results of matches
performed using the representative parameters of each
generated cluster. The table lists the winning rates
of all possible initial placements after 72 matches
in aggregate, with the first and second player roles
switched once each. Figure 7 depicts a graphical rep-
resentation of the dominance relationships between
the identified playstyles. In this figure, the nodes rep-
resent the generated playstyles and an edge from X to
Y indicates that X wins (dominates) against Y in 60%
or more instances.

Based on Table 1, the characteristics of the
playstyles can be interpreted as follows.

Cluster A: A piece that is adjacent to another of the
same player is considered to be blue, and one that
has moved away from another of the same player
is considered to be red.

Cluster B: A piece that is adjacent or has moved
away from another of the same player is consid-

Table 2: Match results between playstyles.

Opponent’s playstyle

A B C D E

A 0.375 0.312 0.625 0.813
B 0.625 0.437 0.406 0.563
C 0.688 0.563 0.250 0.688
D 0.375 0.594 0.750 0.625
E 0.187 0.437 0.312 0.375

Figure 7: Dominant relations between playstyles.

ered to be blue, and one that is close to an exit is
considered to be red.

Cluster C: A piece approaching an exit is considered
to be red.

Cluster D: A piece that has moved away from an-
other of the same player and a piece that is close
to an exit are considered to be blue.

Cluster E: A piece that is adjacent to another of the
same player is considered to be blue.

Based on the above results, the following conclu-
sions can be drawn regarding the pairwise compat-
ibilities of these playstyles. In general, agents are
more likely to capture pieces that they consider to be
blue, and less likely to capture pieces that they con-
sider to be red. Therefore, Playstyle A prefers to play
slowly, only capturing adjacent pieces instead of chas-
ing pieces moving away. Playstyles B and C prefer to
aim for the goal early, thinking that their pieces will
not be captured even if they approach the goal. Fi-
nally, Playstyles D and E prefer to play slowly, with-
out aiming for the goal.

As depicted in Figure 7, a cyclic dominance re-
lationship is observed. More specifically, a performs
favorably against C, C performs favorably against D,
and D performs favorably against A. Further, as il-
lustrated in Figure 6, for no playstyle does the num-
ber of individuals monotonically increase with each
generation. The number of individuals following a
playstyle with a high winning rate is observed to trend
upwards. Based on these results, we can conclude that
no playstyle is always optimal when playstyles are de-
fined based on the guessing strategy utilized. Also,
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the effective playstyles may change dynamically de-
pending on the playstyle of the majority of the players
in each generation.

6 CONCLUSIONS AND FUTURE
WORK

In this study, we proposed a framework using ge-
netic algorithms and clustering to generate multiple
playstyles for Geister, a two-player imperfect infor-
mation game. Specifically, many agents with genes
are generated as the parameters of a function to guess
the color of the opponent’s piece. While these are
played against each other, agents with high fitness are
obtained. Furthermore, by clustering the genes pos-
sessed by the elites of all generations, we can obtain
our target multiple playstyles. As a result of the exper-
iment, we observed that five playstyles with circular
dominance relationships were generated.

In this experiment, we have considered playstyles
that focused only on the guessing manner; however,
in the future, we would like to generate more di-
verse playstyles determined by the border evaluation
functions. In addition, based on methods such as re-
inforcement learning, we investigated an improved
framework that allowed agents to play better with
characteristic playstyles.
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