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Abstract: Good performance of the Machine Learning (ML) model is an important requirement associated with ML-
integrated manufacturing. An increase in performance improvement methods such as hyperparameter tuning, 
data size increment, feature extraction, and architecture change leads to random attempts while improving 
performance. This can result in unnecessary consumption of time and performance improvement solely 
depending on luck. In the proposed study, a quantitative performance analysis on the case study of chip 
detection is performed from six perspectives: hyperparameter change, feature extraction method, data size 
increment, and concatenated Artificial Neural Network (ANN) architecture. The focus of the analysis is to 
create a consolidated knowledge of factors affecting ML model performance in turning process quality 
prediction. Metal peels such as chips are designed at the time of metal cutting (turning process) and the shape 
of these chips indicates the quality of the turning process. The result of the proposed study shows that 
following a fixed recipe does not always improve performance. In the case of performance improvement, data 
quality plays the main role. Additionally, the choice of an ML algorithm and hyperparameter tuning plays an 
essential role in performance. 

1 INTRODUCTION 

The concept of ”zero human intervention” stepped 
into the scene with the rise of Artificial intelligence 
(AI). AI is the science of intelligent machine 
development (Watson, 2005) (McCarthy, 2007). 
Machine Learning(ML) is a black-box AI technology 
which learns an unknown function based on provided 
data (Zhang, 2020). Sensor technologies have 
advanced in an unprecedented manner. These new 
sensors can produce large amounts of data which 
paves the way for ML applications in the 
manufacturing domain (Kusiak, 2018), (Tiwari, 
2021) . Distributed and autonomous manufacturing 
has laid a new milestone (Wang, 2015), (Zhuang, 
2007). Data in the manufacturing domain are stored 
for a short period for maintenance purposes and have 
a chaotic structure (Wuest, 2016).  

These data can foster automation in the 
manufacturing domain with the application of ML for 
managing uncertainties (Zhang, 2020), tool condition 
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monitoring (Alfaro-Cortes, 2020), process modelling, 
adaptive control (Monostori, 2003), quality 
prediction (CHO, 2020) etc. Cloud and IoT-based 
devices are used for deploying models for scheduling 
(Jian, 2021), self-organised task scheduling (Chen, 
2018), and manufacturing collaboration (Tao, 2019). 
Supervised and unsupervised learning are the two 
main contributors to manufacturing from an ML 
perspective (Dogan, 2021) (Bricher, 2020). The 
widely used algorithms are the Support vector 
machine (SVM) (Liao, 2019), Artificial Neural 
Network (ANN) (Casalino, 2016), Decision Trees 
(DT) (Ronowicz, 2015), and k Nearest Neighbors 
(kNN) (Kong, 2016). 

In the period 2015-2020, research publications 
were mainly focused on the application of ML in the 
manufacturing domain (Sheuly, 2021), (Hamidur, 
2023). However, after 2020 only an application of ML 
to a certain domain is no more considered a significant 
contribution to the state of the art (Doulgkeroglou, 
2020), (Syafrudin, 2018), (Romero, 2019). 
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Additionally, according to  (Chui, 2017), 64% of total 
work spent in the manufacturing domain can be 
automated with the latest technology instead of human 
resource and it could save 478 billion working hours. 
ML with significant performance can reduce 
economic loss and required time in manufacturing 
(Zhao, 2020), (Uzkent, 2019), (Brisk, 2019). As a 
result of this new requirement for improved 
performance, the application of ML with changed ML 
architecture, versatile data source, and edge device 
found its way into the manufacturing domain. 
However, good performance is a prerequisite in the 
case of ML applications in the manufacturing domain 
(Sharmin 2021). No research study quantifies the 
change in performance with perspective variation such 
as a change in ML architecture, the inclusion of 
versatile data sources, and hyperparameter tuning. 
This can give rise to a random search for performance 
improvement methods which is a time-consuming and 
unrealistic method. 

In the proposed study, a case study combining 
cutting-edge technologies such as ML, embedded 
systems and cloud technology of chip detection is 
presented where a change in performance is quantified 
with perspective variation such as hyperparameter 
change, the inclusion of feature extractor and new data 
source, change in ML model architecture. 

The proposed study contributes to the state-of-the-
art works by creating hyperparameter-tuned models, 
followed by performance comparison from a different 
perspective and a complete hardware setup. The 
proposed work will create an efficient path of 
performance improvement for the future researcher. 

Most turning process prediction systems predict 
surface roughness (Singh, 2007), cutting parameters 
(Jurkovic, 2018), and tool life (Laghari, 2019). To our 
knowledge, no other study implements a turning 
process prediction system for machine health 
monitoring with ML, embedded systems and cloud 
technology followed by an analysis of different 
perspectives. A local manufacturing company 1 
manufactures cutting tools that cut metal into a 
predefined shape. One of the cutting processes is 
turning (kim, 2018). In the turning process, the 
workpiece moves, and the cutting tool remains 
stationary while cutting the metal. The by-product of 
the turning process is metal chips and technicians 
examine these chips to understand whether the turning 
process is in a good condition. Figure 1 shows the 
turning process using a cutting tool and Figure 2 
shows chip classes:(a)acceptable chip (b)optimal chip 
(c)bad chip.  

 
1 https://www.secotools.com/ 

 
Figure 1: Turning Process with a cutting tool. 

 
Figure 2: Chip classes depending on size. 

In this proposed study, the final ML model runs 
on Raspberry Pi replacing the human technician by 
predicting the chip class based on the chip image and 
machine parameters. In addition, the images were 
saved on the Azure cloud platform. The rest of the 
paper is structured as follows: Section 2 presents an 
overview of the approach, section 3 presents the 
implementation method, section 4 shows the results 
and finally section 5 concludes the study with a 
discussion. 

2 OVERVIEWS OF APPROACH 

This research study started with the offline process by 
gathering domain knowledge, data, requirements, and 
ideas provided by the local manufacturing company 
(Figure 3). The formulated problem was to automate 
the turning process using ML models and 
quantification of change in performance because of 
the changed perspective. The state of the art in the 
manufacturing domain was reviewed to find 
concurrent ML algorithms appropriate for the 
formulated problem. ML algorithms such as ANN, 
Convolutional Neural Network (CNN), SVM, kNN 
and RF were selected. There are two types of data: the 
image of chips and numerical machine parameters.  
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Figure 3: Step-by-step offline process. 

On image data several pre-processing steps such 
as Gaussian blur filter, foreground mask, and Canny 
edge filter were performed to convert the images to 
an appropriate form. For the numeric machine 
parameters cardinality, missing values were checked. 
After pre-processing, classification models were 
trained on the processed data. Two sets of models 
were created: one set with automatic features such as 
features extracted with help of CNN which are named 
‘hybrid architecture’. Conversely, another set of 
models was created with manually extracted features 
which are named ‘traditional architecture’. 

Both hybrid and traditional architecture have 
varying inputs. Certain models were created with 
only image data as input such as Case 1 and Case 4 
(coloured in green) while certain models were created 
with both image and machine parameters as input 
such as Case 2, Case 3, Case 5, Case 6 (coloured in 
green and orange). Two types of models were created 
for ANN: one set with concatenated architecture 
(Case 3 and Case 6) and the other set without 
concatenation (Case 2 and Case 5 ). In the case of 
concatenated architecture, two ANN models, one 
considering machine parameters as input (Model 1) 
and one considering the image as input (Model 2) 
were concatenated at the final layer. Conversely, in 
the case of a model without concatenation machine 

parameters were combined with the image and the 
combined data was used as input to the ANN model. 

All the models were created with hyperparameter 
optimization. SVC, RF, and kNN were created with 
5-fold cross-validation while ANN (both 
concatenated and without concatenation) were 
created with train, validation, and test split (80%, 
10% and 10%). In the following stage, the created 
eighteen ML models were evaluated to quantify the 
change in performance with change in perspective. 
The considered perspectives are 

1) Change in hyperparameter. 
2) Change in architecture (Hybrid/traditional 
feature extraction). 
3) Change in ML algorithm (ANN, SVC, RF or 
kNN). 
4) Inclusion of new data sources such as machine 
parameters. 
5) Change in ANN architecture (Concatenated or 
without concatenation). 
6) Change in CNN feature extractor architecture 
(shallow layer or deep layer). 

The ML model with the best performance was 
deployed in raspberry pi. In case of bad chips, the 
raspberry Pi switched the red LED on and signalling 
the technician. 
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3 IMPLEMENTATIONS 

3.1 Data Collection and Pre-Processing 

There was no image-capturing system at the local 
manufacturing company. To capture images during 
the turning process a GoPro Hero 9 camera was 
installed on top of the workpiece. An additional light 
source was used in the setup. In total, 42 videos were 
captured with the highest speed, feed, and chip 
breaker (a tool that breaks the chips). A total of 20023 
images were extracted from the videos for training. In 
addition, 6429 images were extracted for testing. 
 In the case of machine parameters, 2105 data 
instances were provided by the manufacturing 

company. Synthetic Data Vault (SDV) (Watson, 
2005) is a set of libraries that were used to generate 
synthetic data of the same format and statistical 
properties. The SDV was used to create a hierarchical 
statistical model of the machine parameters. This 
fitted model was subsequently used to generate 
additional data instances. A total of 20023 data 
instances of machine parameters were created to align 
with 20023 image data. 
 The primary goal of pre-processing is to improve 
image quality by suppressing irrelevant information 
and enhancing important features for ML 
classification. However, this step adds additional time 
to the classification. Figure 4b shows pre-processing 

 
a) Undetected chips because of an absence of image processing 

 
b) Detected chips because of image processing 

Figure 4: Comparison of the image in the presence and absence of image processing techniques. 
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steps performed on the images while Figure 4a shows 
an image without pre-processing. It is visible that 
without pre-processing chip detection is not 
possible. In this work, the images were at first 
smoothed with help of a Gaussian filter (Figure 4b). 
Gaussian filter reduces the details of an image by 
replacing pixel values with a value closer to the 
nearby pixel value. This smoothing helps detect 
edges. In the later stage, a foreground mask was 
applied to the blurred image. The white area in the 
figure represents the moving objects (rotating 
workpieces and chips) and the black area is the 
stationary background. The stationary background is 
removed from the image to enhance only the 
moving chips. To detect the edges of an object, the 
canny edge detection technique is used. In the 
proposed work, canny edge detection is used to 
separate chips from other moving parts.  Changes in 
pixel, intensity are used to define the boundary. A fast 
change in pixel intensity is regarded as an edge. In the 
last stage, the green bounding box is showing the 
potential chips. In the case of numerical data, the 
missing values were first located and populated with 
the median value. In the later stage, the cardinality 
of the variables was checked, one of the variables 
had cardinality 1 (all the values were the same), and 
it was removed from the dataset because it does not 
contribute any information. To identify outliers 
minimum and maximum values of each variable were 
investigated. Outliers are absent in the dataset. The 
variables were scaled to the range [0,1] resulting in 
similar effects from all data instances. 

3.2 Feature Extraction with CNN 

CNN was used for feature extraction. Two CNN 
models were trained on the image data and the final 
layer output of CNN is used as the input feature. The 
first model has seven layers while the second model 
was created with two layers. The performance of 
these two models was compared considering 
accuracy. 

3.3 Classification Model Building and 
Concatenation 

Several classification models were created to classify 
the chip images and machine parameters into three 
classes: (a) acceptable chip (b) optimal chip (c) bad 
chip (Figure 2).  

The hyperparameter of the SVC was tuned with 
the help of the scikit-learn function ‘GridSearchCV’ 
through an exhaustive search over specified 
hyperparameter space. A 5-fold cross-validation was 
used. A linear kernel along with ‘C’ value 1000 
stopped the grid search process, for this reason, the 
linear kernel was removed from the candidate 
hyperparameter list. The grid search process for the 
SVC model hyperparameter took 48 hours. The final 
optimized hyperparameter values are provided in 
Table 1. Hyperparameters of the kNN and RF model 
were tuned with help of ‘GridSearchCV’ with 5-fold 
cross-validation. The grid search process for the kNN 
model hyperparameter took 5 minutes. The final 
optimized hyperparameter values are provided in 
Table 1. 

 

 
Figure 5: Concatenated model construction. 
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Table 1: Optimized hyperparameter values of the ML models. 

Hyperparameter Candidate value Optimized value 
Case 1 Case 2 Case 4 Case 5 

SVC
C 0.1, 1, 10, 100, 1000 1000 1000 0.1 1 

gamma 1, 0.1, 0.01, 0.001, 0.0001 1 1 0.0001 0.001 
kernel ’rbf’ ’rbf’ ’rbf’ ’rbf’ ’rbf’ 

Random Forest
max depth 10, 20, 30 30 30 30 30 

max features ’auto’, ’sqrt’ ’sqrt’ ’auto’ ’auto’ ’sqrt’ 
min samples leaf 1, 2 1 1 1 1 
min samples split 2, 5 2 2 2 2 

n estimators 800, 1000 1000 1000 800 1000 
k Nearest Neighbour

n neighbors 5,7,9,11,13,15 5 11 5 5 
Weights ’uniform’,’distance’ ’distance’ ’distance’ ’distance’ ’distance’ 
Metric ’minkowski’,’euclidean’,’manhattan’ ’manhattan’ ’manhattan’ ’manhattan’ ’manhattan’

ANN
Learning rate 1,0.1,0.01,0.001 0.1 0.1 0.1 0.1 

Activation ’relu’, ’elu’ ’relu’ ’relu’ ’relu’ ’relu’ 
Neurons 10, 20, 30, 40, 80 40 40 40 30 

batch size 16, 32, 64, 128 64 64 64 16 
Optimizer ‘Nadam’,’Adam’ ‘Nadam’ ‘Nadam’ ‘Nadam’ ‘Nadam’ 

 

Table 2: Optimized Hyperparameter values of the concrete-
naked model. 

Hyperparameter Candidate value Optimized value
Case 3 Case 6

Activation ’relu’, ’elu’ ’relu’ ’relu’
Batch size 16,32,64,128 64 64
model1 neuron number 10,20, 30, 40,100 10 10
learning rate 0.01,0.1,0.001, 

0.00001 
0.1 0.1 

dropout 0, 0.1, 0.2 0 0
Optimizer ’Adam’,’Nadam’ ’Nadam’’Nadam’
model2 neuron number 20,30,100, 300 30 30

 
In the concatenated model, three dense layers were 
used which is followed by a flattened layer and finally 
the output layer (Figure 5). At the time of training, the 
model ‘Categorical Crossentropy’ was used as the 
loss. After building both ANN models’, the outputs 
were concatenated (Figure 5). The models’ 
hyperparameters were optimized with Talos21. The 
output is the probability of a specific class. The final 
optimized hyperparameter values are provided in 
Table 2. 

3.4 Deployment in Raspberry Pi 

The model with significant performance was 
deployed in Raspberry Pi. The Raspberry Pi 4 Model 
B with 8GB of RAM was used in the proposed study. 
The Raspberry Pi can send the results of the ML 
model and extracted images to the Azure cloud. 

 
2Autonomio Talos [Computer software] 

4 RESULTS 

4.1 Perspective 1: Change in 
Hyperparameter 

In this perspective, change in performance with 
hyperparameters is focused. Table 1 shows the 
candidate and optimized hyperparameters while 
Figure 6 shows the change in hyperparameters with 
cases (hyperparameters that remained constant are 
not included in the figure). 

The C value in SVC is the term used to control 
misclassification for hybrid architecture (Case 1 and 
Case 2), C in SVC has a value of 1000 while for 
traditional architecture (Case 5 and Case 6), the value 
is 1. The hybrid architecture has higher accuracy on 
test data with a higher C value. The penalty for 
misclassification is higher in the case of hybrid 
architecture which implies hybrid architecture 
considers the outliers in the case of classification. 
Conversely, in traditional architecture outliers are not 
considered. However, the test accuracy increased 
with the inclusion of outliers (Figure 6). 

The data distributions of pixel values explain this 
result (Figure 7). The figure shows, for an acceptable 
and optimal chip the pixel values follow a normal 
distribution, and most data points fall within the 
distribution curve. However, for bad chips, pixel 
values do not ideally follow any distribution. The 
closest data distribution is the ‘rayleigh’ distribution.  
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Figure 6: Change in performance with hyperparameter. 

 
Figure 7: Data distribution of image pixels. 

However, most data point shows random 
frequency. Considering outliers while creating the 
model showed success because of this distribution. 

4.2 Perspective 2: Change in 
Architecture 

In this perspective, two types of architecture such as 
hybrid (Case 1, Case 2, Case 3) and traditional (Case 
4, Case 5, Case 6) architecture were considered 
(Figure 8). Hybrid architecture comprised of CNN 
features extractor and ML model while traditional 

architecture comprised of manual feature extractor 
and ML model. The accuracy increased by 20% 
because of hybrid architecture. 

4.3 Perspective 3: Change in ML 
Algorithm 

Certain ML algorithms such as SVC, RF, kNN, and 
ANN were used to find the best model. ANN 
outperformed all the other models. The accuracy 
increased by a factor of 15% because of the changed 
ML algorithm (ANN:90% and kNN:75%). 
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4.4 Perspective 4: Inclusion of New 
Data Source 

In this perspective, a new data set i.e., machine 
parameters were used as input in addition to image 
data resulting in two sets of cases ((a)Only image set, 
(b)Image and machine parameter set). Only the image 
set includes Case 1 and Case 4 while the image and 
machine parameter set includes Case 2, Case 3, Case 
5, and Case 6 (Figure 8).  

Both the image and machine parameter set (Case 
2) and only the image set (Case 1) have 90% 
accuracy. This implies the inclusion of a new data 
source does not increase the accuracy. 

4.5 Perspective 5: Change in ANN 
Architecture 

In this perspective, concatenated ANN architecture 
(Case 3 and Case 6) was compared with ANN without 
concatenation (Case 2 and Case 5). A concatenated 
ANN architecture was created to test if the changed 
architecture can improve accuracy in addition to the 
inclusion of a new data source (perspective 2). In 
hybrid architecture, accuracy decreased by a factor of 
2% with the introduction of concatenated architecture 
(Case 2 and Case 3) while in traditional architecture, 
the introduction of concatenated architecture did not 
affect accuracy (Case 5 and Case 6). 

Conversely, the inclusion of feature extractors 
such as hybrid or traditional architecture (Perspective 
2: Change in architecture) changed performance 
significantly which indicates feature extraction can 
lead to the loss of significant information. To quantify 
the change in information aspect with change in 
input such as the inclusion of feature extractor and 

machine parameter data normalized mutual 
information was calculated. 

Normalized mutual information considers 
Shanon’s entropy for the quantification of change in 
the information aspect of one variable with the 
observation of another variable. In the proposed 
study, the added information to the true response 
because of the predictions from the ML models is 
quantified (Figure 9). As shown in the figure, 4 sets 
of input are considered: 
• Input 1: Raw (no feature extraction) image data 
• Input 2: Hybrid (feature extraction with CNN) 

image data 
• Input 3: Traditional (manual feature extraction) 

image data 
• Input 4: Only Machine parameter 

 

The information bits added by the raw image is 
65% while feature extractions from the raw image with 
CNN increased the information aspect by only 3%.  
Manual feature extraction decreased the information 
aspect by 40%. Conversely, for only machine 
parameters, mutual information is only 5%. This 
 

 
Figure 9: Mutual information associated with a different set 
of data. 

 
Figure 8: Change in performance with change in perspective.
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explains unchanged accuracy with the addition of 
machine parameters (Perspective 4). 

4.6 Perspective 6: Change in CNN 
Feature Extractor Architecture 

Several research studies state deep layers such as 14 
layers (Rahman, 2021), and 50 layers (Qadir, 2019) 
of CNN for feature extraction. However, in the 
proposed study it is observed that with an increment 
of the CNN feature extractor layer the accuracy 
dropped in a proportional way.  

To find the reason for degraded performance the 
extracted features are plotted as an image for 2-layer 
CNN and 7-layer CNN, (Figure 10). It is shown in the 
figure that with an increase in the feature extractor 
layer the images become abstract and it loses 
information significant for classification. 

 
Figure 10: Chip image feature extraction with 2-layer and 
7-layer CNN. 

4.7 Significance Test 

Wilcoxon signed-rank test is a non-parametric test 
used for the hypothesis test. In the proposed study, all 
the data do not follow the Gaussian distribution 
(Figure 7). For this reason, parametric test such as 
ANOVA was not used. 

Wilcoxon signed-rank test was performed to test 
the null hypothesis ”The difference in true response 
and ML predicted response is equal to 0” The p-value 
for hybrid ANN (Case 2) is 0.664 while the p-value 
for traditional ANN (Case 5) is 0.443. Therefore, the 
null hypothesis cannot be rejected because the p-
value is greater than the significance level alpha = 
0.05. Additionally, hybrid ANN (Case 2) has a higher 
p-value compared to traditional ANN (Case 5) which 
implies hybrid ANN (Case 2) is more related to true 
response. 

4.8 Hardware Setup Result 

The complete hardware setup deployed in the 
manufacturing company workshop is shown in Figure 
11. The microcontroller extracts frames from the 
video and sends them to the Azure cloud. To send 
8603 frames to the azure cloud through an internet of 
speed 9 MB/s the microcontroller takes 8 seconds. 

5 DISCUSSION AND 
CONCLUSION 

The manufacturing industry is stepping into the era of 
industry 4.0 with the advancement of technology. A 
manufacturing system comprises numerous parts and 

 
Figure 11: Complete setup in the manufacturing workshop. 
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malfunction of any of these parts can lead to faulty 
functionality. ML-integrated manufacturing can 
solve this problem by reducing economic loss. 
However, good ML performance is a prerequisite. 

In the proposed study, chip images and machine 
parameters are used as input to several ML models for 
the prediction of the chip class and a quantified 
performance analysis from six discrete perspectives 
was performed. 

One of the findings of the proposed study is that 
SVC, kNN and ANN are the top three ML models 
which are affected by hyperparameters significantly. 
The C value of the SVC classifier is an indication of 
data distribution. A significant C value indicates the 
presence of an outlier. Additionally, accuracy can be 
increased by a factor of 30% with hyperparameter 
tuning. 

However, ML performance improvement can be a 
paradox. In the proposed study, the initial target was 
to achieve an accuracy above 90%. For this reason, 
hyperparameters were tuned increasing accuracy by 
30%. For further improvement, automatic feature 
extraction with CNN instead of traditional feature 
extraction was implemented which increased the 
accuracy by a factor of 20%. 

Several state-of-the-art ML models such as SVC, 
kNN, RF and ANN are trained to find the best-
performing model. Changing the ML model increased 
the performance by a factor of 15%. The best-
performing model is ANN. 

The findings of the proposed analysis show that 
an increment of data which does not contribute any 
information will not increase performance. The pitfall 
of data is the widely accepted belief ”more data 
means better performance”. However, more data does 
not always lead to better performance. An added data 
source only increases performance if the posterior 
probability of the response variable changes 
significantly with the inclusion of a new data source. 
Additionally, the concatenation two ANN model will 
contribute to better performance only if the input data 
quality is better. Therefore, data plays a significant 
role compared to model architecture. 

A significant number of scientific publications 
show performance increment with the extraction of 
features such as edge, and colour. However, the 
analysis based on perspectives 5 and 6 shows feature 
extraction does not always contribute to model 
performance increment. In certain cases, feature 
extraction can suppress information significant for 
classification. For this reason, raw pixel values have 
a similar performance as the CNN extracted features. 

It can be concluded that an industrial case study 
can have a distinct characteristic which can lead to the 

failure of popular performance improvement 
methods. In the proposed study, the detected objects 
(chips) can be a few millimetres resulting decrease in 
accuracy with feature extraction compared to raw 
pixel values. Additionally, it can be concluded that 
data quality plays the main role in performance 
improvement compared to hyperparameter tuning, 
model architecture changing, feature extraction 
method, size of data, and algorithm selection. The ML 
model predictions are not produced by chance 
(according to Wilcoxon signed-rank test). 

The limitation of the proposed study is the latency 
introduced due to image processing leading to limited 
application for real-time object detection. The 
findings of the proposed study apply to the specific 
case study and case studies with similar types of data. 
In future, the same analysis can be performed on 
benchmark data sets to draw a more generalized 
conclusion. 
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