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Abstract: In 2017 Robert Shiller, a Nobel Laureate, introduced Narrative Economics, an approach to explaining aspects
of economies that are difficult to comprehend when analyzed using conventional methods: in light of narratives
(i.e., stories) that participants in asset markets hear, believe, and tell each other, some observable economic
factors, such as price dynamics of otherwise valueless digital assets, can be explained largely within the
context of those narratives. As Shiller argues, it is best to explain and understand seemingly irrational and
hard-to-explain behaviors, such as investing in highly volatile cryptocurrency markets, in narrative terms:
people invest because they believe that it makes sense to do so, or have a heartfelt opinion about the prospects
of the asset, and they share these beliefs and opinions with themselves and others in the form of narratives.
In this paper, we address the question of how an agent-based modeling platform can be developed to be
used for studying narrative economics. To do this, we integrate two very recently published developments.
From the field of agent-based models of financial markets, we use the PRDE adaptive zero-intelligence trader
strategy introduced by Cliff (2022), and we extend it to integrate a continuous-time real-valued nonlinear
opinion dynamics model reported by Bizyaeva et al. (2022). In our integrated system, each trader holds an
opinion variable whose value can be altered by interaction with other agents, modeling the influence that
narratives have on an agent’s opinions, and which can also be altered by observation of events in the market.
Furthermore, the PRDE algorithm is modified to allow each trader’s trading behavior to smoothly alter as that
trader’s opinion dynamically varies. Results reported for the first time here show that in our model there is
a tightly coupled circular interplay between opinions and prices: changes in the distribution of opinions can
affect subsequent price dynamics; and changes in price dynamics can affect the consequent distribution of
opinions. Thus this paper presents a first demonstration of the reliability and effectiveness of our new agent-
based modeling platform for use in studying issues in narrative economics. Python source-code for our model
is being made freely available as open-source release on GitHub, to allow other researchers to replicate and
extend our work.

1 INTRODUCTION

The notion of narrative economics, introduced
and popularized by Nobel Prize winner Robert
Shiller (Shiller, 2017; Shiller, 2019), involves the
study of the spread and dynamics of “narratives”, i.e.
the stories (particularly those of human interest and
emotions) told and believed by market participants
about the nature of the market, and how these change
over time, to understand the dynamics of economic
and market systems. In particular, Shiller argues that
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phenomena which are difficult to explain in any other
way, as such cryptocurrency price fluctuations, can
best be explained by reference to the narratives in play
among participants in the relevant markets.

In their 2021 prize-winning ICAART paper, Lo-
mas & Cliff (Lomas and Cliff, 2021), noted that a nar-
rative is simply an expression of an opinion, and used
this to forge an initial link between agent-based mod-
els of financial markets, and the long-established field
of research in the social sciences literature known as
Opinion Dynamics (OD). Research in OD aims to un-
derstand how individuals in a population can influ-
ence others to change their opinions, and how they
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may change their own opinions, as a result of those in-
fluences. Lomas & Cliff presented a novel approach
to integrating mathematically naive 20-year-old OD
models with agent-based computational economics.
In the Lomas & Cliff model, traders buy and sell as-
sets by submitting bid and/or ask orders to an auto-
mated central financial exchange (such as a real-life
stock exchange or a cryptocurrency exchange web-
site), and showed how changes in the trader-agent’s
opinions could be reflected in the price dynamics of
the market. While notable for its novelty, Lomas
& Cliff’s work could be improved upon in two ma-
jor ways: first, their method for integrating OD with
trader-agents has since been shown to have a vulnera-
bility that can result in the market collectively grind-
ing to an irreversible halt; and second they did not
discuss or explore any mechanisms by which mar-
ket events could alter the traders’ opinions – in their
model, causality was one-directional from opinions to
prices. In this paper, we present our model which
addresses both those issues and also relies on a less
mathematically naive OD model, which enables fur-
ther work in exploring the stability of the dynamics of
our model, as is discussed further later in this paper.

Although the OD literature is substantial, the vast
majority of it discusses models where agents hold ab-
stract opinions that are altered only by interactions
with other agents and which do not contain external
references to establish whether certain opinions are
true or false (for example, opinions may be held about
politics or religion, on which people hold strong per-
sonal views and firmly believe that their opinions are
correct, but for which there is no one objectively cor-
rect opinion). In contrast to much of the existing OD
literature, Lomas & Cliff’s work was notable because
the opinions of their trader-agents regarding the cur-
rent price of an asset could later prove to be true or
false. For example, a trader may believe that the price
of an asset would decrease in the near term, but in
fact it increases. Therefore, in agent-based models
of narrative economics traders need to be able to ad-
just their opinions based not only on local interactions
with other agents but also on uncertain future globally
observable outcomes that have not yet been resolved
or revealed: this is unusual in the field of OD, with
almost no prior papers addressing this issue.

As with OD research, research in agent-based
modelling of economic and financial systems has
been underway for several decades, and it is a suffi-
ciently mature field that it has its own name: Agent-
Based Computational Economics (ACE: see e.g.,
(Chen, 2018; Hommes and LeBaron, 2018)). In ACE
models, a simulated economic or financial system
is created and populated with some number of au-

tonomous agents, where each agent follows some spe-
cific algorithm or strategy for interacting with other
agents in the system. It has been repeatedly demon-
strated that ACE models employing only minimally
simple trader strategies can be surprisingly informa-
tive, and these so-called zero intelligence (ZI) trading
strategies are now commonly used to illustrate and ex-
plore various economic and market phenomena. The
seminal paper in establishing markets populated by ZI
traders as worthwhile objects of study is (Gode and
Sunder, 1993); and for reviews of the impact and ef-
fectiveness of ZI studies in ACE, see (Farmer et al.,
2005; Ladley, 2012; Axtell and Farmer, 2022).

Very recently, (Cliff, 2022) proposed the
PRDE (Parameterized-Response zero-intelligence
with Differential Evolution) as an instance of
an efficiently adaptive ZI trading strategy, i.e. a
minimal-intelligence strategy that can usefully alter
its trading behavior to better fit its immediate market
conditions, with the aim of maximizing its individual
profitability at all times. Cliff’s PRDE is an extension
of his earlier PRZI (Parameterized-Response Zero-
Intelligence) trading strategy (Cliff, 2021) which
was introduced to address a problem identified in the
original Lomas & Cliff work: the modified ZI trading
strategies reported by Lomas & Cliff did integrate the
trader’s opinions into their trading behavior, but could
result in situations where the opinionated traders all
settled to a state in which no further transactions
could take place in the market, so the market ceased
to show any activity at all: for full details of this,
see the discussion in (Cliff, 2021). PRZI and then
PRDE were introduced as remedies to this problem
in Lomas & Cliff’s 2021 paper, but to the best of
our knowledge our paper here is the first to integrate
PRDE with a leading-edge OD model.

While the Lomas & Cliff paper is definitely novel,
it is somewhat disappointing that the OD models
they explored adding to existing ZI trader strate-
gies were old, extremely simple, and mathematically
naive. Specifically, Lomas & Cliff explored the in-
tegration of three OD models to two ZI strategies.
The two ZI strategies were the Zero-Intelligence Con-
strained (ZIC) of (Gode and Sunder, 1993) and the
Near-Zero Intelligence (NZI) of (Duffy and Ünver,
2006): when Lomas & Cliff added OD models to
these two strategies, they named the extended strate-
gies OZIC and ONZI, respectively. The three OD
models were the Bounded Confidence (BC) model of
(Hegselmann and Krause, 2002), the Relative Agree-
ment (RA) model described in (Deffuant et al., 2002;
Meadows and Cliff, 2012), and the Relative Disagree-
ment (RD) model of (Meadows and Cliff, 2013), the
most recent of which is over a decade old. All three
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of BC, RA, and RD are simple abstract discrete-time
models where time advances according to t ← t + 1
with no clear links from the integer-valued t to contin-
uous real-world time – that is, in these simple old OD
models there is no use of differential equations with
stated time-constants, which would in principle allow
the whole arsenal of continuous-time dynamical sys-
tems modelling and analysis tools and techniques to
be deployed, such as Lyapunov stability analysis To
address this issue, in our paper here we switch away
from the simplistic discrete-time OD models used
by Lomas & Cliff, and use instead a contemporary
continuous-time nonlinear differential-equation based
OD model recently reported by Bizyaeva, Franci, &
Leonard (2022) which we refer to hereafter as the
BFL model.

The novel results in our paper concern the over-
all dynamics of the integration of the BFL OD model
with PRDE traders. For consistency with the nam-
ing convention introduced by Lomas & Cliff, we refer
to opinionated-PRDE traders as OPRDE, and then to
distinguish our use of BFL from any later attempts to
create opinionated PRDE traders using different OD
models, we refer to our model as OPRDE-BFL.

We show here that our ACE-style market simula-
tions populated by OPRDE-BFL traders can exhibit
situations in which changes in market opinion alter
subsequent price dynamics (as was demonstrated by
Lomas & Cliff with OZIC and ONZI) and also that
changes in prices can plausibly alter the subsequent
distribution of opinions in the population of traders
(as was not demonstrated by Lomas & Cliff).

In Section 2 we give further details of the back-
ground to our work, concentrating on explaining the
PRDE trader strategy and the BFL opinion dynam-
ics model. In Section 3 we illustrates how the BFL
model can be customized for PRDE integration. In
Section 3.3 we explain how BFL is integrated into
PRDE traders. In Section 4 we describe the details of
our experiments and discuss the results. In Section 5
we discuss future directions and the implications of
our findings.

2 BACKGROUND

2.1 Simulated Financial Markets

The study of simulation models of financial markets
has been known for a long time as a means of ex-
ploring the fine-grained dynamics of various form of
market. Such models very often require populating
a market mechanism with a number of trader-agents:
autonomous entities that work independently within

the framework of the particular market mechanism
being simulated. As per the market simulation litera-
ture reviewed here, usually each trader in the market
is assigned a role, either that of a buyer or a seller, and
there is a systematic way in which each buyer (seller)
is assigned an order to buy (sell) a certain quantity
of an arbitrary abstract commodity in which the mar-
ket trades, as well as a private (secret to the trader)
limit price, which is the maximum (minimum) unit-
price at which they can buy (sell) the item. The dif-
ference between the transaction price and the trader’s
limit price is the profit (sometimes referred to as util-
ity or surplus). Over the 30 years or so that ACE has
been the topic of active development, a few specific
trader-agent algorithms are notable for their longevity
in the literature: SNPR (Rust et al., 1992); ZIC (Gode
and Sunder, 1993); ZIP (Cliff, 1997); GD (Gjerstad
and Dickhaut, 1998); MGD (Tesauro and Das, 2001);
GDX (Tesauro and Bredin, 2002); HBL (Gjerstad
et al., 2003); and AA(Vytelingum et al., 2008). The
seminal ZIC developed by Gode and Sunder (1993)
is highly stochastic however it shows surprisingly
human-like market dynamics. In a landmark paper by
IBM researchers (Das et al., 2001), GD and ZIP were
the first to be demonstrated to consistently show supe-
rior performance to human traders (see also: (De Luca
and Cliff, 2011b; De Luca and Cliff, 2011a; De Luca
et al., 2011)), and the IBM result is widely cited as
initiating the rise of algorithmic trading in real-world
financial markets. All of the these strategies, except
for SNPR and ZIC, use some form of machine learn-
ing (ML) or artificial intelligence (AI) to modify their
responses over time, better-adapting their trading be-
havior to the market conditions they find themselves
in, and the details of these algorithms have often been
published in major AI/ML conferences and journals.

Recently (Cliff, 2021) proposed the PRZI trading
algorithm: PRZI traders are firmly in the ZI tradi-
tion but they each have a scalar real-valued strategy
parameter s ∈ [−1,+1] ∈ R which governs their re-
sponse to market events: when a PRZI trader has s= 0
its trading behavior is identical to the seminal ZIC of
(Gode and Sunder, 1993), but when s > 0 it becomes
more “urgent”, quoting prices that are more likely to
find a counterparty and lead to a transaction, but for
which the expected profitability of the transaction will
be reduced relative to the prices quoted when s = 0;
and similary when s < 0 the PRZI trader is more “re-
laxed” quoting prices that are more profitable if they
do lead to a transaction, but less likely to lead to a
transaction than the prices quoted when s = 0.

At the extremes, when a PRZI trader i has si =
−1.0 its trading strategy is equivalent to the max-
imally relaxed Shaver (abbreviated SHVR) strategy
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proposed in (Cliff, 2012; Cliff, 2018); and when si =
+1.0 it is acting as the maximally urgent Give-away
(GVWY) strategy, also described in (Cliff, 2012;
Cliff, 2018).

As thus defined, an individual PRZI trader is non-
adaptive: it is assigned an s-value at creation, and
keeps that same s value for all of its lifetime. How-
ever, in subsequent work PRZI traders have been ex-
tended to adapt their s-values dynamically, as market
conditions change, attempting to always increase or
maintain their profitability as market circumstances
alter. This allows populations of adaptive PRZI
traders to be used as a tool for simulation modelling of
contemporary real-world financial markets, in which
all traders are simultaneously adapting their trading
strategies, each seeking to maximize their own prof-
itability, while burdened by the complexity and un-
certainty of adapting to a market environment where
every other trader is simultaneously adapting, contin-
uously adjusting its strategy in real-time.

The most recent and currently most efficient adap-
tive PRZI trader was described in (Cliff, 2022): PRzi
with Differential Evolution (PRDE), which makes use
of Differential Evolution (DE: see e.g. (Storn and
Price, 1997; Bilal et al., 2020)) as its optimization
strategy. Each PRDE trader maintains a population
of size k ≥ 4 candidate s-values, and iterates over an
infinite loop in which on each iteration it evaluates
each of the k candidates in turn, and then uses a basic
DE process to create a new candidate s-value, which
is also evaluated: if that new candidate is better than
one of the four in the original population, it replaces
that one; if not, it is discarded; and the loop iterates
again. Evaluation of any one candidate s-value in-
volves the PRDE trader operating in the market using
only that s-value for some period of time, and then
calculating the profit-per-unit-time for that s-value as
its “fitness” score in the DE process. For all our ex-
periments reported here, we used the Python PRDE
reference implementation published on Github as part
of the freely-available BSE platform for agent-based
modelling of contemporary financial markets, avail-
able as (Cliff, 2012).

In all of our experiments reported here we used
BSE in its default configuration, where it allows for
the definition of some number of buyer-agents NB,
and some number of seller-agents NS. Each buyer
(seller) is periodically issued with assignments to buy
(sell) a unit of the exchange’s tradeable asset at a price
no higher (lower) than that trader’s given private limit
price, and to find a willing seller (buyer) as a trading
counte-party via interacting within a continuous dou-
ble auction (CDA) running on a centralised financial
exchange that operates a Limit Order Book (LOB), by

submitting bid (ask) orders to the exchange. The CDA
is an auction mechanism in which any buyer can sub-
mit a bid order to the exchange at any time, and any
seller can submit a sell order at any time, and the ex-
change continuously runs a matching engine to pair
up buyers and sellers whose orders are compatible –
e.g. if a seller S1 quotes an ask of $100 for a unit of
the asset and a buyer B1 then quotes a bid price of
more than $100, the exchange matches B1 and S1 as
counter-parties to a transaction and S1 then sells to
B1 for $100, because that was the earlier-quoted of
the two prices. However, whenever a trader quotes
a price that cannot be matched with a counter-party,
that quote “rests” at the exchange and is entered on
the LOB; with the exchange publishing an updated
LOB to all market participants every time the LOB
changes. The published LOB shows a summary of
the array of all unmatched buyer orders resting at the
exchange (on the bid-side of the LOB) and all un-
matched seller orders (on the ask-side) of the LOB,
with the two sides of the LOB sorted in price-order
from best (highest bid, lowest ask) to worst (low-
est bid, highest ask). All major financial exchanges
around the world for stocks/shares, currencies, com-
modities, and digital assets run LOB-based CDAs, so
in this respect BSE is an excellent model of real-world
exchanges. For further details of CDAs and LOBs,
see e.g. (Friedman and Rust, 1992; Gould et al., 2013;
Abergel et al., 2016). Limit prices on the trader’s as-
signments were drawn from a pair of supply and de-
mand curves that we specified, allowing us to control
the equilibrium price and quantity in each market ses-
sion.

3 OPRDE: OPINIONATED PRDE

In this section we describe our rationale for the spe-
cific set of changes we introduced to give Opinionated
PRDE (OPRDE) traders, which fully enable the study
of narrative economics via agent-based models.

3.1 Opinions About What?

First, we need to be specific about what our trader-
agents hold opinions about. In the first instance, we
are working with agents whose opinions at time t con-
cern the qualitative shift in price P(t) of a tradeable
asset at a particular future point in time ω, denoted
by Tω, relative to the price at some earlier point in
time T0 when the opinion was first formed. Each
trader i’s individual opinion at time t is a real number
xi(t) ∈ [−1.0,+1.0] ∈ R, which we interpret qualita-
tively as mapping onto one of two opinion-states such
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that xi(t) ∈ {−1,+1}; where xi(t) = +1 implies that
i’s opinion is that the price will significantly rise; and
correspondingly that xi(t) =−1 implies that i’s opin-
ion is that the price will significantly fall. Here the
notion of “significant” rises or falls in price is defined
in terms of whether the absolute percentage change in
price is above some threshold percentage ∆p; that is,
a price change is significant if:∣∣∣∣P(Tω)−P(T0)

P(T0)

∣∣∣∣> ∆p

This definition, with each trader i having its own indi-
vidual values for T0,i, Tω,i, and ∆p,i, allows the model
be able to capture situations in which different traders
form their opinions at different times (i.e., the T0,i val-
ues may vary with i), have differing time-horizons
over which they judge the rise/fall/unchanged nature
of any difference in price (i.e., the Tω,i values may
vary with i), and have different views of what counts
as a significant change in price (i.e., the ∆p,i values
may vary with i, too). However, for simplicity, in the
experiments reported here we study only situations in
which all traders have the same values of these three
variables: that is, in our experiments here, all traders
form their opinions at the same time, when the mar-
ket session opens; all traders assess the price-change
at the same time, when the market session closes; and
all traders have the same definition of “significant”,
here ∆p,i = 0.2,∀i. This means that our traders will
exhibit opinion dynamics both within any one mar-
ket session, and also across a sequence of successive
market sessions. In this paper we concentrate only
on the within-session dynamics, studying only a sin-
gle market session at a time. In later papers we will
explore opinion dynamics in our system when it runs
for continuous sequences of multiple successive mar-
ket sessions.

3.2 The BFL Nonlinear OD Model

Here we present our condensed summary of
(Bizyaeva et al., 2022): for full details, readers are
of course referred to the original paper.

Consider a network of NT = NB + NS trading
agents each forming a scalar opinion x1, ...,xNT ∈ R
about the price of a tradeable asset, and M ≥ 1 com-
munication sources (such as mass media), offering
static opinions c1, ...,cM ∈ R about the same asset.
Consider xi the real-valued opinion variable of trader
i, where negative values indicate a belief that prices
are about to decline, while positive values indicate an
increase, and the same is true for the value of the opin-
ions from the communication sources, for instance ck
denotes the opinion from communication source k re-
garding the price of the asset. Let X = (x1, ...,xNT )

be the opinion state of the agent network, a special
case being the neutral state at the origin X = 0 which
would be the case if all agents held no firm opinion
about the directionality of any near-term price move-
ments. Agent i is unopinionated if its opinion state
is small, i.e., ‖xi‖ 6 ϑ, for a fixed threshold ϑ ' 0;
agent i is opinionated if ‖xi‖ ≥ ϑ. Agents can agree
and disagree: when two agents have the same qual-
itative opinion state (e.g., they both favor the same
option), they agree. When they have qualitatively dif-
ferent opinions, they disagree.

In the BFL model proposed by (Bizyaeva et al.,
2022), the opinions of agents are assumed to evolve
nonlinearly in continuous time, and we have tailored
the BFL model to best suit it to the financial market
context in which we are using it. Our application con-
sists of the following parameters and property speci-
fications:
• Saturated Opinion Exchanges. Almost ev-

ery signaling network, whether natural or artificial,
exhibits saturated nonlinearities due to the limits of
action and sensing. In the case of an agent opinion
dynamics network, the saturation of interactions be-
tween agents efficiently bounds the attraction between
their opinions, thus, overcoming the paradox of linear
weighted average models. (Bizyaeva et al., 2022).
• Local Opinion. A trader’s local opinion is ob-

tained as a linear weighted sum of the opinions ex-
pressed by all the other traders in the network. The
weighted average is based on an adjacency matrix de-
noted here by A = [ai j] ∈ RNT ×RNT . It is important
to note that there are two types of network interac-
tions: self-reinforcing interactions, weighted by aii;
and neighbour interactions, weighted by ai j, where
the sign of the adjacency weight determines the sign
of the network interaction, for all existing links be-
tween traders in the traders’ social network satisfying
ai j 6= 0, with ai j weighing the extent to which agents
are influenced by their neighbors.
•Opinions From Communication Sources. The

impact of communication sources, such as the mass
media, on a trader’s opinion, is captured by a
weighted linear sum of the static opinions of these
sources. This sum is weighted by the weight matrix
B = [bik] ∈ RNT ×RM which identifies to what extent
each trader can be influenced by a given communica-
tion source.
• Attention. It is important to note that traders’

attention or susceptibility to exchange opinions may
vary. In our model, each trader i’s attention param-
eter ui is linked to i’s profit, meaning that when a
trader loses profitability, its attention increases, oth-
erwise it remains the same; thus if the agent loses it
will be more alert to its neighbors and communication
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sources. Let πt represents the trader’s profit at time t
and πt−1 is the trader’s profit at a previous period t−1,
then the trader’s attention is updated as follows:

ut+1

{
ut +ξ πt −πt−1 < 0

ut πt −πt−1 ≥ 0 (1)

where ξ is an incremental value that gets increased
as the market session approaches the end.
• Resistance. A trader’s resistance parameter di

represents its willingness to change its opinion.
• Inputs. Our agents have exogenous inputs: two

input parameters gi and ei are introduced for each
agent. The first input parameter gi represents the col-
lective opinion of the market, as summarised by pub-
lic data shown on a central exchange’s LOB, such as
the market’s current mid-price or micro-price (both
of which are defined below), which is analogous to
the global opinion in the work of (Guzelyte and Cliff,
2022). The second input parameter ei represents some
indication of the likelihood of a specific opinion prov-
ing to be true at its stated Tx – what (Guzelyte and
Cliff, 2022) referred to as the “event opinion”. In
principle, supply and demand data can be used to pre-
dict whether prices are likely to rise or fall in the short
term. In the event that there is an excess of supply
relative to demand, the price of the asset will likely
fall; and vice versa. A simple way for ZI traders to
estimate supply/demand imbalance, as introduced in
(Church and Cliff, 2019), is by taking the difference
between the current market mid-price, denoted here
by pm(t) = (p∗bid(t)+q∗ask(t))/2, and the current mar-
ket micro-price (as defined by (Cartea et al., 2015)),
denoted here by pµ(t), where

pµ(t) =
p∗ask(t)q

∗
bid(t)+ p∗bid(t)q

∗
ask(t)

q∗bid(t)+q∗ask(t)
(2)

in which p∗ask(t) is the price of the best ask at time
t (i.e., the price at the top of the ask side of the ex-
change’s LOB); p∗bid(t) is the price of the best bid
at time t (i.e. the price at the top of the bid side
of the LOB); q∗bid(t) is the total quantity available at
p∗bid(t); and q∗ask(t) is the total quantity available at
p∗ask(t). In the case of zero supply/demand imbal-
ance at the top of the LOB (i.e., Equation 2 reduces
to the equation for the market midprice, and there-
fore the difference between the two prices, denoted by
∆m(t) = pµ(t)− pm(t) is zero). Accordingly, a posi-
tive imbalance (i.e. ∆m(t) >> 0) indicates that the
subsequent transaction prices are likely to increase,
and a negative imbalance (i.e. ∆m(t) << 0) indicates
that subsequent transaction prices are likely to fall.

As per (Bizyaeva et al., 2022), the networked
opinion dynamics ẋi are then summarised as:

(3)
dxi

dt
= −dixi + ui (S1 (sA) + S2 (sB)) + (gi + ei)

where sA = ∑
NT
j=1 Ai jx j and sB = ∑

M
k=1 Bikck.

The evolution of agent i’s opinion is determined
by four terms. These terms are the linear damp-
ing term, the saturated network interaction term,
the saturated communication sources influence term,
and the environmental signal term. S1,S2 : R → R
are bounded saturation functions satisfying S(0) =
0, S(0)′ = 1, S(0)′′ = 0, S(0)′′′ 6= 0 with an odd sym-
metry S(−y) = −S(y); S1 saturates the network in-
teractions, S2 saturates the communication sources
influence; the damping coefficient di > 0 represents
a trader’s reluctance to form a strong belief since it
drives the values ẋi to the neutral point, which im-
plies that higher di indicates that the trader will be
more resistant to forming an opinion, however, the
parameter ui ≥ 0 indicates how attentive agents are
to their social interactions, which affects the degree
to which their opinions are socially influenced. En-
vironment inputs ei and gi represent “opinions” (or,
more accurately, opinion-influencing factors) derived
from the environment, which are independent of the
other agents’ opinions.

3.3 Adding BFL to PRDE

In this study, we provide PRDE traders with a real-
valued opinion variable, which means that opinion-
ated PRDE buyers will behave differently from opin-
ionated PRDE sellers in the same market environ-
ment. For instance, when opinions indicate that prices
are on the rise, OPRDE buyers will respond with a
heightened sense of urgency as a hybrid of GVWY
and ZIC. As a result, they will quote prices based
on strategy values influenced by their opinions; con-
versely, OPRDE sellers will act more relaxed and
quote prices based on strategy values that are a hybrid
of ZIC and SHVR. On the other hand, when opinions
indicate that asset prices are falling, the same reason-
ing applies mutatis mutandis.

By this point, it should be obvious that we re-
quire some function that maps from trader i’s opin-
ion variable xi to its PRDE strategy si, i.e. si = Fi(xi).
Considering the simplest case, since both si and xi ∈
[−1,+1] ∈ R, it is possible for the mapping to be
the identity function, or its opposite, depending upon
whether i is a buyer or a seller. A buyer’s simplest
Fi is identity function: Fi(+1) = +1, Fi(−1) = −1,
whereas a seller’s simplest Fi is negative identity func-
tion: Fi(+1) =−1, Fi(−1) = +1. It should be noted,
however, that this fairly rapidly shifts the trader’s
strategy to the extremes (either SHVR or GVWY) as
|x|→ 1, therefore, this may not always be the most
effective approach: because at the extremes, buyers
usually lose. Consider, for example, a buyer play-
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ing SHVR. It will be moving away from it minimum
price to it limit price, which means it ends up quot-
ing high quote prices. In contrast, a seller playing
SHVR moves from it maximum price while still mak-
ing high quote prices, and generates more profit as a
result. Additionally, when a buyer plays GVWY, it
loses since it limit price is it maximum price. At the
extremes, a buyer only has a chance of winning when
the seller plays GVWY. It is due to the fact that the
seller will maintain it limit price as it minimum price.
This results in the deal being in favor of the buyer,
even if the buyer is bidding higher than it limit price.
Furthermore, it is important to note that if the strate-
gies are always at -1, 0, and +1, the PRZI family of
traders will be unable to utilize the full potential of the
infinite number of strategies that PRZI offers. Thus,
it is clear that we need a nonlinear mapping from an
opinion to a strategy that will not push the strategies
to the extreme edges {−1,+1}. In such a manner
that when prices fall, a buyer acts as a hybrid with
a high probability of quoting low prices; and when
prices rise, however, the seller acts as a hybrid, with
a high probability of quoting high prices. We have
found that the sine function usefully maps a trader’s
opinion to its strategy: it has the virtue of simplicity,
and the fact that it provides values for a strategy that
are close to those for the identity function. This is
necessary to determine the appropriate quote prices.
Nevertheless, when the sine function has a value of
+1 or 1, we clip it to keep it below those extreme val-
ues.

Recall that each PRDE trader maintains a pri-
vate local population of potential strategy-values, of
population-size k ≥ 4, which for trader i can be rep-
resented by si,1,si,2, ...,si,k. Since PRDE traders use
just a single real scalar value to specify their bargain-
ing behavior, every individual in trader i’s local DE
population is just a single value. Consequently, the
conventional DE concept of crossover (i.e., selecting
alleles from two parents, one allele per dimension
of the genomes) is not applicable here: PRDE con-
structs a genome entirely by operating on the base
vector. In its current configuration, PRDE applies
the basic “vanilla” DE/rand/1 where, after evaluat-
ing a particular strategy si,x, three other s-values are
randomly selected from the population: si,a,si,b, and
si,c where x 6= a 6= b 6= c, and therefore a new candi-
date strategy si,y is created s.t. si,y = max(min(si,a +
Fi(si,b− si,c,+1),−1) where Fi represents the trader’s
differential weight coefficient (in the experiments re-
ported here, Fi = 0.8;∀i), with the nested min and max
functions keeping the candidate strategy value within
the range [-1.0, +1.0]. In OPRDE we introduce the
trader’s opinion si,o as a new candidate strategy. Then

the fitness of si,y and si,o are evaluated and the best
strategy replaces si,x, otherwise, it is discarded; and
then the next strategy si,x+1 is evaluated.

3.4 Implementation Details

The experiments reported in Secction 4 use BSE to
simulate a financial market for a single abstract trade-
able commodity, where NB = NS = 30 and hence
NT = 60; and where each trader is running OPRDE
with k = 5. Throughout the process, buyers are given
a maximum purchase price of $140 per unit, while
sellers are restricted to a minimum sale price of $60
per unit. A schedule such as this provides what
economists refer to as perfect elasticity of supply and
demand, and it is widely used in experimental eco-
nomics research (such as (Smith, 1965)): this en-
sures that every seller can find a buyer that could act
as a counterparty, and vice versa. In other words,
no traders would be given extra-marginal prices that
would limit their ability to find counterparties. As a
result of a transaction between two traders, both their
cash assignments and their stock assignments are de-
pleted to render them inactive, and they each wait for
a random period of up to five seconds before they are
re-assigned fresh cash or stock, enabling them to re-
join the market as active traders once again.

BSE simulates continuous time using a discrete
time-slicing approach using a temporal step-size of
∆t = 1/NT , i.e. 0.0167sec for NT = 60, as a result,
each trader can interact with the market at least once
a second. Our experiments here simulate 300 days
of continuous round-the-clock 24× 7 tradings: the
trading takes place on sub-second timescales, but the
co-evolutionary dynamics play out over much longer
periods. The profit per second (PPS) of a strategy s
at time t is calculated by summing all profits gen-
erated over the time period [t − ∆E , t] and dividing
that accumulated profit by the evaluation period ∆E :
in our experiments here we use ∆E=7200sec (i.e., 2
hours); given there are k = 5 strategies, any one trader
takes 10 simulated hours to evaluate all its candi-
date strategies. As stated earlier, every transaction’s
profit is determined by the difference between the
price agreed by the buyer and seller and their indi-
vidual limit prices: e.g., if a transaction takes place at
a price of $90, then the buyer’s profit on the transac-
tion is $50 (denoted by πB) and the seller’s profit is
$30 (denoted by πS) because in these experiments all
buyers had a limit price of $140, and all sellers had a
limit price of $60.

For the BFL opinion dynamics model, for the il-
lustrative outputs shown in this paper we used the
following parameter values: ui = 0.5; di = 1,∀i =
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1, ...,NT ; the adjacency matrix A = [ai j] = [1]∀i∀ j;
and for these preliminary experiments the communi-
cation sources are switched off: exploring the inter-
play between the agents’ opinions and the communi-
catins sources is something that we intend to explore
in depth in a later paper.

4 RESULTS

This section evaluates OPRDE as an extension of
PRDE by giving illustrative answers to the following
three questions: (1) How does the OD of OPRDE af-
fect market prices? (2) How can the distribution of
prices affect the opinions of traders? And finally (3)
How do markets populated wholly by OPRDE traders
compare to those populated only by PRDE traders? 1

4.1 Opinions Affecting Prices

Our first evaluation question is addressed by exam-
ining the results from extreme opinion distributions,
such as those in which all traders hold extremely pos-
itive opinions, those in which all hold extremely neg-
ative opinions, and those in which the opinion distri-
bution shifts over time.

Figure 1 illustrates how market prices change
when traders’ exogenously imposed opinions start out
as negative for the first half of the period , and then
shift to positive toward the end of the 25-day experi-
ment. In both phases, transaction prices were highly
correlated with opinions, demonstrating a causal link
between traders’ opinions and their price-quoting de-
cisions. Figure 2 then shows the corresponding
changes in traders’ profit per second (PPS) values: in
the first five days, with all traders holding negative
opinions, sellers trade urgently and hence enter into
transactions that yield less profit for them while the
buyers trade with less urgency (i.e., are more relaxed)
and are able to hold out for more profitable prices;
and in the second period of five days the fortunes of
the buyers and sellers reverse as the opinions do.

This causal effect of opinions on prices in our
opinionated-agent-based model of a financial market
functionally replicates what was first demonstrated by
(Lomas and Cliff, 2021). In the next section, we
demonstrate functionality in our system beyond what
was demonstrated by Lomas & Cliff: that is, causality
in the opposite direction, where changes in the distri-

1For clarity, data from single experiments are presented
here; for data from additional experiments which demon-
strates that the results presented here are typical (rather than
cherry-picked special cases), see (Bokhari and Cliff, 2023).

Figure 1: Plot of transaction prices from 10 IID experiments
each involving all-OPRDE market over a 25-day period in
which opinions initially start out as extremely negative for
the first half of the period, and are then positive for the re-
maining of the period. See text for further discussion.

Figure 2: Profitability-per-second (PPS) plot for one of the
25-day experiments from Figure 1: the traces show aggre-
gate PPS for all buyers; aggregate PPS for all sellers; and
the sum of the two aggregates, i.e. total PPS extracted by the
whole population of traders. See text for further discussion.

bution of prices in the market go on to affect the dis-
tribution of opinions among the population of traders.

4.2 Prices Affecting Opinions

Among traders in financial markets, the phrase market
impact is commonly used to refer to situations where
the price of an asset quoted by potential counter-
parties to a large trade (where “large” means a trad-
ing volume sufficiently large to shift the supply or de-
mand curve for that asset) moves in such a way that
the trader trying to execute the large trade gets a worse
price than was quoted on the exchange at the time
that trader issued the order; and crucially this shift in
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price occurs before any transaction has actually taken
place. For example if a real-world stock-trader issues
a bid-quote to buy a single share of IBM, the price that
trader is quoted by potential sellers of IBM will be
very close to whatever the current best ask price is on
the exchange’s LOB for IBM; but if the trader instead
issues a bid-quote for one million IBM shares, this
sudden revelation of excess demand for IBM stock
means that potential sellers of IBM are all likely to
alter the prices they quote, shifting upward, to reflect
the rise in IBM’s share-price that the sellers anticipate
occurring as an immediate consequence of the newly
increased demand for that stock. Similarly, the arrival
of a large ask order will prompt potential buyers to
instantly revise their bid-prices down – and, in both
cases, the price change happens before any transac-
tion takes place.

In Section 3, we introduced ∆m(t) as a way of
measuring supply/demand imbalance at the top of the
LOB and so we add ∆m(t) to the opinion dynamics
model as the environment factor ei in Equation 3. In
consequence, OPRDE traders alter their behavior in
response to anticipated changes in price – that is, they
will be sensitive to market impact, because their opin-
ions will be affected by the distribution of prices (and
quantities) on the LOB. For example, when prices are
likely to rise, OPRDE buyers should feel an increased
sense of urgency and OPRDE sellers should feel a de-
creasing sense of urgency. In contrast, when prices
are likely to fall, OPRDE sellers should increase their
urgency, whereas OPRDE buyers should reduce their
urgency.

To test this, here we show results from one long-
term experiment in which the market is suddenly
flooded with a large number of sell orders all priced
at $60 during the period from day 30 to day 60, af-
ter which the excess sell orders are abruptly removed:
this step-change in excess supply in the market causes
an imbalance at the top of the LOB, resulting in a
negative value of ∆m(t), which indicates an expected
near-term decline in the asset price. Figure 3 shows
buyers’ strategies at this point clustering around−0.5,
which means buyers are being relaxed and acting as a
hybrid of ZIC and SHVR; on the other hand, Figure
4 shows sellers’ strategies over the same period clus-
tering around +0.5 i.e. acting urgently as a hybrid of
ZIC and GVWY. As can be seen from Figure 5, the
change in strategies is reflected in the quoted prices,
leading to a substantial decline in transaction prices
during the period of excess supply. The same effect
is shown in the PPS time series shown in Figure 6:
sellers have suffered significant losses, while buyers
have made huge profits during the period of excess
supply. This demonstrates that market dynamics have

Figure 3: Heat-map of individual strategy-values for the
population of 30 OPRDE buyers in a 300-day experiment
where severe excess supply is suddenly introduced to the
market on Day 30 and suddenly removed on Day 60. Hori-
zontal axis is day-number; vertical axis is strategy; shading
intensity shows proportion of traders in the population with
that strategy (darker shading signifies more traders).

Figure 4: Heat-map of individual strategy-values for the
population of 30 OPRDE sellers in the experiment for the
same experiment as Figure 3.

an impact on opinion dynamics. Thus, we are able to
affirmatively answer our second evaluation question.

A simplified version of OPRDE is presented here.
However, Equation 2 has the weakness of being sen-
sitive only to imbalances at the top of the LOB (the
measure is not sensitive to imbalances at deeper lev-
els of the LOB, thus being quite fragile). Multi-level
order flow imbalance (MLOFI) is an alternative met-
ric that can be used to measure imbalance as proposed
by (Cont et al., 2021), which takes into account mul-
tiple levels of the LOB when determining LOB sup-
ply/demand imbalance.
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Figure 5: Transaction prices plot for the same experiment
as Figure 3.

Figure 6: A profitability plot of one 300-day experiment
populated exclusively with OPRDE traders (from the same
experiment as Figure 5).

4.3 OPRDE Compared to PRDE

To illustrate the co-evolutionary dynamics under the
BFL OD model at the level of individual traders’
strategies, Figure 9 and 10 and Figure 12 and 13 show
heatmaps illustrating the elite s-values of the 30 buy-
ers and sellers in 25-day experiment of a market pop-
ulated by PRDE and OPRDE, respectively, for which
the corresponding PPS is shown in Figure 8 and 11.
Both experiments assigned initial strategy values at
(t=0) randomly from a uniform distribution over the
range [−1.0,+1.0]. Upon visual inspection, it is clear
that OPRDE traders are moving in a more diverse
strategy space than PRDE traders.

Figure 11 illustrates a PPS plot for a typical ex-
periment on a market populated by OPRDE traders.
Although, the total profit extracted (i.e. πT (t))) by
OPRDE traders is less than of PRDE traders Figure
8, it is clear that OPRDE sellers and buyers are both

Figure 7: Heatmap demonstrating the impact of introduced
excess supply on the distribution of opinions among traders
(from the same experiment as Figure 5): vertical axis is
opinion-value; darker shading significes more traders hav-
ing that opinion.

Figure 8: Plot of profitability data from one 25-day experi-
ment in a market populated entirely by PRDE traders.

making profits interchangeably and no side is con-
stantly getting ripped off as is the case with PRDE
traders, as PRDE buyers are constantly losing, which
may indicate that OPRDE traders are adapting faster
than PRDE traders since they are opinionated.

5 DISCUSSION & CONCLUSIONS

The purpose of this work is to provide a platform for
the experimental exploration of agent-based models
of narrative economics: this paper is the first to report
on our model; and, having introduced the rationale
for the model and the details of its mechanisms, we
now expect to follow this with other papers that ex-
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Figure 9: Heatmap of PRDE buyers strategy distribution
from the same experiment as Figure 8.

Figure 10: Heatmap of PRDE sellers strategy distribution
from the same experiment as Figure 8.

Figure 11: Plot of profitability data from one 25-day exper-
iment in a market populated entirely by OPRDE traders.

Figure 12: Heatmap of OPRDE buyers strategy distribution
from the same experiment as Figure 11.

Figure 13: Heatmap of OPRDE sellers strategy distribution
from the same experiment as Figure 11.

plore various aspects of the space of market systems
in which narrative and opinions can move prices, and
where prices can can alter opinions. Shiller argues,
in his seminal proposal for work on narrative eco-
nomics, that empirical research should be conducted
by gathering data on the stories that individuals tell
each other regarding economic matters, which influ-
ence their perceptions of future economic events and
are themselves significant factors in economic dy-
namics. The work we have described here offers an
alternative experimental approach that complements
that proposed by Shiller: experimentalists now have
access to agent-based simulations using our platform,
allowing them to gain a deeper understanding of how
opinions, expressions of those opinions, and subse-
quent economic outcomes interact dynamically. To
aid other researchers in replicating and extending our
results, we will make the source-code for our sys-
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tem freely available as an open-source repository on
GitHub:2 we look forward to seeing what uses other
people put our system to.
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Duffy, J. and Ünver, M. U. (2006). Asset Price Bubbles and
Crashes with Near-Zero-Intelligence Traders. Eco-
nomic Theory, 27:537–563.

Farmer, J. D., Patelli, P., and Zovko, I. (2005). The Predic-
tive Power of Zero Intelligence in Financial Markets.
PNAS, 102(6):2254–2259.

Friedman, D. and Rust, J., editors (1992). The Double Auc-
tion Market. Addison-Wesley.

Gjerstad, S. and Dickhaut, J. (1998). Price formation in
double auctions. Games & Econ. Behav., 22(1):1–29.

Gjerstad, S. et al. (2003). The impact of pace in double auc-
tion bargaining. University of Arizona, Department of
Economics Working Paper, pages 03–03.

Gode, D. K. and Sunder, S. (1993). Allocative efficiency
of markets with zero-intelligence traders: Market as a
partial substitute for individual rationality. Journal of
Political Economy, 101(1):119–137.

Gould, M., Porter., M., Williams, S., McDonald, M., Fenn,
D., and Howison, S. (2013). Limit order books. Quan-
titative Finance, 13(11):1709–1742.

Guzelyte, R. and Cliff, D. (2022). Narrative economics of
the racetrack: An agent-based model of opinion dy-
namics in in-play betting on a sports betting exchange.
In Rocha, A.-P., Steels, L., and van den Herik, J., edi-
tors, Proceedings ICAART2022, pages 225–236.

Hegselmann, G. and Krause, U. (2002). Opinion dynamics
and bounded confidence: models, analysis and simu-
lation. J. Art. Societies & Social Simulation, 5(3):2.

Hommes, C. and LeBaron, B., editors (2018). Compu-
tational Economics: Heterogeneous Agent Modeling.
North-Holland.

Ladley, D. (2012). Zero Intelligence in Economics
and Finance. The Knowledge Engineering Review,
27(2):273–286.

Lomas, K. and Cliff, D. (2021). Exploring narrative eco-
nomics: An agent-based-modeling platform that inte-
grates automated traders with opinion dynamics. In
Proceedings ICAART2021.

Meadows, M. and Cliff, D. (2012). Reexamining the Rela-
tive Agreement Model of Opinion Dynamics. Journal
of Artificial Societies and Social Simulation, 15(4):4.

Meadows, M. and Cliff, D. (2013). The Relative Disagree-
ment Model of Opinion Dynamics: Where Do Ex-
tremists Come From? 7th International Workshop on
Self-Organizing Systems (IWSOS), pages 66–77.

Rust, J., Miller, J., and Palmer, R. (1992). Behavior of trad-
ing automata in a computerized double auction mar-
ket. In Friedman, D. and Rust, J., editors, The Double
Auction Market, pages 155–198. Addison-Wesley.

Shiller, R. (2017). Narrative economics. American eco-
nomic review, 107(4):967–1004.

ICAART 2023 - 15th International Conference on Agents and Artificial Intelligence

366



Shiller, R. (2019). Narrative Economics: How Stories Go
Viral & Drive Major Economic Events. Princeton.

Smith, V. L. (1965). Experimental auction markets and the
walrasian hypothesis. Journal of Political Economy,
73(4):387–393.

Storn, R. and Price, K. (1997). Differential evolution: A
simple and efficient heuristic for global optimization
over continuous spaces. Journal of Global Optimiza-
tion, 11:341–359.

Tesauro, G. and Bredin, J. (2002). Sequential strategic bid-
ding in auctions using dynamic programming. In Pro-
ceedings AAMAS2002.

Tesauro, G. and Das, R. (2001). High-performance bidding
agents for the continuous double auction. In Proc. 3rd
ACM Conference on E-Commerce, pages 206–209.

Vytelingum, P., Cliff, D., and Jennings, N. R. (2008).
Strategic bidding in continuous double auctions. Arti-
ficial Intelligence, 172(14):1700–1729.

Studying Narrative Economics by Adding Continuous-Time Opinion Dynamics to an Agent-Based Model of Co-Evolutionary Adaptive
Financial Markets

367


