
Secure Software Updates for IoT Based on Industry Requirements

Ludwig Seitz1, Marco Tiloca2, Martin Gunnarsson2 and Rikard Höglund2

1Combitech AB, Malmö, Sweden
2Cybersecurity Unit, RISE Research Institutes of Sweden, Sweden

Keywords: Security, Software Update, Industrial Control Systems, Internet of Things.

Abstract: This paper analyzes the problem and requirements of securely distributing software updates over the Internet,
to devices in an Industrial Control System (ICS) and more generally in Internet of Things (IoT) infrastructures
controlling a physical system, such as power grids and water supply systems. We present a novel approach
that allows to securely distribute software updates of different types, e.g., device firmware and customer appli-
cations, and from sources of different type, e.g., device operators, device manufacturers and third-party library
providers. Unlike previous works on this topic, our approach keeps the device operator in control of the update
process, while ensuring both authenticity and confidentiality of the distributed software updates.

1 INTRODUCTION

Internet of Things can encompass many types of con-
nected devices or things. A class of devices espe-
cially worthy of study from a security perspective are
Industrial Control Systems (ICS). Connected devices
that control processes, e.g., in power grids or facto-
ries, must have strict security requirements due to the
severe potential damage caused by incidents. Provid-
ing updates to vulnerable software (SW) is critical for
maintaining a system’s security. This is exacerbated
in ICS, as their components often cannot easily be up-
dated (Davidson et al., 2018).

An issue with these systems is the very long life-
time of devices (tens of years) and the fact that they
cannot simply be rebooted, as often required for SW
updates. This leads to deployments where devices
with known vulnerabilities keep running unpatched,
making life easy for attackers. While attacks by Ad-
vanced Persistent Threat groups, e.g., the Stuxnet
worm or the Black Energy attack on the Ukrainian
power grid, have raised awareness in the industry, a
solution is not forthcoming, as it would require wide-
ranging replacement of legacy devices.

The International Electrotechnical Commission
(IEC) released a report on patch management in ICS,
under the IEC 62443 series (IEC, 2015). The report
focuses on recommendations to establish sound man-
agement procedures, for both operators and manufac-
turers of ICS devices, e.g., requirements on device in-
ventorying, meta-data on the inventory’s SW versions

and notification of available updates. The report also
includes technical recommendations, on assuring that
a patch can be matched to the correct devices. To this
end, it defines a Vendor Patch Compatibility (VPC)
file, which uses XML to represent information about
the patch and the issuing vendor, enabling operators
to determine which devices are suitable to apply this
patch to. Cryptographic protection of the VPC file is
explicitly placed out of scope.

At the Internet Engineering Task Force (IETF),
the SUIT Working Group (IETF, 2022) has worked
on solutions for securing SW updates for IoT de-
vices (Moran et al., 2022). Connected ICS devices
can be seen as a subgroup of IoT devices, so this work
is highly applicable too. SUIT has identified relevant
threats to SW updates, and has specified a manifest
file format (akin to the IEC VPC file), also containing
meta-data of a SW update. While they partly over-
lap, the SUIT design explicitly considers possible ma-
licious activities, while the approach based on VPC
does not.

This paper presents a novel architectural approach
for securely distributing SW updates to devices in an
ICS over the Internet, based on requirements from an
ICS manufacturer. Our approach is partly based on
the work of the IETF Working Group SUIT (IETF,
2022) and the recommendations of IEC-TR-62443-2-
3 (IEC, 2015). At a high-level, our update distribution
process consists of the following phases.

(1) "Update release". A SW update is distributed
to the target device domain, possibly via an Update

698
Seitz, L., Tiloca, M., Gunnarsson, M. and Höglund, R.
Secure Software Updates for IoT Based on Industry Requirements.
DOI: 10.5220/0011790100003405
In Proceedings of the 9th International Conference on Information Systems Security and Privacy (ICISSP 2023), pages 698-705
ISBN: 978-989-758-624-8; ISSN: 2184-4356
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

Server where it is stored for later retrieval. A domain
is a segment of a network controlled by one entity.
The update is authenticated, integrity-protected and
encrypted.

(2) "Update fetching". An Update Dispatcher in
the target device domain obtains the SW update, as
well as the key material to decrypt and verify the up-
date. This involves per-domain key material made se-
curely accessible to specific Update Dispatchers.

(3) "Update distribution". The Update Dispatcher
securely uploads the SW update to the target devices,
with the device operator keeping control of the update
process. The devices assert the update authenticity by
verifying the signature from the update publisher.

To the best of our knowledge, this is the first ap-
proach with all the following benefits. (i) Multiple
types of SW updates are supported, e.g., custom ap-
plications and device firmware, originated by multiple
sources of different types, e.g., device operator, de-
vice manufacturer and third-party library providers.
(ii) The device operator retains control of the up-
date process, while third-party SW providers can still
make their critical updates available. (iii) Besides in-
tegrity and source authentication of SW updates, also
their confidentiality is ensured, preventing reverse en-
gineering and possible exploitation of vulnerabilities.

The rest of the paper is organized as follows. Sec-
tion 2 discusses the related work. Section 3 defines
the requirements. Section 4 presents our update ar-
chitecture. Section 5 details the the update process.
Section 6 provides a security analysis. Finally, in Sec-
tion 7, we draw our conclusions.

2 RELATED WORK

Secure Software updates for connected devices is a
complex topic. Software updates for ICS and IoT
have been studied from a multitude of directions.
In (Mugarza et al., 2020) the authors have reviewed
IEC-TR-62443 and related standards, with regards to
software updates of industrial IoT devices (IIoT). The
authors note that the stakeholders; asset owners, ser-
vice providers, and product suppliers have to address
software updates jointly.

The authors of (Hernández-Ramos et al., 2020)
describe challenges for software update of IoT de-
vices. The authors have focused on SUIT and
academic research utilizing blockchain technology.
In (El Jaouhari and Bouvet, 2022), the authors discuss
technical solutions such as Secure Elements (SE), and
Root of Trust (RoT) and the role of such technology
in software updates. The authors provide an exten-
sive overview and evaluation of proposed schemes for

software update for IoT. In (Catuogno et al., 2017) the
authors propose a system for distribution of encrypted
software patches that can only be decrypted on sys-
tems that fulfils the requirements.

Several surveys detailing specific parts of the
software update process have been published.
In (Arakadakis et al., 2021), the authors provide a sur-
vey of Firmware over The Air Update (FOTA) mech-
anisms under 1999-2020. They survey technical chal-
lenges for a FOTA protocol as well as of commercial
and open-source FOTA applications.

In (Petrov, 2018), a patch delivery infrastructure
is proposed for supervisory control and data acquisi-
tion (SCADA) systems, based on a use-case from a
manufacturer of SCADA equipment. The thesis an-
alyzes the requirements of the manufacturer and its
customers, showing significant similarities with those
from the ICS manufacturer we have been in contact
with. The thesis proposes a multi-layered solution for
patch delivery, operated by the manufacturer.

In (Asokan et al., 2018), the authors present AS-
SURED, a secure update mechanism for embedded
devices, also applicable to devices in critical infras-
tructure. ASSURED does not consider 3rd-party li-
braries that may be deployed on devices, for which
an update process must provide support. Instead, the
approach we present in this paper does address both
those points.

In (Fassino, 2016), the authors present the secure
firmware update mechanism deployed by Schneider
Electric. It includes signing of the firmware updates
and a cloud-based security service to provide updates
to customers. The described mechanism does not
elaborate on automating the update procedure, while
enforcing update policies by the client.

In (Ambrosin et al., 2014), the authors propose
a scheme for software update distribution in cache-
enabled networks. The scheme utilize symmetric en-
cryption of updates to achieve deduplication of stored
updates in a cache. The decryption keys are then dis-
tributed using attribute based encryption.

3 REQUIREMENTS

This section lists the requirements for secure SW up-
dates, determined based on three sources: a use-case
presented to us by an ICS systems vendor; the require-
ments developed by the SUIT Working Group (Moran
et al., 2021); and the requirements stipulated in IEC
62443-2-3 (IEC, 2015). The vendor wishes to remain
anonymous and is thus only referred to as the vendor.

Secure Software Updates for IoT Based on Industry Requirements

699

3.1 Covered Operational Requirements

We consider the following operational requirements:

R1. The device operator must be in control of
the update procedure, i.e., of which update is
downloaded for which devices and when it is
installed.

R2. The update author must provide meta-data
about the released updates, allowing device op-
erators to determine if they are of interest and
applicable. The meta-data must inform about
which hardware and SW versions the update
applies to, and what type of update it is (e.g.,
configuration files, execute-in-place file, load-
able modules).

R3. Different update types from different author
types must be supported. Update types include
firmware updates, manufacturer libraries, third-
party libraries and operator applications. Au-
thor types include device manufacturers, device
operators and third-party library providers.

R4. The device operator must be able to automate
(parts of) the update procedure.

R5. The update procedure must support different
update distribution strategies, e.g., push and
pull.

3.2 Covered Security Requirements

During the whole process, it must be practically in-
feasible to: i) access the content and meta-data of SW
updates, except for the intended recipients; ii) tam-
per with SW updates, by altering their content and
meta-data; iii) inject bogus or replayed updates, mak-
ing them appear as valid and legitimate. Consistently,
we consider the following security requirements.

R6. Updates and meta-data must be source authen-
ticated and integrity protected. The keys for
verification must be available to the device op-
erator.

R7. An adversary must not be able to trick a de-
vice into installing updates that are valid and
non tampered with, but yet mismatching. These
include updates that are obsolete, not intended
for the target device, or with unfulfilled precon-
ditions.

R8. The device operator must be able to securely
obtain the correct download location for an up-
date.

R9. It must be possible to encrypt the update and
its meta-data, to prevent an adversary from per-

forming reverse engineering. The decryption
keys must be available to the device operator.

3.3 Non Covered Requirements

The following requirements must also be fulfilled to
ensure a secure update solution, but are out of scope
for our architecture and need to be addressed sepa-
rately. Yet, we provide the following guidelines.
• The update process must be reliable and resilient to
device malfunctions. For example, a reboot of a de-
vice during an update must not lead to a malfunction.
This can be achieved by equipping the devices with a
second stage bootloader that is capable of performing
the updates and resuming them in case of failures.
• The update procedure should be adapted to resource
constrained environments. For example, the code-
footprint for parsing the meta-data format must be
small, and updates that require a device reboot must
work with a minimal bootloader. Our approach partly
addresses this requirement by offloading the devices
through the Update Dispatcher (see Section 4.1).
• If the update requires a reboot, protection is needed
against swapping a previously verified update with a
malicious one during reboot. This can be addressed
by equipping the devices with a secure boot mecha-
nism, that verifies updates during the boot process.

4 UPDATE ARCHITECTURE

Our architecture is shown in Figure 1 and described in
Sections 4.1-4.3 fulfills the requirements in Section 3.
We describe the update process in Section 5.

Domain 1

Device
operator

Check status

Update
dispatcher

Update
server

Key
Repository

Internet

Domain 2
(3rd party)

UA UP

Internet

UA

Domain 3
(Manufacturer)

UA

UP

Update
Author

Signed
and

encrypted
Software
update

UA UP UA UP

Legend:

Domain 4
(3rd party)

Software
Update
Author

Symmetric
Key

Software
UpdateDevice

Key
transfer

Software
update
transfer

Update
Publisher

Domain
border

Figure 1: Architecture for secure software update.

ICISSP 2023 - 9th International Conference on Information Systems Security and Privacy

700

4.1 Architecture Entities and Actors

The architecture in Figure 1 includes:
• Domain. Networked cyber-physical systems oper-
ated by the same administrative authority. For in-
stance, a power plant or a factory.
• Device. A networked device operating in a Domain.
A Device runs one or many SW components (possi-
bly issued by different sources), belongs to a single
Device Operator, and is handled by one Update Dis-
patcher in the same Domain.
• Device Manufacturer. The company that designed
and manufactured a Device.
• Device Operator. The entity with authority and con-
trol of Devices in its Domain for day-to-day opera-
tion and maintenance. This includes system/network
administrators and authorized maintenance operators.
• Update Author (UA). Entity issuing a SW compo-
nent and related updates. Different Update Authors
may release different SW components and updates for
a Device. The Update Author may differ from the Up-
date Publisher.
• Update Publisher (UP). Entity distributing an up-
date to a previously released SW component. The
Update Publisher can be internal, i.e., it belongs to
the same Domain of the Devices to update and has
a secure relationship with the Update Dispatcher of
that Domain (see "Domain 1" in Figure 1). Other-
wise, the Update Publisher is external, i.e., it uploads
SW updates to an Update Server (see "Domain 3" and
"Domain 4" in Figure 1).
• Key Repository. A Server available on the Internet
and controlled by a single external Update Publisher,
which is in a secure relationship. It stores key material
that the associated Update Publisher uses to secure
published SW updates.
• Update Server (US). A server available on the In-
ternet, where any external Update Publisher uploads
SW updates to distribute. Different Update Publishers
can use an Update Server, and an Update Publisher
can rely on multiple Update Servers for redundancy
or scalability.
• Update Dispatcher (UD). Domain-local entity that
obtains SW updates from Update Servers or internal
Update Publishers. The Update Dispatcher is con-
trolled by the Device Operator and is responsible for:
i) keeping track of devices in its Domain with regards
to the current SW versions and the status of ongoing
update processes; ii) interacting with the Device Op-
erator for confirming/revising update operations, and
for enforcing fine-grained update policies; iii) dis-
tributing updates to the intended devices.
• Update Key. A symmetric key generated by an Up-
date Publisher used to encrypt SW updates, which en-

sures their confidentiality from the Update Publisher
to the Domain with Devices to update. An Update
Publisher generates a new Update Key upon releasing
a new SW update and uploads it to its associated Key
Repository.

4.2 Types of SW Updates and Update
Authors

Different Update Authors disseminate their SW up-
dates differently based on their expected role and the
type of update. We consider three types of SW up-
dates.
• T1. SW updates for the Application Layer, thus non-
critical for the Devices. Any authorized entity can
both author and publish these updates.
• T2. SW updates for the Firmware and Library
Layer, thus critical for the Devices. They are authored
and published only by the Device Manufacturer.
• T3. SW updates for the Firmware and Library
Layer, thus critical for the Devices. Unlike for class
T2, these updates are authored by a trusted 3rd-party
developer but are published only by the Device Man-
ufacturer after having been approved by it.

Also, we consider three types of Update Authors.
• A1. Update Authors in the same Domain of the De-
vices to update. These Update Authors only produce
and distribute SW updates of class T1. They act as
internal Update Publishers and directly upload their
SW update to the Update Dispatcher over a secure
communication channel. Figure 1 shows an Update
Author of this class in "Domain 1".
• A2. Update Authors that are specifically Device
Manufacturers. These Update Authors can produce
and distribute SW updates of classes T1 and T2. They
act as external Update Publishers by uploading their
SW update to the Update Server over a secure com-
munication channel. Figure 1 shows an Update Au-
thor of this class in "Domain 3".
• A3. Update Authors as authorized 3rd party devel-
opers, i.e., non Device Manufacturers. These Update
Authors can produce and distribute SW updates of
classes T1 and T3. For a class T1 update, the Update
Authors act as the Update Publisher and upload the
SW update to the Update Server over a secure com-
munication channel. Figure 1 shows an Update Au-
thor of this class as releasing a SW update of class T1
in "Domain 4". For a class T3 update, these Update
Authors do not act as Update Publisher, but rather
provide their SW update to the Device Manufacturer
over a secure communication channel. The Device
Manufacturer verifies the SW update and uploads the
SW update to the Update Server, acting as an exter-
nal Update Publisher on behalf of the Update Author.

Secure Software Updates for IoT Based on Industry Requirements

701

Table 1: Division of roles Update Author and Update Pub-
lisher for types of SW Updates (Author: "Update Author";
Publisher: "Update Publisher").

Author
SW Update type

T1 T2 T3
A1 Author & Publisher
A2 Author & Publisher Author & Publisher Publisher
A3 Author & Publisher Author

Figure 1 shows an Update Author of this class in "Do-
main 2", as providing its SW update to the Device
Manufacturer in "Domain 3" for approval and follow-
ing upload to an Update Server.

Table 1 overviews the types of Update Authors in
relation to the different classes of SW updates.

4.3 Security Model

We assume the distribution process is secured against
an active, on-path adversary. The adversary can cap-
ture, delete, modify, and change the order of all mes-
sages between involved parties. The adversary can
also inject previously captured or newly crafted mes-
sages. However, the adversary does not own the re-
quired key material to participate in such communi-
cations and cannot break the used cryptographic func-
tions.

The entities involved in the update distribution
protect communications to ensure confidentiality,
freshness, integrity and source authentication of mes-
sages. Communications to be secured are among: i) a
third-party developer and a Device Manufacturer; ii)
an external Update Author and an Update Server; iii)
an Update Server and an Update Dispatcher; iv) an
Update Dispatcher and the Key Repository of an ex-
ternal Update Publisher; v) an Update Dispatcher and
the Device Operator; vi) an Update Dispatcher and
an internal Update Author; vii) an Update Dispatcher
and the Devices to update. As long as the require-
ments above are fulfilled, our approach is not limited
to a specific secure communication protocol.

The security of entities such as the Key Reposi-
tory, the Update Server, and the Update Dispatcher
is also critical for the security of the distribution pro-
cess. Those entities are expected to be equipped with
plenty of resources as well as properly implemented
and managed to be robust, reliable, and secure, thus
practically infeasible to compromise. To this end, best
engineering practices exist (Birman, 2012).

Accessing the Key Repository, Update Server, and
Update Dispatcher must be limited to authorized re-
questers and only for performing authorized opera-
tions. Thus, secure and fine-grained access control
must be enforced.

In particular, an Update Publisher has to allow Up-

date Dispatchers to access its Key Repository to re-
trieve Update Keys when needed. This requires ensur-
ing fine-grained access control at the Key Repository.
To this end, a well-established approach is the OAuth
2.0 Authorization framework (Hardt, 2012), with the
Update Publisher, the Key Repository, and the Up-
date Dispatchers acting as Resource Owner, Resource
Server, and Clients, respectively.

A Device Operator has to allow Update Dispatch-
ers to access their devices to distribute the SW up-
dates. In order to enforce fine-grained access con-
trol, a possible, well-established approach is the ACE
framework for Authentication and Authorization in
Constrained Environments (Seitz et al., 2022), with
the Device Operator, the Devices, and the Update Dis-
patcher acting as Resource Owner, Resource Servers
and Client, respectively.

5 UPDATE PROCESS

With reference to Figure 1, the SW update process
occurs as per the three-phase workflow below.

5.1 Update Release

The Update Author generates a new version of the
SW to be updated, as an incremental patch to a pre-
vious existing version, or a full-fledged updated ver-
sion. If the SW update is of type T3 (see Section 4.2),
the Update Author, of type A3, first provides the SW
update to the Device Manufacturer acting as external
Update Publisher. This relies on a secure communi-
cation channel, ensuring message confidentiality, in-
tegrity and source authenticity. The Device Manufac-
turer decrypts the SW update from the Update Author,
and verifies it to be fine to distribute. If so, the Device
Manufacturer acts as external Update Publisher as de-
scribed below.

For each Update Author type, confidentiality of
the SW update is ensured. In fact, an Update Author
of type A1 (see Section 4.2) acts as internal Update
Publisher, and provides a SW update to the Update
Dispatcher, over a secure communication channel.

Instead, if the Update Author is of type A2 or A3,
the external Update Publisher encrypts the SW up-
date, before publicly releasing it. This is not trivial
to achieve, as the Update Publisher wishes to ensure
confidentiality of the SW update all the way to the
Device domain. That is, the content of the SW up-
date should be accessible to the Devices in "Domain
1", while it should remain opaque to (untrusted) inter-
mediaries in other domains, e.g., the Update Server.
This can be achieved by encrypting the SW update

ICISSP 2023 - 9th International Conference on Information Systems Security and Privacy

702

with a symmetric key shared among the Update Pub-
lisher and the target Devices. However, the Update
Publisher is not expected to know what Devices are
targeted by the released SW update. This prevents
relying on a (poorly scalable) establishment of sym-
metric keys with the target Devices.

To overcome this issue, the Update Publisher first
generates a symmetric key K associated with this up-
date release, and a corresponding key identifier kid.
The Update Publisher uses K to encrypt the SW up-
date, and stores K as well as kid in the Key Reposi-
tory under its control and in its same domain. Then,
the Update Publisher signs the encrypted SW update
together with kid, by using its private key. Finally,
the Update Publisher publicly releases the signed and
encrypted SW update, by uploading it to the Update
Server. As the Update Publisher used the encrypt-
then-sign construction, the Update Server can authen-
ticate and verify the integrity of the SW update, by
using the public key of the Update Publisher to verify
its signature.

5.2 Update Fetching

The Update Dispatcher has a secure association with
the Update Publisher. Also, if the Update Publisher is
external, the Update Dispatcher has fine-grained se-
cure access to the associated Key Repository.

Next, the Update Dispatcher collects SW updates
for Devices in its same Domain, by sending PULL re-
quests to, or receiving PUSH notifications from, the
entity hosting updates of interest. This can be an in-
ternal Update Publisher (see Figure 1, "Domain 1"),
or an Update Server where external Update Publish-
ers have uploaded an update (see Figure 1, "Domain
3" and "Domain 4"). In either case, the Update Dis-
patcher can authenticate and verify the integrity of the
update, using the public key of the Update Publisher
to verify its signature. For updates of type T2 or T3
(see Section 4.2), the Update Dispatcher verifies that
they are signed by the Device Manufacturer.

Then, the Update Dispatcher retrieves the key K,
possibly from the Key Repository associated with the
external Update Publisher, by using the kid specified
in the update. Then, the Update Dispatcher decrypts
the update using K, accesses its content, and deter-
mines the next steps to take for the actual distribution
to the target Devices, possibly in concertation with the
Device Operator (see Section 5.3). Note that, thanks
to the digital signature from the Update Publisher, the
Update Dispatcher is not able to alter the content of
the update.

Finally, the Update Dispatcher provides K to the
target Devices, over an associated secure communi-

cation channel.

5.3 Update Distribution

The Update Dispatcher does not necessarily distribute
the SW update to the Devices right after having re-
trieved it. That is, the update distribution is scheduled
as follows.

First, the Update Dispatcher determines which
Devices to update, e.g., based on which SW version
they are running.

Second, the Update Dispatcher enforces update
policies on behalf of the Device Operator, to reflect
preferences, requirements and priorities in perform-
ing SW updates. For instance, it may be fine to im-
mediately distribute non-critical updates, if coming
from third-party providers of utility SW libraries. In-
stead, some updates may have to be explicitly ap-
proved and/or postponed to not interfere with safety-
critical operations in the networked system. This re-
quires the Update Dispatcher to "put on hold" the
update process, and interact with the Device Oper-
ator for a final approval and/or possible reschedul-
ing. Note that, while feasible for a unit such as the
Update Dispatcher, it is not realistic to expect con-
strained and intermittently available Devices to effec-
tively and promptly interact with the Device Operator
by themselves.

In due time and according to the policies and in-
teraction above, the Update Dispatcher distributes the
SW update to the Devices over a secure communica-
tion channel.

Then the Devices receiving the update: i) authen-
ticate and check the integrity of the update, by using
the public key of the Update Publisher to verify its
signature; ii) decrypt the update by using the key K
originally used by the Update Publisher, as received
from the Update Dispatcher (see Section 5.2); and iii)
install the SW components from the received update
according to vendor- or author-specific procedures,
which are out of scope for this paper.

6 SECURITY ANALYSIS

This section discusses how relevant security require-
ments are met and supporting security services.

6.1 Integrity and Source Authentication
of SW Updates

We achieve these requirements by signing the en-
crypted SW update using the Update Publisher pri-

Secure Software Updates for IoT Based on Industry Requirements

703

vate key. A Device can ensure that a received up-
date is not tampered with and comes from the in-
tended Update Publisher. Encrypt-then-sign allows
(untrusted) intermediaries to verify the validity of an
update during distribution. Intermediaries include the
Update Server, the Update Dispatcher, and border
routers used as the entry point to local networks. Pub-
lic keys of Update Publishers can be pre-provisioned
or retrieved from a trusted key repository such as a
PKI.

For SW updates of type T3 (see Section 4.2), it
may be convenient that the Update Author, of type
A3, instead uses a construction sign-then-encrypt
when providing the update to the Device Manufac-
turer (see Section 5.1). In fact, after decrypting the
received update, the Device Manufacturer can pre-
serve the original signature from the Update Author
before re-encrypting the update for upload to the Up-
date Server. The advantage is that, later on, both the
Update Dispatcher and the Devices to update have ac-
cess to the original signature from the Update Author.
Thus, they can also verify that: i) the update comes
from that Update Author, despite the Device Manu-
facturer acting as an external Update Publisher, and ii)
the Device Manufacturer has not altered the original
update but only approved it as is before distribution.
This comes at the cost of handling the public keys of
such Update Authors and verifying the signature from
one such Update Author. Public keys of these Update
Authors can be pre-provisioned or retrieved from a
trusted key repository.

6.2 Confidentiality of SW Updates

Unlike integrity and source authentication, this re-
quirement is often optional to fulfill. However, it al-
lows for hiding update contents from unintended re-
cipients and impeding reverse engineering of the dis-
tributed SW. This prevents reverse engineering of up-
dates for vulnerability discovery or intellectual prop-
erty infringement. Devices in physically insecure
environments can further leverage secure processing
and storage of received updates.

Our approach ensures that, in the target Domain,
only the intended recipient Devices and the support-
ing Update Dispatcher can access the update’s con-
tents using the key K that only authorized actors can
retrieve from the Key Repository of the Update Pub-
lisher. Also, the content of distributed updates re-
mains inaccessible to intermediaries between the Up-
date Publisher and the Update Dispatcher. These in-
clude the Update Server, which cannot access the
stored updates and is not a valuable target for an
attacker trying to take control of gaining access to

stored updates.
The above requires that Devices trust their do-

main Update Dispatcher, as the point where end-to-
end confidentiality with the Update Publisher ends,
due to the Update Dispatcher fetching K from the Key
Repository of the Update Publisher. Based on the up-
date’s content, the Update Dispatcher takes the cor-
rect next steps (e.g., interacting with the Device Op-
erator), but it cannot alter the update’s content due to
the Update Publisher’s digital signature.

6.3 Supporting Security Services

The open standard CBOR Object Signing and En-
cryption (COSE) (Schaad, 2017) can be used to effi-
ciently encrypt, sign and compute a Message Authen-
tication Code (MAC) on the SW updates achieving
small messages that can be efficiently processed.

Open frameworks for authentication and autho-
rization, such as OAuth 2.0 (Hardt, 2012), and ACE
(Seitz et al., 2022), can be used to enforce fine-
grained access control. This concerns Update Dis-
patchers and external Update Publishers accessing
Key Repositories or Update Servers; and the Update
Dispatcher accessing the Devices to update. In the
latter case, the ACE framework is preferable, as it
is designed to enforce access control on resource-
constrained devices.

6.4 Secure Communication

As mentioned in Section 4.3, the message exchanges
are secured against active on-path adversaries.

To this end, the involved parties use secure com-
munication protocols to protect message delivery. Es-
pecially for securing traffic over the Internet, avail-
able protocols include: i) the TLS (Rescorla, 2018)
and DTLS (Rescorla et al., 2022) suites providing se-
curity at the transport layer, and for which related pro-
files targeting resource-constrained devices have been
defined (Tschofenig and Fossati, 2016); and ii) the
OSCORE protocol (Selander et al., 2019), which pro-
vides security for CoAP messages at the application
layer through COSE, and is explicitly designed to suit
resource-constrained devices.

Alternatives can be implemented at the network
or data-link layer, e.g., in the domain hosting the tar-
get Devices to update, where ad-hoc (legacy) commu-
nication protocols may be used. As long as source-
authentication, integrity, confidentiality, and fresh-
ness of exchanged messages are ensured, our ap-
proach is not devoted to a particular security protocol,
and leaves the choice to the application and deploy-
ment.

ICISSP 2023 - 9th International Conference on Information Systems Security and Privacy

704

7 CONCLUSION

We have presented a novel approach for securely dis-
tributing SW updates over the Internet, to devices in
Industrial Control Systems (ICS). Our approach ad-
dresses several requirements provided by a real-world
ICS operator, and has the following benefits: it en-
ables the secure distribution of different types of SW
updates, originated by different types of authors; it
leaves the device operator in control of the update
process, even for third-party SW updates; it ensures
not only integrity and source authentication, but also
confidentiality of SW updates. Furthermore our ap-
proach builds on well established and adopted foun-
dations such as fine-grained authentication and secure
sessions. To the best of our knowledge, this is the
first approach for secure SW distribution that has all
these benefits. Future work will focus on the imple-
mentation and performance evaluation of a SW up-
date process based on our approach, considering real
ICS platforms as devices to update.

ACKNOWLEDGMENTS

This work was supported by the SSF project
Sec4Factory (grant RIT17-0032); by VINNOVA
through the Celtic-Next project CRITISEC; and by
the H2020 project SIFIS-Home (Grant agreement
952652). The authors would like to thank Arash
Vahidi for the helpful discussions and feedback.

REFERENCES

Ambrosin, M., Busold, C., Conti, M., Sadeghi, A.-R., and
Schunter, M. (2014). Updaticator: Updating billions
of devices by an efficient, scalable and secure software
update distribution over untrusted cache-enabled net-
works. In European Symposium on Research in Com-
puter Security, pages 76–93. Springer.

Arakadakis, K., Charalampidis, P., Makrogiannakis, A., and
Fragkiadakis, A. (2021). Firmware over-the-air pro-
gramming techniques for iot networks-a survey. ACM
Computing Surveys (CSUR), 54(9):1–36.

Asokan, N., Nyman, T., Rattanavipanon, N., Sadeghi, A.-
R., and Tsudik, G. (2018). ASSURED: Architecture
for Secure Software Update of Realistic Embedded
Devices. IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, 37(11):2290–
2300.

Birman, K. P. (2012). Guide to Reliable Distributed
Systems. Building High-Assurance Applications and
Cloud-Hosted Services. Springer.

Catuogno, L., Galdi, C., and Persiano, G. (2017). Secure
dependency enforcement in package management sys-

tems. IEEE Transactions on Dependable and Secure
Computing, 17(2):377–390.

Davidson, C. C., Andel, T., Yampolskiy, M., McDonald,
J. T., Glisson, B., and Thomas, T. (2018). On SCADA
PLC and Fieldbus Cyber-Security. In The Interna-
tional Conference on Cyber Warfare and Security.
Academic Conferences and Publishing International.

El Jaouhari, S. and Bouvet, E. (2022). Secure firmware
over-the-air updates for iot: Survey, challenges, and
discussions. Internet of Things, 18:100508.

Fassino, J. (2016). Secure Firmware Update in Schneider
Electric IOT-enabled offers. In Internet of Things Soft-
ware Update Workshop (IoTSU). Internet Architecture
Board (IAB).

Hardt, D. (2012). The OAuth 2.0 Authorization Frame-
work. RFC 6749 (Proposed Standard). Updated by
RFC 8252.

Hernández-Ramos, J. L., Baldini, G., Matheu, S. N., and
Skarmeta, A. (2020). Updating iot devices: challenges
and potential approaches. In 2020 Global Internet of
Things Summit (GIoTS), pages 1–5. IEEE.

IEC (2015). Security for industrial automation and control
systems – Part 2-3: Patch management in the IACS
environment. Technical Report IEC TR 62443-2-3,
International Electrotechnical Commission (IEC).

IETF (2022). SUIT - Software Updates for the Internet of
Things.

Moran, B., Tschofenig, H., and Birkholz, H. (2022). A
Manifest Information Model for Firmware Updates in
Internet of Things (IoT) Devices. RFC 9124.

Moran, B., Tschofenig, H., Brown, D., and Meriac, M.
(2021). A firmware update architecture for internet
of things. RFC 9019.

Mugarza, I., Flores, J. L., and Montero, J. L. (2020). Se-
curity issues and software updates management in
the industrial internet of things (iiot) era. Sensors,
20(24):7160.

Petrov, S. (2018). Patch Delivery Infrastructure in SCADA
Systems. Master’s thesis, KTH Royal School of Tech-
nology.

Rescorla, E. (2018). The Transport Layer Security (TLS)
Protocol Version 1.3. RFC 8446.

Rescorla, E., Tschofenig, H., and Modadugu, N. (2022).
The Datagram Transport Layer Security (DTLS) Pro-
tocol Version 1.3. RFC 9147.

Schaad, J. (2017). CBOR Object Signing and Encryption
(COSE). RFC 8152 (Proposed Standard).

Seitz, L., Selander, G., Wahlstroem, E., Erdtman, S., and
Tschofenig, H. (2022). Authentication and authoriza-
tion for constrained environments using the oauth 2.0
framework (ace-oauth). RFC 9200.

Selander, G., Mattsson, J. P., Palombini, F., and Seitz, L.
(2019). Object security for constrained restful envi-
ronments (oscore). RFC 8613.

Tschofenig, H. and Fossati, T. (2016). Transport layer secu-
rity (tls) / datagram transport layer security (dtls) pro-
files for the internet of things. RFC 7925 (Proposed
Standard).

Secure Software Updates for IoT Based on Industry Requirements

705

