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Abstract: Remote sensing images are an important resource for obtaining information for different types of applications.
The occlusion of regions of interest by clouds is a common problem in this type of image. Thus, the objective
of this work is to evaluate methods based on convolutional neural networks (CNNs) for cloud segmentation
in satellite images. We compared three segmentation models, all of them based on the U-Net architecture
with different backbones. The first considered backbone is simpler and consists of three contraction blocks
followed by three expansion blocks. The second model has a backbone based on the VGG-16 CNN and the
third one on the ResNet-18. The methods were tested using the Cloud-38 dataset, composed of 8400 satellite
images in the training set and 9201 in the test set. The model considering the simplest backbone was trained
from scratch, while the models with backbones based on VGG-16 and ResNet-18 were trained using fine-
tuning on pre-trained models with ImageNet. The results demonstrate that the tested models can segment the
clouds in the images satisfactorily, reaching up to 97% accuracy on the validation set and 95% on the test set.

1 INTRODUCTION

After World War II, the United States and the Union
of Soviet Socialist Republics (USSR) disputed world
hegemony in different aspects. One aspect of the
dispute was in space exploration through the launch
of artificial satellites and manned missions (Siddiqi,
2000; Whitfield, 1996). From the period of the con-
flict to the present, the use of satellites has become in-
creasingly recurrent for various applications, among
which we can mention: urban planning, climate mon-
itoring, environmental preservation, and precision
agriculture (PA) (Francis et al., 2019).

In general, satellites provide imaging of an area of
interest through sensors for different decision-making
purposes. In addition, the satellites can have different
sensors attached, which will generate multi and hy-
perspectral images, to provide the most varied type of
analysis of the imaged area. On the other hand, the
images captured by satellites may present noise that
will consequently influence the aforementioned anal-
yses. Among these noises, we can highlight the pres-
ence of clouds, shadows, fog, and snow, for example.
Thus, the task of identifying and eventually removing

such noise for a precise analysis of the satellite image
is necessary (Ikeno et al., 2021; Meraner et al., 2020).

In this sense, techniques based on image process-
ing can be used for the task in question, where those
based on deep learning stand out. Specifically for the
identification task, which can be understood as a seg-
mentation, we highlight the U-Net, which is a deep
neural network proposed initially for the segmenta-
tion of medical images and also used in other applica-
tions (Ronneberger et al., 2015; Eppenhof et al., 2019;
Silva et al., 2022).

Recent works have shown that the combination of
different backbones can improve the performance of
classification networks (e.g., U-Net) in some situa-
tions (Zhang et al., 2020). The possibility that back-
bones are pre-trained could justify this improvement.
In addition, it is important to highlight that the train-
ing of an algorithm based on deep learning is empir-
ical and will take into account, for example, the vari-
ety of hyperparameter configurations and the dataset
where the model will be applied for the best fit.

Thus, this work aims to evaluate the U-Net capac-
ity, in three different backbone configurations, in the
task of segmenting clouds in multispectral images ob-
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tained by satellites.

2 THEORICAL BASES

In this section, we present: (i) the theoretical founda-
tion for this work, and (ii) related works describing
the state of the art for the cloud detection problem.

2.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are one of
four categories of deep learning methods, along with
constrained Boltzman machines, autoencoders, and
sparsecoding. A CNN consists of three types of neu-
ron layers: (i) convolutional layers, (ii) pooling lay-
ers, and (iii) fully connected layers (Goodfellow et al.,
2016; Guo et al., 2016).

The layers of a CNN are structured hierarchically,
with convolutional layers interspersed with pooling
layers and fully connected layers at the top of the
hierarchy. The sequence of convolutional and pool-
ing layers is responsible for automatically extracting
features that can be used to classify these images.
The initial layers are responsible for learning the sim-
plest features that are combined in subsequent layers,
allowing the learning of increasingly complex fea-
tures as one approaches the end of the network. The
fully connected layers are responsible for classifying
the images considering the features learned through-
out the architecture (LeCun et al., 2015; Ponti et al.,
2017).

2.1.1 U-Net

U-Net is a neural network architecture developed for
image segmentation tasks. The U-Net consists of an
encoder and decoder structure based on a Convolu-
tional Neural Network. U-Net can be divided into
two parts: a contract block and a expand block (Long
et al., 2015).

The first part is composed of a sequence of con-
volution layers with pooling layers. In this block, fea-
tures are extracted from the input images (convolution
layer) and the size of the images is reduced (pooling
layer) allowing feature extraction in multi-resolution.
Each convolution layer is followed by a batch normal-
ization and a non-linear activation function. The type
of pooling used is max-pooling with stride= 2, which
reduces the output resolution by half (Ronneberger
et al., 2015).

The second part performs the expansion in levels,
making interconnections between images and equiv-
alent scales. The U-Net architecture has connec-

tions between the output of a contraction block and
the input of the corresponding expansion block (Ron-
neberger et al., 2015).

2.1.2 Backbones

A backbone is an element of the network architecture
that defines how the layers are organized in the en-
coder part and thus also determines how the encoder
should be constructed. Several backbones can be im-
plemented when using U-Net as architecture, such
as VGG, ResNet, Inception, and others (Wang et al.,
2020).

Backbones can be used to improve the perfor-
mance of a CNN due to the ability to extract features
in an optimized way, including enabling the use of
pre-trained backbones (Ciaparrone et al., 2020).

2.2 Related Works

Mohajerani and Saeedi (2019a) proposed an approach
based on a fully connected network to perform the
cloud segmentation, known as Cloud-Net. This ap-
proach is composed of convolutional blocks and sim-
ple layers. Each convolutional block contains addi-
tion, concatenation, and copy layers. After each con-
volution, a ReLu activation function was applied. The
authors compared the approach presented with those
presented by Zhu et al. (2015) and Mohajerani et al.
(2018a). For the evaluation, they considered Jac-
card, Precision, Recall, Specificity, and Accuracy in-
dices. The results show that Cloud-Net improved all
indexes, except for Recall where the approach pro-
posed by Zhu et al. (2015) performed better.

The work of Francis et al. (2019) also reinforces
the importance of correctly detecting clouds in satel-
lite images for better use of these images in differ-
ent contexts. In this sense, the authors presented a
fully convolutional approach inspired by U-Net for
cloud segmentation. The approach presented is called
CloudFCN and has become state-of-the-art for the
problem in question. In general terms, CloudFCN
will merge the shallowest layers with their content
visible to the deepest layers. The authors demon-
strate the effectiveness of CloudFCN with several
experiments performed on images obtained by the
Carbonite-2 and Landsat 8 satellites.

The cloud detection problem is complex and
therefore sensitive to failures, mainly to deal with
smaller clouds with sparse distribution (called thin
clouds). In this sense, Li et al. (2022) presents the
GCDB-UNet, an approach based on the U-Net for
cloud segmentation, especially those that are more
difficult to be detected. In general terms, GCDB-
UNet has two layers for extracting specialized fea-
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tures in thin clouds. The authors evaluated the ap-
proach through experiments conducted on datasets
from three different satellites (Landsat 8, SPARCS,
and MODIS). The GCDB-UNet demonstrated robust-
ness and superior performance when compared to
other methods.

3 MATERIAL AND METHODS

This section presents the dataset, experimental setup,
and computational resources used to conduct this
study.

3.1 Image Dataset

The dataset used in the experiments was the 38-
Cloud1, which is composed of 8,400 patches for train-
ing and 9,201 patches for testing. Each patch has a
size of 384×384 pixels extracted from 38 scenes (of
which 18 are for training and 20 for tests) obtained
by the Landsat 8 satellite. Each patch is composed of
four channels: Red, Green, Blue, and Near-Infrared
(NIR). Each patch of the training set comes with a
binary reference image (ground-truth) in which the
clouds present in the image were manually delineated.
The ground-truth of the test set is only provided for
the complete scenes and thus the evaluation measures
for the test set are computed only for this scenario.
Figure 1 shows three examples of scenes (in pseudo-
colors) and their respective ground truths. Figure 2
shows three examples of patches used in the exper-
iments extracted from the scenes (Mohajerani et al.,
2018b; Mohajerani and Saeedi, 2019b).

Figure 1: Example of scenes from the 38-Cloud set obtained
from the Landsat 8. The first row shows views of the images
in pseudo-colors, and the second row shows images of the
outlined clouds.

1https://github.com/SorourMo/
38-Cloud-A-Cloud-Segmentation-Dataset

Figure 2: Example of three patches extracted from the
scenes. Each patch has four channels and its correspond-
ing ground truth with information about the clouds.

3.2 Experimental Setup

First, the training set was divided into 6,000 patches
for training and 2,400 patches for validation. In this
way, the test set provided by 38-Cloud remained un-
changed during the model training process.

For the experiments, three U-Net configurations
were evaluated: (i) U-Net with a simple backbone,
(ii) U-Net with a backbone based on VGG-16 (Si-
monyan and Zisserman, 2014), and (iii) with a back-
bone based on ResNet-18 (He et al., 2016). Simple U-
Net was trained from scratch and models with back-
bones based on VGG-16 and ResNet-18 were trained
by fine-tuning pre-trained models with ImageNet. All
models were trained over 50 epochs and a mini-batch
with size 16. The optimizer used was Adam and the
cost function was cross-entropy. The learning rate for
the simple U-Net was 10−2 and for the U-Net mod-
els with backbones based on VGG-16 and ResNet-
18, the value was 10−6, since they were trained using
fine-tuning on pre-trained models. Figure 3 shows a
summary of the described experimental setup.

To evaluate the performance of our experiments
in the segmentation task, the following metrics were
used: Precision, Recall, Specificity, Jaccard, and Ac-
curacy. These metrics are based on the relationship
between different perspectives of true positives (TP),
true negatives (TN), false positives (FP), and false
negatives (FN). Equations 1, 2, 3, 4, and 5 present
the mentioned metrics.

Precision =
T P

T P+FP
(1)

Recall =
T P

T P+FN
(2)

Speci f icity =
T N

T N +FP
(3)

Jaccard =
T P

T P+FP+FN
(4)
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Figure 3: Experimental setup of this work. The three models, the dataset splitting, and the evaluation of the results.

Accuracy =
T P+T N

T P+T N +FP+FN
(5)

The experiments were performed on PCs
equipped with a 3.0 GHz Core i5-4430 CPU and 32
GB of RAM. Two PCs have NVIDIA GTX 1080 ti
GPUs (11 GB memory) and one PC has an NVIDIA
Titan Xp GPU (12 GB memory). The experiments
were developed using the Python 3.8 programming
language and the NumPy and Matplotlib libraries
for numerical processing and visualization of im-
ages and data. The Scikit-learn library was used
to manipulate the set of images and analyze the
classification results. The library used to implement
the deep neural network models was PyTorch 1.8 and
the pre-trained models of VGG-16 and ResNet-18
were obtained from the Torchvision 0.9 module. All
random number generation seeds were fixed to ensure
reproducibility among the experiments.

4 RESULTS

With the execution of the experiments, we can quan-
titatively evaluate the results. For the validation set,
in terms of accuracy, the U-Net model with VGG-16
backbone obtained the highest result (98.01%). For
the same validation set, the Simple U-Net and U-Net
models with ResNet-18 backbone had 96.24% and
97.76% of accuracy, respectively.

For the test set, the Simple U-Net obtained better
results in the Recall, Jaccard, and Accuracy indexes
(84.23%, 74.48%, and 94.56%, respectively). For
Precision and Specificity indices, U-Net with VGG-
16 backbone obtained the best results (88.17% and
98.75%, respectively). Table 1 presents a summary of
the metrics evaluated in each of the models analyzed
in this work.

Figures 4, 5, and 6 present the semantic segmen-
tation for the same five patches of the validation set
considering Simple U-Net, U-Net (VGG-16), and U-
Net (ResNet-18), respectively, for purposes of com-
parison. In the first row of figures, the segmentation
is overlapped over the pseudo-color image (the Red,
Green, and Blue channels were combined and con-
verted to grayscale). In the second row, each pixel
was colored according to the type of correct or incor-
rect classification: green: true positive (TP); black:
true negative (TN); orange: false positive (FP); and
red: false negative (FN).

Finally, Figure 7 shows three complete images be-
longing to the test set. The first two columns show
the pseudo-color image and the ground truth. The
other columns show the result of the segmentation
performed by the Simple U-Net, U-Net with VGG-
16 backbone, and U-Net with ResNet-18 backbone
models, respectively.
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Table 1: summary of indexes evaluated in each analyzed model in the test set.

Model Metrics
Precision Recall Specificity Jaccard Accuracy

Simple U-Net 86.98% 84.23% 96.96% 74.48% 94.56%
U-Net (VGG-16) 86.15% 58.55% 98.13% 52.63% 82.45%

U-Net (ResNet-18) 88.17% 58.28% 98.75% 51.19% 82.80%

Figure 4: Segmentation results of five patches (a – e) using simple U-Net. The first row shows the segmentation superimposed
on the original image (pseudo-colors). The second row shows a map with the evaluation of the segmentations.

Figure 5: Segmentation results of five patches (a – e) using U-Net (VGG-16). The first row shows the segmentation superim-
posed on the original image (pseudo-colors). The second row shows a map with the evaluation of the segmentations.

Figure 6: Segmentation results of five patches (a – e) using U-Net (ResNet-18). The first row shows the segmentation
superimposed on the original image (pseudo-colors). The second row shows a map with the evaluation of the segmentations.
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Figure 7: Segmentation result of three scenes extracted from the test set.

5 CONCLUSIONS

In this work, we presented the implementation and
comparison of three models based on deep neural net-
works for satellite image segmentation. The models
based on the U-Net architecture with different back-
bones: (i) a simple backbone with three contraction
blocks and three expansion blocks, (ii) a backbone
based on VGG-16 pre-trained with the ImageNet im-
age set, and (iii) a backbone based on ResNet-18 also
pre-trained with ImageNet. The models were tested
using the 38-Cloud image set.

The results indicate that the three implemented
and tested methods are capable of segmenting the
clouds in satellite images. Simple U-Net performed
better for the Recall, Jaccard, and Accuracy indices.
On the other hand, when we analyzed Precision and
Specificity, better results were noted for the model
with ResNet-18 backbone. As deep learning training
is related to empirical aspects (e.g., tuning hyperpa-
rameters and model selection), our contribution to this
work is to initiate an evaluation to find the best model
based on deep learning for the segmentation of clouds
in satellite images.

5.1 Future Works

As future works, it is intended to: (i) test other mod-
els based on deep learning for cloud segmentation, (ii)
consider other metrics to evaluate the results, (iii) per-
form tests with other sets of images, and (iv) provide
hyperparameter optimization.

Subsequently, with robust results for the task in
question, it is expected to perform the cloud removal
task and the consequent image reconstruction in ap-
plications in precision agriculture also using tech-
niques based on deep learning. From these tasks, it is
possible to estimate more accurate agronomic indices
(e.g., water and nitrogen stress, sowing estimate, and
future harvest prediction) and thus enhance decision-
making in the agricultural sector.
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