
PDIFT: A Practical Dynamic Information-Flow Tracker

Michael Kiperberg1 a, Aleksei Rozman1, Aleksei Kuraev1 and Nezer Zaidenberg2

1Department of Software Engineering, Shamoon College of Engineering, Beer-Sheva, Israel
2Department of Computer Sciences, Ariel University, Ariel, Israel

Keywords: Virtualization, Hypervisor, Emulator, DIFT.

Abstract: We present PDIFT, a hybrid dynamic information-flow tracker. PDIFT is based on a thin hypervisor, which
tracks information in coarse granularity but has a negligible performance overhead. PDIFT switches to its
internally embedded emulator when the information is accessed and needs to be tracked with finer granularity.
Using the combination of a thin hypervisor with an embedded emulator, we achieved a significant improve-
ment in the overall performance. We believe that PDIFT can be used as an extension to the Android base DIFT
systems that currently struggle with native code tracking.

1 INTRODUCTION

Computer systems are exposed to constant threats tar-
geting their confidential information. An attacker
can use multiple vectors to achieve her goal, from
introducing new code that alters the system’s be-
havior to the exfiltration of confidential information.
While widely-available antivirus programs concen-
trate on software analysis to detect malicious intent,
sufficiently sophisticated malware (e.g., metamorphic
(You and Yim, 2010)) can evade them. On the other
hand, data leakage prevention systems attempt to pre-
vent unauthorized data movement by analyzing the
data being transferred through certain critical junc-
tions, e.g., between applications, over the network,
or external flash drives. They operate by preventing
the transfer of data that violates a predefined set of
rules. The rules can target the context, or the content
of the data (Kiperberg, 2021). These security systems
attempt to prevent the infiltration of malware and the
exfiltration of sensitive information.

Unfortunately, the widely available security sys-
tems are unaware of the history of the information be-
ing analyzed and, in particular, its origin. The origin
can form the basis for simple and precise rules regard-
ing data movement. For example, execution permis-
sions can be expressed in terms of the code origin:
only code that was downloaded from a specific do-
main can execute on the computer. Data leakage pre-
vention rules can be expressed similarly: data that is

a https://orcid.org/0000-0001-8906-5940

affected by the content of a sensitive file cannot be
sent over the network. Of course, additional rules
may apply. Without the origin, it may be challeng-
ing to devise precise rules for the prevention of data
infiltration and exfiltration.

Dynamic information-flow tracking (DIFT) (Chen
et al., 2021) is a technique for tracing data through-
out any transformations. DIFT can establish the ori-
gin of a particular value, or more precisely, DIFT can
reason about whether a particular memory location
has been affected by another memory location. DIFT
can be implemented in hardware (Chen et al., 2008;
Venkataramani et al., 2008) and software. Software
implementations, implemented using emulators (Yan
and Yin, 2012; Xue et al., 2018) or instrumentation
(Kemerlis et al., 2012), degrade the performance by
several factors. The severe performance degradation
prohibits DIFT deployments on commodity systems.

The only area in which DIFT can be partially de-
ployed is Android. Since much of the code exe-
cuting on Android is written in Java, DIFT can be
implemented efficiently by analyzing the Java byte-
code inside the Java Virtual Machine (Dalvik (Born-
stein, 2008)). Unfortunately, the tracing functional-
ity of such DIFT implementations cannot cross the
Java boundary. Tracing of data in the native code
invoked by Java requires additional means (Yan and
Yin, 2012; Xue et al., 2018) implemented using the
slow emulation or instrumentation.

The realization that DIFT can be enabled selec-
tively, only during the times that the information is
tracked, led to a hybrid DIFT approach (Ho et al.,

192
Kiperberg, M., Rozman, A., Kuraev, A. and Zaidenberg, N.
PDIFT: A Practical Dynamic Information-Flow Tracker.
DOI: 10.5220/0011786800003405
In Proceedings of the 9th International Conference on Information Systems Security and Privacy (ICISSP 2023), pages 192-198
ISBN: 978-989-758-624-8; ISSN: 2184-4356
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

2006). A hybrid DIFT consists of a hypervisor and an
emulator. The hypervisor performs virtualization un-
til the system accesses the information to be tracked.
Then, the hypervisor switches to emulation, which
continues while the analyzed code manipulates the
tracked information.

This paper introduces Practical Dynamic
Information-Flow Tracker (PDIFT), a hybrid DIFT
system. PDIFT’s design makes it suitable for deploy-
ment on Android devices supporting virtualization.
We anticipate the performance of DIFT on these
devices to be optimal since direct emulation is
required only when native code manipulates tracked
information. In other cases, when Java code runs or
when native code does not manipulate the tracked
information, the performance degradation will be
minimal.

PDIFT is a thin hypervisor (Shinagawa et al.,
2009) with an embedded emulator. The hypervisor
provides hypercalls for tainting the memory regions
to be tracked and for querying whether a memory re-
gion is tainted. The hypervisor remains passive while
the tainted memory region is not accessed, thus al-
lowing it to incur only a negligible overhead (1.5%).
When the tracked program accesses a tainted memory
region, the hypervisor activates its embedded emula-
tor. The performance benefits of embedding the em-
ulator inside the hypervisor rather than placing it in a
different environment (virtual machine) are twofold.
First, we can spare the extra transition from the hy-
pervisor to the different environment. Second, we
can spare the costly copying of the tracked program’s
memory since the emulator can access it directly.

In this paper, we make the following contribu-
tions:

• We describe PDIFT, a novel DIFT system that is
based on a thin hypervisor and an embedded em-
ulator.

• We analyze the performance of the PDIFT and
compare it with other DIFT systems.

• We outline the design of an efficient DIFT system
for Android devices which supports both Java and
native code.

2 BACKGROUND

Intel introduced hardware-assisted virtualization al-
most 20 years ago. Their VT-x technology introduces
a new execution mode to the x86 architecture, the
root mode. Software executing in the root mode, the
hypervisor, has higher privileges than the operating
system, has higher precedence in interrupt handling,

and can intercept many events in the operating sys-
tem. Upon an occurrence of an event, the processor
switches to the hypervisor. The hypervisor handles
the event and continues the execution of the operating
system. The transitions to the hypervisor are called
vm-exits, and the transitions to the operating system
are called vm-entries. The hypervisor can run multi-
ple operating systems in isolated environments, called
virtual machines or guests.

In order to improve the memory management per-
formance, Intel introduced the Extended Page Table
(EPT) mechanism, also known as a secondary-level
page table (SLAT), which allows the hypervisor to
configure the correspondence between the physical
addresses as perceived by the guests to the actual
physical addresses. Similarly to the regular (process)
page table, the EPT configures the mapping and ac-
cess rights. When a guest attempts to access a mem-
ory location in violation of the set rights, a VM-exit
occurs, thus allowing the hypervisor to handle the
event.

Hypervisors can run atop an operating system
(e.g., Oracle VirtualBox (Oracle, 2022), VMware
Workstation (VMware, 2022b), KVM (Deshane et al.,
2008)) or without a hosting operating system (e.g.,
VMware ESXi (VMware, 2022a), Xen (Deshane
et al., 2008)). In the second case, the hypervisor must
boot directly from the firmware, similarly to the op-
erating system itself. PDIFT is embedded in an EFI
(Zimmer, 2009) application. The EFI firmware loads
this application, which in turn initializes the hyper-
visor. When the EFI application exits, the firmware
continues to the next EFI application, the operating
system bootloader.

3 SYSTEM DESIGN

PDIFT is a hybrid dynamic information-flow track-
ing system. Figure 1 presents the high-level design
of PDIFT. In essence, PDIFT provides means for de-
termining whether a particular memory region was
affected by another memory region during a partic-
ular calculation. The main idea is to augment the
instruction-set architecture with the ability to track an
information flow.

We have augmented the instruction-set architec-
ture as follows. For every memory address (byte), we
have added a bit to determine whether the memory
address contains information that needs tracking. We
say that such memory addresses are tainted. The pro-
cess of information flow tracking can be divided into
three phases. In the first phase, the input memory ad-
dresses are tainted. In the second phase, the calcu-

PDIFT: A Practical Dynamic Information-Flow Tracker

193

App 1 App 2 App 3

Operating System

Hypervisor Emulator

Driver

Figure 1: The design of PDIFT. The hypervisor executes
with higher privileges than the operating system. The hy-
pervisor executes a single virtual machine containing the
operating system and the user applications. The applica-
tions can communicate with the operating system through
system calls (the arrow from App 2 to the Operating Sys-
tem). The applications, the operating system, and the
drivers can communicate with the hypervisor through hy-
percalls (all other solid arrows). The emulator is embed-
ded in the hypervisor and can execute (emulate) application
code.

lation is performed in the augmented instruction-set
architecture. Finally, in the third phase, the tainted
memory addresses are determined.

The main idea is to track the taints in the granular-
ity of a single instruction. For this to work correctly,
not only memory locations need to be taintable, but
also the registers. For example, a MOV instruction can
copy 4 bytes of information from memory to a register
and then copy from this register to another memory
address. In this case, if the source address is tainted,
then the first instruction will propagate the taint to the
destination register, and the second instruction will
propagate the taint to the destination memory address.

In general, augmentations of existing instruction-
set architectures are performed either by direct hard-
ware modifications or by modifying an existing em-
ulator of the instruction-set architecture. We have
chosen the second path since it is more readily avail-
able. There are multiple available emulators (Bochs
(Lawton, 1996), QEMU (Bellard, 2005), libx86emu
(wfeldt, 2022)) that differ in performance, complex-
ity, and the completeness of the emulated instruction-
set architecture. However, they all are orders of mag-
nitude slower than virtualization-based solutions.

On the other hand, virtualization-based solutions
are incapable of modifying the behavior of instruc-
tions since those are executed directly by the CPU.
Therefore, there is a need for a hybrid solution in
which virtualization will be used most of the time in
order to provide the best possible performance, and
emulation will be used sporadically for taint propaga-
tion.

Our system is based on our thin hypervisor, which
boots from a UEFI application before the operating
system. The hypervisor creates a single virtual ma-
chine, also called the “guest”, under the hypervisor’s

full control — the operating system boots inside the
newly created virtual machine.

Our hypervisor configures the EPT with the access
rights of different pages, thus allowing it to intercept
accesses to certain memory regions. In addition, the
hypervisor provides communication means with the
guest through hypercalls, similar to the communica-
tion means provided by operating systems. Upon an
occurrence of an event that was selected for the in-
terception, a hypervisor can observe the guest’s state,
modify it and resume the guest’s execution.

We have added two new hypercalls to our hyper-
visor:

• set taint(addr, size, val) — the hypercall
sets or clears a taint (depending on the setting of
the “val” parameter) of a memory region defined
by the “addr” and “size” parameters,

• get taint(addr, size) — the hypercall re-
turns true iff at least one of the bytes of a memory
region defined by the “addr” and “size” parame-
ters is tainted.

These hypercalls allow an entity (kernel module or
user-mode application) to set and check the tainting
of a particular memory region. These hypercalls al-
ter and query the taint repository, a data structure that
keeps track of the tainted memory regions. In addi-
tion to modifying the taint repository, the set taint
hypercall configures the EPT to intercept accesses to
the pages containing the tainted range of addresses.

When the hypervisor gains control in response to
access to such a page, it begins the emulation process.
The emulation involves copying the guest’s state to
the emulator, running the emulator until the emulation
can be disabled, and then copying the emulator’s state
to the guest. The emulator executes inside the context
of the hypervisor in order to eliminate unnecessary
transitions. Therefore, memory accesses require the
emulator to translate the guest’s virtual addresses to
the actual physical addresses. In our current imple-
mentation, we do not cache the translation informa-
tion. Such a cache can potentially have a significant
effect on the overall system performance. During em-
ulation, taints propagate from the memory to the reg-
isters and vice versa. The emulation proceeds while
at least one register is tainted.

The current implementation of PDIFT does not
include any optimizations to prevent costly transi-
tions to the emulator and back. Neither does the
current implementation include caches of compiled
blocks of instructions. PDIFT includes libx86emu, a
tiny x86 user-space emulator (wfeldt, 2022). Since
libx86emu, unlike Bochs (Lawton, 1996) or Qemu
(Bellard, 2005), does not have external dependencies,
it could be easily embedded in our thin hypervisor.

ICISSP 2023 - 9th International Conference on Information Systems Security and Privacy

194

On the other hand, libx86emu performs naı̈ve emula-
tion and does not incorporate even basic optimization
techniques, which makes its performance suboptimal,
to say the least.

The libx86emu emulator consists of an infinite
loop. On each iteration, the emulator reads the next
instruction from the location pointed by the instruc-
tion pointer. Then, the read instruction is parsed and
executed. The instruction execution may involve ac-
cess to the registers and the memory. The emulator
stores the registers in a special object that describes
the current execution context. The context object is
allocated during the initialization of the hypervisor.
We have extended this object to include a taint bit for
each general-purpose register (see Figure 2). When
the emulation process begins, the values of the actual
registers are loaded to the context object, and the taint
bits are cleared. When the emulation ends, the values
of the registers are copied back.

typedef struct
{
union {
I32_reg_t I32_reg;
I16_reg_t I16_reg;
I8_reg_t I8_reg;

} val;
int tainted; // added

} i386_general_register;

Figure 2: A data structure that describes a single general-
purpose register with the added “tainted” member.

The libx86emu emulator emulates each instruc-
tion by a dedicated function. In rare cases, sev-
eral instructions are handled by a single function.
Some instructions do not modify the taints of mem-
ory regions or registers; others do. We have modi-
fied the emulation of those instructions to propagate
the taint as appropriate. Figure 3 presents an excerpt
from the x86emuOp mov word R RM instruction emu-
lation; only the handler of the MOV reg, [mem] vari-
ant is presented. The taint propagation functionality
is marked with a comment. In this example, the des-
tination register is set to be tainted iff one of the bytes
in the source memory region is tainted. The example
demonstrates two of the four macros that implement
the taint propagation functionality.

The taint propagation functionality is realized by
four macros:

• MEM TYPE GET(ADDR, SIZE) — evaluates to
TRUE if at least one of the memory bytes in the
range [ADDR,ADDR+SIZE) is tainted.

• MEM TYPE SET(ADDR, SIZE, VAL) — depend-
ing on the value of VAL, sets (if 1) or resets (if

0) the taint of the memory bytes in the range
[ADDR,ADDR+SIZE).

• REG GET MARK(REG) — evaluates to TRUE if the
register pointed by REG is tainted

• REG SET MARK(REG, VAL) — depending on the
value of VAL, sets (if 1) or resets (if 0) the taint of
the register REG. In addition, this macro modifies
a special field of the context object that counts the
number of currently tainted registers.

Figure 4 presents an excerpt from the
x86emuOp mov byte RM R instruction emulation.
It demonstrates the usage of the MEM TYPE SET and
the REG GET MARK macros. The memory taint is set
iff the source register has a taint.

4 EVALUATION

The evaluation of the proposed system was performed
on a system whose configuration appears in Table 1.
We have split the evaluation into three parts: (a) cor-
rectness, (b) hypervisor performance, (c) overall per-
formance.

Table 1: Evaluation System Configuration.

CPU Intel Core i7-8665U
Memory 16GB
Operating System Windows 7 x64

We demonstrate the firm information-flow track-
ing abilities using an encryption program that uses
the RC4 cipher for encryption. The program reads
its two inputs from files: the encryption key and the
plaintext. The program schedules the key, encrypts
the plaintext, and stores the ciphertext in a file. We
have added two hypercalls to the program. The first
hypercall is issued right after the inputs are read. The
hypercall requests the hypervisor to taint the memory
location that stores the key. The second hypercall is
issued before the output file is written. This hypercall
queries whether the ciphertext is tainted.

In the future, we envision these hypercalls to be
implemented by the operating system in response to
read and write requests. In this implementation, the
operating system can mark files (or their regions)
tainted by extending the filesystem. After reading
from a tainted file, the operating system can request
the hypervisor to taint the memory locations contain-
ing the read data. When writing to a file, the operating
system can check whether the memory being written
is tainted and mark the filesystem appropriately.

We assessed our implementation’s correctness by
performing the encryption on the publicly available

PDIFT: A Practical Dynamic Information-Flow Tracker

195

static void x86emuOp_mov_word_R_RM(x86emu_t *emu, u8 op1)
{
...
fetch_decode_modrm(emu, &mod, &rh, &rl);
...
if(MODE_DATA32) {

dst32 = decode_rm_long_register(emu, rh);
OP_DECODE(",");
addr = decode_rm_address(emu, mod, rl);
*dst32 = fetch_data_long(emu, addr);
REG_SET_MARK(dst32, MEM_TYPE_GET(addr, 4)); // <- taint propagation

}
...

}

Figure 3: An excerpt from the x86emuOp mov word R RM instruction emulation.

static void x86emuOp_mov_byte_RM_R(x86emu_t *emu, u8 op1)
{
...

addr = decode_rm_address(emu, mod, rl);
OP_DECODE(",");
src = decode_rm_byte_register(emu, rh);
store_data_byte(emu, addr, *src);
MEM_TYPE_SET(addr, 1, REG_GET_MARK(src)); // <- taint propagation

...
}

Figure 4: An excerpt from the x86emuOp mov byte RM R instruction emulation.

RC4 test vectors. As was explained, we tainted the
encryption key before the encryption. Then, we veri-
fied that the ciphertext was correct and tainted.

We used the PCMark (Sibai, 2008) benchmark-
ing tool to measure the performance overhead of our
hypervisor and compare it to a full hypervisor. PC-
Mark runs several applications belonging to various
categories and outputs the score obtained in each cat-
egory. We executed PCMark in three different config-
urations: (a) without a hypervisor, (b) with our thin
hypervisor, (c) in a full hypervisor (we used the same
operating system in the guest). From the results in ta-
ble 2, we can see that the thin hypervisor is at least an
order of magnitude faster than a full hypervisor. The
reason for this is that PDIFT intercepts only EPT vi-
olations, hypercalls (implemented as CPUIDs), and
other events that induce VM-exits unconditionally,
while full hypervisors intercept all the interrupts.

To measure the performance of the tainting func-
tionality, we executed the encryption program ten
times with and without requesting the hypervisor to
taint the encryption key. Figure 5 presents the results.
On average, the execution time increased by 26%.

We continued to a more detailed analysis of the
execution times. Table 3 presents the number of em-
ulation transitions that were performed during each

Table 2: Performance degradation in percents with respect
to the configuration without a hypervisor.

Category Thin Hypervisor VirtualBox
App start-up 2.29 44.92
Web browsing 2.66 32.75
Spreadsheet 1.18 39.91
Writing 1.54 42.66
Photo editing -0.24 38.35
Video editing 1.77 28.02

Table 3: Transitions number and handling time.
Run Transitions Total Ticks
1 2071 410227
2 2085 414746
3 2069 412529
4 2022 403379
5 2095 416943
6 2070 418251
7 2009 401620
8 2020 402534
9 2055 410003
10 2088 427738

run. In addition, the table presents the total time that
was spent in the hypervisor during these transitions.
The time is given in CPU ticks. On average, the pro-
gram performed 2058 transitions. The handling took

ICISSP 2023 - 9th International Conference on Information Systems Security and Privacy

196

1 2 3 4 5 6 7 8 9 10

0.8

0.9

1

1.1
·106

Run

E
xe

cu
tio

n
Ti

m
e

(µ
s)

Tainted
Normal

Figure 5: The execution times of the encryption program with and without tainting.

412K ticks on average, 200 ticks per transition. We
note that depending on the CPU, the transition itself
takes several hundreds of ticks. Therefore, we can
conclude that PDIFT’s performance can be improved
by reducing the number of transitions rather than im-
proving the emulation performance.

5 RELATED WORK

While taint tracking can be performed statically, in
native programs, it usually leads to tainting the entire
program memory (Slowinska and Bos, 2009). How-
ever, it is still applicable to programs written in man-
aged languages, like Java (Machiry, 2017). Dynamic
taint tracking, which can be performed using instru-
mentation (Kemerlis et al., 2012), or emulation (Ho
et al., 2006), suffers from high performance degrada-
tion, which is generally prohibitive for real-time se-
curity monitoring. Hardware solutions (Chen et al.,
2008; Venkataramani et al., 2008) are costly and prob-
ably cannot be widely deployed. Another exciting di-
rection is hybrid pruning, in which dynamically col-
lected data is injected into the static taint analysis sys-
tem to improve its precision (Das et al., 2022).

TaintDroid (Enck et al., 2014) is a widely adopted
solution for DIFT in managed portions of Android
applications. Attempts to extend this solution to na-
tive code, like DroidScope (Yan and Yin, 2012) and
NDroid (Xue et al., 2018), which are based on em-
ulation using QEMU, resulted in high performance
degradation. We believe that better results can be ob-
tained using the hybrid approach of PDIFT.

Ho et al. (Ho et al., 2006) was the first to propose
the hybrid approach. Their implementation included a
full hypervisor and an efficient emulator (Qemu). The
emulator and the analyzed code were executed in two
separate virtual machines, which degraded the perfor-

mance significantly. In contrast, PDIFT is based on a
thin hypervisor with an embedded emulator.

Using hypervisors in security applications is not
new. Full and thin hypervisors can be used in dif-
ferent scenarios ranging from malware detection (Se-
shadri et al., 2007; Leon et al., 2019) to device protec-
tion (Shinagawa et al., 2009; Kiperberg et al., 2020).
PDIFT is another example of the thin hypervisors’
versatility.

6 FUTURE WORK

As we have stated previously, the performance of
DIFT solutions is prohibitively high for native code
and surprisingly low for managed code. Therefore, it
would be interesting to integrate PDIFT into Taint-
Droid, for example. Such integration will require
porting PDIFT to the ARM architecture and switch-
ing to a different emulator that supports ARM.

While initially, we thought that PDIFT could ben-
efit from an optimized emulator, like QEMU, our
evaluation clearly shows that the performance highly
depends on the number of transitions. In addition,
porting such a large emulator with multiple dependen-
cies into a restricted environment is challenging.

In the future, we plan to analyze further whether
several transitions can be grouped. It is possible that,
in some cases, it would be more beneficial to continue
that costly emulation rather than switching to virtual-
ization for a short period and then switching back.

7 CONCLUSIONS

In this paper, we presented a Practical Dynamic
Information-Flow Tracker (PDIFT) implemented as a

PDIFT: A Practical Dynamic Information-Flow Tracker

197

thin hypervisor with an embedded emulator for the
Intel architecture. We showed that PDIFT has better
performance than previous solutions. We believe that
PDIFT can form the basis for the native DIFT on An-
droid platforms, thus providing a complete solution
for the DIFT problem in these environments.

REFERENCES

Bellard, F. (2005). Qemu, a fast and portable dynamic
translator. In USENIX annual technical conference,
FREENIX Track, volume 41, pages 10–5555. Califor-
nia, USA.

Bornstein, D. (2008). Dalvik vm internals. In Google I/O
developer conference, volume 23, pages 17–30.

Chen, K., Guo, X., Deng, Q., and Jin, Y. (2021). Dynamic
information flow tracking: Taxonomy, challenges, and
opportunities. Micromachines, 12(8):898.

Chen, S., Kozuch, M., Strigkos, T., Falsafi, B., Gibbons,
P. B., Mowry, T. C., Ramachandran, V., Ruwase, O.,
Ryan, M., and Vlachos, E. (2008). Flexible hard-
ware acceleration for instruction-grain program moni-
toring. ACM SIGARCH Computer Architecture News,
36(3):377–388.

Das, D., Bose, P., Machiry, A., Mariani, S., Shoshitaishvili,
Y., Vigna, G., and Kruegel, C. (2022). Hybrid prun-
ing: Towards precise pointer and taint analysis. In In-
ternational Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment, pages 1–22.
Springer.

Deshane, T., Shepherd, Z., Matthews, J., Ben-Yehuda, M.,
Shah, A., and Rao, B. (2008). Quantitative compari-
son of Xen and KVM. Xen Summit, Boston, MA, USA,
pages 1–2.

Enck, W., Gilbert, P., Han, S., Tendulkar, V., Chun, B.-
G., Cox, L. P., Jung, J., McDaniel, P., and Sheth,
A. N. (2014). Taintdroid: an information-flow track-
ing system for realtime privacy monitoring on smart-
phones. ACM Transactions on Computer Systems
(TOCS), 32(2):1–29.

Ho, A., Fetterman, M., Clark, C., Warfield, A., and Hand,
S. (2006). Practical taint-based protection using de-
mand emulation. In Proceedings of the 1st ACM
SIGOPS/EuroSys European Conference on Computer
Systems 2006, pages 29–41.

Kemerlis, V. P., Portokalidis, G., Jee, K., and Keromytis,
A. D. (2012). libdft: Practical dynamic data flow
tracking for commodity systems. In Proceedings of
the 8th ACM SIGPLAN/SIGOPS conference on Vir-
tual Execution Environments, pages 121–132.

Kiperberg, M. (2021). Preventing malicious communica-
tion using virtualization. Journal of Information Se-
curity and Applications, 61:102871.

Kiperberg, M., Yehuda, R. B., and Zaidenberg, N. J. (2020).
Hyperwall: A hypervisor for detection and prevention
of malicious communication. In International Confer-
ence on Network and System Security, pages 79–93.
Springer.

Lawton, K. P. (1996). Bochs: A portable pc emulator for
unix/x. Linux Journal, 1996(29es):7–es.

Leon, R. S., Kiperberg, M., Zabag, A. A. L., Resh, A., Al-
gawi, A., and Zaidenberg, N. J. (2019). Hypervisor-
based white listing of executables. IEEE Security &
Privacy, 17(5):58–67.

Machiry, A. (2017). The need for extensible and config-
urable static taint tracking for c/c++. https://machiry:
github:io/blog/2017/05/31/static-taint-tracking.

Oracle (Accessed Nov. 2022). VirtualBox. https://www.
virtualbox.org/.

Seshadri, A., Luk, M., Qu, N., and Perrig, A. (2007).
Secvisor: A tiny hypervisor to provide lifetime ker-
nel code integrity for commodity oses. In Proceedings
of twenty-first ACM SIGOPS symposium on Operating
systems principles, pages 335–350.

Shinagawa, T., Eiraku, H., Tanimoto, K., Omote, K.,
Hasegawa, S., Horie, T., Hirano, M., Kourai, K.,
Oyama, Y., Kawai, E., et al. (2009). Bitvisor: a
thin hypervisor for enforcing i/o device security. In
Proceedings of the 2009 ACM SIGPLAN/SIGOPS in-
ternational conference on Virtual execution environ-
ments, pages 121–130.

Sibai, F. N. (2008). Evaluating the performance of sin-
gle and multiple core processors with PCMARK® 05
and benchmark analysis. ACM SIGMETRICS Perfor-
mance Evaluation Review, 35(4):62–71.

Slowinska, A. and Bos, H. (2009). Pointless tainting? eval-
uating the practicality of pointer tainting. In Proceed-
ings of the 4th ACM European conference on Com-
puter systems, pages 61–74.

Venkataramani, G., Doudalis, I., Solihin, Y., and Prvulovic,
M. (2008). Flexitaint: A programmable accelerator
for dynamic taint propagation. In 2008 IEEE 14th
International Symposium on High Performance Com-
puter Architecture, pages 173–184. IEEE.

VMware (Accessed Nov. 2022a). VMware ESXi. https:
//www.vmware.com/il/products/esxi-and-esx.html.

VMware (Accessed Nov. 2022b). VMware Work-
station Pro. https://www.vmware.com/products/
workstation-pro.html.

wfeldt (2022). libx86emu. https://github.com/wfeldt/
libx86emu.

Xue, L., Qian, C., Zhou, H., Luo, X., Zhou, Y., Shao, Y.,
and Chan, A. T. (2018). Ndroid: Toward tracking
information flows across multiple android contexts.
IEEE Transactions on Information Forensics and Se-
curity, 14(3):814–828.

Yan, L. K. and Yin, H. (2012). {DroidScope}: Seam-
lessly reconstructing the {OS} and dalvik semantic
views for dynamic android malware analysis. In 21st
USENIX security symposium (USENIX security 12),
pages 569–584.

You, I. and Yim, K. (2010). Malware obfuscation tech-
niques: A brief survey. In 2010 International con-
ference on broadband, wireless computing, communi-
cation and applications, pages 297–300. IEEE.

Zimmer, R. (2009). Hale,“UEFI: From Reset Vector to Op-
erating System,” Chapter 3 of Hardware-Dependent
Software.

ICISSP 2023 - 9th International Conference on Information Systems Security and Privacy

198

