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Abstract: The linguistic identity of many indigenous peoples has become relevant in recent years. The speed with which
many of these have been lost faces many countries of the world with a serious reduction of their cultural
heritage. In South America, the critical situation of vulnerability of many of its native languages is alarming.
Even languages such as Quechua, widely spoken in the region, face an early disappearance due to a low rate
of inter-generational transmission. Aware of this problem, we have proposed the development of a translation
and subtitling system for short film videos from Spanish to Quechua. The proposal contemplates the use of
cinema to promote and retain the language. For its realization, we have built a solution that combines a Spanish
Voice Recognition system and our proposal for a Quechua Machine translation model. This will be integrated
with a desktop application that will also subtitle the film videos. In the tests we carry out, we have obtained
better translation indicators than past proposals; in addition to the validation of Quechua-speaking users of the
tool’s value. Aware of this problem, we have proposed a speech-to-text translation model that could be used as
a resource for language revitalization. For its realization, we developed a cascade architecture that combines
a Spanish speech recognition module and our proposal of a Quechua machine translation module, fine-tuned
from a Turkish NMT model and a parallel public dataset. Additionally, we developed a subtitling algorithm
to be joined with our solution into a real-time subtitling desktop application for clips of films. In the tests we
carry out, we have obtained better BLEU and chrF scores than previous proposals; in addition to the validation
of the translation returned in the subtitles by the Quechua speakers consulted.

1 INTRODUCTION

Numerous nations and international organizations
have recently stepped up their efforts to safeguard,
preserve, and promote the thousands of indigenous
languages that risk extinction by the turn of the cen-
tury. Proof of this can be found in UNESCO’s an-
nouncement of an exclusive decade for the rescue of
several of these. However, the conflict’s diverse na-
ture deteriorates in some regions. The risk scenario
for numerous languages on the American continent
was already covered in (Nordhoff and Hammarström,
2012). Due to this, many South American countries
have started taking steps to conserve the linguistic di-
versity of their citizens. These haven’t, however, had
a significant influence on lowering vulnerability in na-
tions like Peru. Furthermore, recent research1 reveals

a https://orcid.org/0000-0002-7510-618X
1Encuesta Nacional: Percepciones y actitudes sobre

diversidad cultural y discriminación étnico-racial, IPSOS,
2018

how poorly these are promoted and revitalized. With
a populace that is only familiar with less than a fifth
of the 47 indigenous languages spoken in their nation
and that is increasingly inclined to give up their na-
tive languages in favor of Spanish. As a result, the
situation is severe for many minority indigenous lan-
guages. Even for one of the largest in the region such
as Quechua, which is close to 10 million speakers in
the Andean regions of countries such as Colombia,
Ecuador, Bolivia, Argentina and Peru (Rios, 2011).
And it’s because of this that it faces a significant dis-
appearance problem due to its low rate of intergener-
ational transfer.

This makes the preservation of this and other lan-
guages important. A significant loss of its cultural
and historical value results from the population aban-
doning its native language. Therefore, it is essen-
tial to develop methods that allow the revitalization
of Quechua. For this research, we will focus on the
standard version of Southern Quechua, specifically
the Quechua Chanka variety. We will take advan-
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tage of the power of computational translation models
to break the state of linguistic isolation to which the
Quechua population has been exposed in such impor-
tant aspects as education, health, or entertainment.

The work is challenging, though, because there
have only been a limited number of studies done in
languages with a nature similar to their own. Due
to the fact that Quechua is an agglutinative lan-
guage, which means that it heavily relies on mor-
phemes added as suffixes (Rios, 2011). And with
subject-object-verb (SOV) grammatical ordering, it
has a disadvantage over more widely used languages
like Spanish or English. Because of this, our ap-
proach is built on a less promising area of research
and with a lower threshold for success. Another
point is the low-resource pain of many indigenous
languages, Quechua included (Mager et al., 2018).
Which refers to languages with parallel corpora that
contain fewer than 0.5 million parallel sentences (Le-
Cun et al., 2015). This characteristic has a negative
effect on the results and the capability to explore con-
temporary solutions that required big amount of data.

There have been small-scale non-computational
and computational initiatives in the past aimed at re-
viving Quechua. Regarding the first group: There
are various educational or social programs run by
the Peruvian government to assimilate the Quechua
community (Hornberger and Coronel-Molina, 2004;
Sumida Huaman, 2020). However, they are unable
to provide written or spoken resources in Quechua,
organize plans with precise goals or implement poli-
cies that encourage inclusion rather than segregation.
Regarding the second group, recent years have seen
the growth of datasets and limited machine learn-
ing techniques addressing Quechua (Oncevay, 2021;
Chen and Abdul-Mageed, 2022; Edgar et al., 2012;
Ortega and Pillaipakkamnatt, 2018) speech synthesis,
text translation systems, and voice recognition.

To overcome the task we will incorporate natu-
ral language processing (NLP) technologies for the
Quechua subtitling of cinematic content as educa-
tional tools that support the language’s preserva-
tion. Our suggested proposal converts the video’s
dialogues into waveform representations in the first
place. Then a speech recognition model(SR) based
on Wav2Vec (Baevski et al., 2020) will analyze to
determine the content and convert it into written dis-
course representations. The data will then be numer-
ically transformed using the SentencePiece tokenizer
before our suggested machine translation model (MT)
that uses the Transformer-base model (Vaswani et al.,
2017) translates each dialogue and is then applied to
the process of subtitling the original movie.

Our main contributions are as follows:

• We design an integrated cascade architecture for
speech-to-text (S2T) translation between Spanish
and Quechua languages.

• We train a new machine translation model using
the transfer learning method.

• We develop a desktop application to subtitle clips
of movies to Quechua.

This paper is organized as follows. Therefore, in
Section 2, an analysis of the state of the art considered
for this work will be made. Section 3, first, introduces
the technologies used for the development of the pro-
posed solution and then, describes the whole process
of deploying the software. Finally, Section 4 show
the experimental protocol, the results obtained, and
the discussion. To conclude with Section 5

2 RELATED WORKS

The challenge of converting acoustic voice signals
into text or even audio is intricate and multifaceted.
The main method has been the cascaded model built
upon machine translation (NMT) and voice recog-
nition (ASR) systems. As a consequence, for a
long time, the advancement in the literature has been
driven by general advances in the ASR and NMT
models as well as a transition from the loosely cou-
pled cascade’s most fundamental form to one with
a tighter coupling. Although end-to-end trainable
encoder-decoder models and other new modeling
techniques have lately generated a number of changes
in the field’s perspective (Jia et al., 2019). Despite
this, the literature’s effectiveness and strength are cor-
related with dominant languages. The field hasn’t
been studied or developed enough for many indige-
nous dialects.

In (Nayak et al., 2020), the authors take an
application-focused approach to the field. Its appli-
cation to film dubbing is discussed, and the aspect of
source and destination conversation length alignment
suggested by another work is addressed. Its encoding
module is where it makes a contribution to literature,
composed of attention modules that execute the tem-
poral alignment of the word with the time sequence of
the video and recurrent networks that catch audio se-
quences. However, in our work, we make use of a part
of the voice recognition module that records the tem-
porality of the dialogues and subsequently permits the
subtitling. By doing this, we can completely ignore
the video processing and concentrate on the audio.

In (Tjandra et al., 2019), it is suggested to
train speech-to-speech translation systems without
language supervision using complicated transformer
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networks. The suggestion alludes to works where
attention-layer networks bypass a phase of the tra-
ditional cascade to do direct translations with fewer
modifications and, thus, a greater awareness of non-
lexical voice metadata. His contribution concentrates
on making them more effective while concentrating
on words that can’t be translated linguistically. For
this, a red transformer that performs direct translation
is trained using unsupervised discrete representations
of the vocal signals of the two languages.

In (Kano et al., 2020), the authors examine end-to-
end translation in languages with different syntactic
structures. The experiment highlights the extra effort
needed to translate words in a different order and how
it affects the outcomes when compared to pairings of
syntactically related languages. The work’s recom-
mendation is to create an encoder-decoder architec-
ture for ASR and NMT systems trained on curriculum
learning, in order to take into account the syntactic
distinctions between the two studied languages (en -
jp). In this instance, we’ve used transfer learning on
a model that was previously trained using pairings of
syntactically various languages.

In (Oncevay, 2021), the authors propose neu-
ral machine translation modules for indigenous lan-
guages of South America. The proposal considers the
tokenization and translation procedure. Through test-
ing and fine tweaking, SentencePiece and the trans-
former basis model are utilized to identify the ideal
parameters for many languages. They do not, how-
ever, account for the syntactic variation of the model
that was previously trained in en-es. In this instance,
we employ a trained model of language pairs that are
more syntactically related to es - quy.

3 CASCADE SPEECH
TRANSLATION FROM
SPANISH TO QUECHUA

3.1 Preliminary Concepts

We have read up on speech translation (ST) systems in
order to design the proposed solution. These systems
use deep learning algorithms to take the speech as a
starting point and, depending to the final representa-
tion could perform a speech-to-text(S2T) or speech-
to-speech(S2S) translation. In recent years, the state
of the art has been turning between the cascade’s lev-
els reduction and the addition of paralinguistic infor-
mation in the translation process. For instance, tradi-
tional ST models examined in (Baldridge, 2004), used
to divide the translation task into speech recognition

(SR), machine translation (MT), and text-to-speech
(TTS); while newer approaches try to avoid one side
of the text conversion (Tjandra et al., 2019) or even
train the models only with parallel audio corpora (Jia
et al., 2019). Although, this is possible only for the
most widely spoken languages. The least studied lan-
guages still need to improve each level of the cascade;
with even higher priority, increase data collection.

Deep Learning: The concept refers to models
that are made up of several processing layers, to learn
representations of data at various levels of abstrac-
tion. With the use of this technique, the state-of-the-
art in important areas for the creation of voice trans-
lation models, such as speech recognition, automatic
translation, or speech synthesis, has greatly advanced.
By employing the backpropagation technique to sug-
gest changes to a machine’s internal parameters, deep
learning may uncover detailed structures in massive
data sets (LeCun et al., 2015). By employing the
backpropagation technique to suggest changes to a
machine’s internal parameters that are used to calcu-
late the representation in each layer from the repre-
sentation in the previous layer, deep learning may un-
cover detailed structures in massive data sets.

Convolutional Neural Network (CNN): One or
more pairs of convolutional and maximum pooling
layers make up a CNN. A convolution layer applies
a series of filters that duplicate themselves through-
out the whole input space and process discrete local
portions of the input. By extracting the maximum fil-
ter activation from various points inside a given win-
dow, a max-pooling layer produces a lower resolution
version of the convolution layer activations (Abdel-
Hamid et al., 2012). This increases tolerance for lit-
tle variations in the locations of an object’s compo-
nent pieces and translation invariance. Higher layers
handle more complicated portions of the input using
broader filters that operate on lower-resolution inputs.
In order to classify the total inputs, the top fully linked
layers aggregate inputs from all locations.

Speech Recognition: The idea alludes to AI’s ca-
pacity to identify speech-related vocalizations in hu-
man speech. Replicate voice signals as a string of
words using computational models, in other words.
Speech Recognition (SR) evolved and has been made
possible by the use of statistical and neural model-
ing techniques, which have made it possible to rec-
ognize and comprehend lexical speech data in a vari-
ety of languages and practical settings. The emphasis
of these systems has also been shifted to include fea-
tures of the speaker’s identity in addition to interpret-
ing speech content. In any case, Figure 1 illustrates
the general methodology used for speech recognition,
which starts with feature extraction by making use
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(a) A pair of CNN convolution layers and max-pooling layers are dis-
played in the diagram, where weights shared by all convolution layer
bands are indicated by the same line style (Abdel-Hamid et al., 2012).

(b) General Architecture of Speech recognition.

Figure 1: Architectures of CNN and Speech recognition.

of feature extraction methods such as Wavelets, etc.
Once they’re obtained, a decoder is employed to de-
tect the speech (Haridas et al., 2018)

Machine Translation: The phrase alludes to the
capacity of computers to automatically translate hu-
man languages. It was based on simple rule sys-
tems for a long time. Today, there exist systems
with probabilistic or neural models that are more ef-
fective thanks to new parallel and non-parallel data
sources. As shown in Figure 1, a solution for Ma-
chine Translation is the application of a neural ma-
chine translation encoder-decoder framework. The
encoder network converts each input token of the
source-language phrase into a low-dimensional real-
valued vector (word embedding) and then encodes the
sequence of vectors into distributed semantic repre-
sentations, which the decoder network creates token
by a token from left to right (Zhang and Zong, 2020)

Transformer Model: The Transformer is a model
architecture that foregoes recurrence in favor of draw-
ing global relationships between input and output via
an attention mechanism, it allows for substantially
higher parallelization and can achieve new levels of
translation quality after a few hours. The Trans-
former is the first transduction model to generate rep-
resentations of its input and output using just self-
attention rather than sequence-aligned RNNs or con-
volution (Vaswani et al., 2017).

Figure 2 illustrates the encoder-decoder structure
of most neural sequence transduction models; the en-
coder in this example translates an input series of
symbol representations (x1,..., xn) to a sequence of
continuous representations z = (z1, ..., zn). The de-
coder, given z, produces a symbol output sequence
(y1,..., yn) one element at a time. This fundamental
architecture is followed by the Transformer (see Fig-
ure 2), which, as shown in the image, utilizes layered
self-attention and point-wise, entirely connected lay-
ers for both the encoder and decoder.

3.2 Method

Our work’s key contribution is the cascade structur-
ing of NLP systems for speech-to-text (S2T) trans-
lation between Spanish and Quechua (shown in Fig-
ure 3) and the application of learning transfer to pre-
viously trained machine translation models. The first
was with the Spanish (sp) - Finnish (fi) language pair,
and the second was a multilingual model for trans-
lating from Italic languages(itc), Spanish included, to
Turkish (tr).

Cascade Architecture: The cascade approach
to Speech Translation (ST) is based on a pipeline
that concatenates an Automatic Speech Recognition
(ASR) system followed by a Machine Translation
(MT) system. This setup generates efficiency in solv-
ing morphological problems.

Speech Recognition: In this manner, we spread
the work in a Spanish speech recognition module that
converts voice inputs into a string of words while
maintaining the lexical richness of the original inputs.
We used the Spanish-speaking wav2vec supervised
model of automatic voice recognition for this chal-
lenge. As is shown in Figure 4, audio is converted
into a two-dimensional waveform (a signal represen-
tative of the audio). Then, this source entered a con-
volutional network (CNN) to be converted into a la-
tent representation. Finally, a supervised red trans-
former that forecasts a result using linear projections
will contextualize the latent data.

Machine Translation: It is necessary to translate
a discussion into Quechua after we have identified it.
Therefore, an attention-based neural network trans-
lation module is now applied to the expected text.
SentencePiece is utilized to tokenize the Quechua
datasets for this task. After this, we used trans-
fer learning to the Transformer-base model (Vaswani
et al., 2017) with the default configuration in Marian
NMT (Junczys-Dowmunt et al., 2018) to fine-tunned
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(a) A neural machine translation encoder-decoder framework. The
encoder converts the input sequences into distributed semantic rep-
resentations, which the decoder uses to generate the output se-
quence (Zhang and Zong, 2020).

(b) Transformer model architecture (Vaswani et al.,
2017).

Figure 2: Architecture models.

Figure 3: Wav2Vec Architecture: Speech Recognition
model.

the network, in order to get the contextual represen-
tation which will be aligned to the most propensity
Quechua result. The fundamental principle of transfer
learning is to use the parent model’s parameters as the
starting point for our proposal rather than beginning
from scratch and randomly initializing the parame-
ters (Zoph et al., 2016; Nguyen and Chiang, 2017).

4 EXPERIMENTS

We will go over the experiments that our project
has gone through in this section. The datasets were
obtained from many domains and freely available
sources.

The public corpus of Spanish (es) and Quechua
Ayacucho (quy) offered by AmericasNLPs2 has
shown to be the most pertinent (Agic and Vulic,
2019).

2Available in https://github.com/AmericasNLP/
americasnlp2021

4.1 Experimental Protocol

In order for the studies to be repeated by others, we
will describe the setup and procedures used.

Development Environment: About the environ-
ment in which the experiments were developed, we
used our own computers. They had an Intel Core
I5 processor, 32GB of RAM, and one GPU on an
NVIDIA GeForce RTX 3060. We used python to cre-
ate the models, along with Pytorch, its deep-learning
framework for Nvidia graphics cards. A large number
of additional libraries were also used, including sen-
tencepiece’s tokenizer, evaluate’s evaluation metrics,
and transformers for the transfer learning application.

Dataset: The dataset that was used for the experi-
ments came from open sources. They were all parallel
corpora for machine translation. The data set includes
Spanish text that has been translated into southern
Quechua standard (Quechua chanka). A variant that
is spoken in several parts of Peru. The Americas-
NLP Shared Task included the two primary training
datasets. The first, JW300 (Agic and Vulic, 2019) is
made up of Jehovah’s Witnesses writings and is avail-
able in OPUS, while the second contains official dic-
tionaries from the Ministry of Education and other
sources. We also, clean the datasets because they
were noisy and not cleaned. Lines are reduced ac-
cording to several heuristics: removal of URLs, num-
bering of sentences or book appendages, a sentence
that has more symbols or numbers than actual words,
or it may have a word ratio where one side’s words are
five times longer or shorter than the other, etc. The re-
sult of this process is shown in Table 1.

Models Training: All model experiments were
run using Pytorch in a physical GPU environment
with 32 GB of RAM, for 8 epochs using batches of 16
tuples per dataset, with the Adam optimizer and try-
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Figure 4: Proposed S2T Translation Architecture.

Table 1: Statistics and cleaning for all parallel corpora.

Corpus S (orig.) S (clean) % clean

JW300 125,008 103,293 -17.4%
DICT 9,643 5,925 -38.6%

Table 2: Number of parallel sentences per split.

Corpus Train Test

JW300 92,964 10,329
DICT 5,333 593

Table 3: Testing Results.

BLEU chrF

JW300
(a) TL Bilingual 10.48 49.63
(b) TL Multilingual 12.78 51.20
(c) Baseline 10.04 44.60

DIC
(d) TL Bilingual 3.48 30.22
(e) Baseline 9.55 40.33

ing to minimize the loss value, taking an average of
80 minutes per epoch with the most extensive dataset.
JW300 training typically took 9 hours, whereas DIC
training only required 3 hours.

Evaluation: To qualify the performance of the
models, we utilized the BLEU (Papineni et al., 2002)
and chrF (Popovic, 2015) scores to evaluate them.
The goal is to reach the highest score to validate an ef-
ficient translation. We used Wandb to get a full review
of the executions and their particular configurations.

Models Training: The entire code and dataset ac-
cord the proposed solutions and experiments is pub-
licly available at the following repository: https://
github.com/Malvodio/CinemaSimi.

4.2 Results

To compare our results we set a baseline model that
takes the best scores obtained on (Oncevay, 2021).
Because to the best of our knowledge, this is the one
who achieve the highest performance in evaluation
metrics of Quechua machine translation and they also
used the datasets provided by AmericasNLP Shared
Task. This baseline was built with a 6 self-attention
layer (Vaswani et al., 2017) and 8 heads to first pre-
train it with a Spanish-English parallel corpus and
then finetune it with 10 indigenous language pairs;
to produce a multilingual MT model. For our mod-
els, we leverage publicly accessible pre-trained mod-
els from Huggingface (Wolf et al., 2020) as provided
by Helsinki-NLP (Tiedemann and Thottingal, 2020).
The pre-trained MT models released by Helsinki-
NLP are trained on OPUS, an open-source parallel
corpus (Tiedemann, 2012). Underlying these mod-
els is the Transformer architecture of Marian-NMT
framework implementation (Junczys-Dowmunt et al.,
2018). Each model has also 6 self-attention layers
in the encoder and decoder parts, and each layer has
8 attention heads. The models we specifically use
were pretrained with OPUS Spanish-Finnish data and
Spanish and other italic languages-Turkish data. We
choose this model because their source language is
Spanish so they will have good Spanish subword em-
beddings. And for the Quechua, we take the consid-
erations mentioned by (Ortega and Pillaipakkamnatt,
2018). They point out that the task needs a similar
agglutinate language with a similar word order. In
our investigations, the Finnish and Turkish fit with
it. Following recommended practices, we used a uni-
form sampling on our datasets to avoid under-fitting
the low-resource condition of our pair language. For
the experiments, each dataset was divided into 90%
training data and 10% testing data. In Table 2, the
volumes are shown.

The results are shown in Table 3 and as is seen our
model gets better scores than the selected baseline.
We also add a graph that shows the loss reduction of
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(a) Progression on loss reduction per epoch on the
training process.

(b) Evolution of test chrF score per epoch.

(c) Evolution of test BLEU score per epoch.

Figure 5: Evolution of metrics per epoch.

the model around the training process (see Figure 5).
While Figures 5 and 5 show the gain over the BLEU
and chrF score by epochs of the validation process.

4.3 Discussion

One of the most interesting outcome on the perfor-
mance of the models was the impact of the dataset.
The lower scores on the experiments over the DICT
dataset were not expected. The results show that, the
training end with a high underfitting. We wonder if
this was caused for the reduced number of sentences.
And obviuous the extremely lower resource state of
this dataset don’t let the model learn over a whole do-
main of the language. But we think that the reason
why the model can’t even learn in its same domain
could be the low average words per sentence, less than
a third of the JW300 average.

On other hand, the translation scores obtain over
the JW300 dataset with both proposed models, the
multilingual (itc - tr) and the bilingual (es - fi), are bet-

ter than the base model choosed, as shown in Table 3.
This positive results could indicated that the strategy
used to approach this work was successful. Concen-
trate our effors on fine-tunning existing solutions that
have similarities with the problem addressed work
highly enough to sustain our hipotesys. Being aware
of the limitations that Quechua or other indigenous
languages have, allows us to optimize learning on
models that have already effectively learned similar
aspects of these languages. The based model also
applies transfer learning, but between a pair of lan-
guages (es - en), which are syntactically and typo-
graphically distinct from Quechua. These approuch
might don’t let his model learn well the nature of the
language. Another interesting point is the distinc-
tions between the bilingual and multilingual models
results over JW300. We think the lower results of the
first is caused for the syntactic ordering type of these
languages. Because if we noticed, both Finnish and
Turkish are agglutinating languages. But just the last
has the same syntactic ordering as Quechua.

Quechua translation scores are still well below
what is expected for solutions involving widely spo-
ken languages. This keeps the task very challenging
and highlights the need for a more complete and ex-
tensive corpus of Quechua. Finally, the differences
between the BLEU and chrF scores are seen in the
way they measure translation efficiency, while the for-
mer is a word-level standard, the latter allows us to
assess the character level. Very worthy considering
the agglutinative nature of Quechua.

5 CONCLUSION

We conclude that the results of our best model val-
idate the approach proposed, even despite the ”low
resource” limitation of the language. Using trans-
fer learning strategy allowed us to retrain models that
share similarities with the quechua speech translation
instead of developing them from scratch. There is a
chance to improved the tokenization with a cleaner
corpus and define a estrategy for out-of-domain val-
ues could also improved the results. In future works,
we hope to be able to close the translation cycle
by adding the speech synthesis module to the pro-
posed architecture; so that we can get the dubbing
of a movie. We also want to explore the transla-
tion of other Quechua variants, using robotic inter-
faces (Burga-Gutierrez et al., 2020) or generating text
in Quechua (de Rivero et al., 2021).
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