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Abstract: With significant advances in recent technology, computational power must meet new demands. As a result,
Multi-access Edge Computing (MEC) is a new networking paradigm that has received a surge in interest from
both academia and industry. MEC aims to push powerful computing and storage capabilities from remote
cloud servers to up-close edge servers. Vehicular Edge Computing (VEC), a subfield of MEC, has been intro-
duced to specifically increase the computing capacity of vehicular networks, an essential component for the
development of Intelligent Transportation Systems (ITS). A problem in the current development of VEC is the
high cost of installing enough edge servers to compute all offloaded tasks at peak hours. However, we have
observed that parked vehicles (PVs) are a rich reserve of underutilized computing resources, and their incor-
poration into the VEC network could lead to a solution to the aforementioned problem. This paper proposes
a task offloading system with an assumed parking time estimation mechanism. Then, a novel formulation of
the task offloading problem is presented that minimizes both task delay and wireless channel load. Finally, a
matching based heuristic is proposed and evaluated at various configurations of the VEC environment.

1 INTRODUCTION

Cloud computing is at the forefront of computing
paradigms by centralizing main computing and stor-
age capabilities in a remote location that is accessible
to all (Raza et al., 2019). However, with the vision
of the Internet of Things (IoT), we have realized that
the remote network system is simply not enough to
satisfy the intensive computational needs of the fu-
ture that we envision (Guo et al., 2018) (Mao et al.,
2017). Thus, MEC has been pushed forward as a
replacement system since it provides high computa-
tional power closer to users, thereby reducing latency
(Wang et al., 2017) (Wang et al., 2016). This is es-
pecially important in vehicles as the vehicular envi-
ronment requires incredibly low latency due to its dy-
namic nature (De Souza et al., 2020). Furthermore,
since it is financially infeasible to mass install ex-
pensive computing hardware into every vehicle, edge
computing has become the foremost solution in ve-
hicular networks (Liu et al., 2021).

Vehicular Edge Computing (VEC) aims to use
roadside edge servers to augment the computing ca-
pacity of vehicular environments (Meneguette et al.,
2021). Under this framework, smart vehicles can reli-
ably offload their computational tasks, alleviating the

heavy burden placed on the vehicles’ internal hard-
ware (Qiao et al., 2018) (Du et al., 2018). There are
three layers included in this model: the Cloud layer
(cloud computing servers), the MEC layer (RSU or
roadside units), and the User layer (vehicle devices).
The key advantages of VEC over Vehicular Cloud
Computing (VCC) are: low latency, mobility support,
real-time communication, heterogeneous device sup-
port, and lower cost of development. Although it is
not without drawbacks: limited capacity and lower
computing capability (Raza et al., 2019).

A current problem in VEC is the high cost of
installing enough edge servers to compute all of-
floaded tasks at peak hours (Raza et al., 2019). How-
ever, researchers have observed that parked vehicles
(PVs) are a rich reserve of underutilized computing
resources (Arif et al., 2012). Thus, their incorpora-
tion into the VEC network could lead to a solution to
the aforementioned problem. Research in this area is
called Parked Vehicular Computing (PVC).

However, there exist some challenges that should
be addressed to facilitate PVC. Firstly, scheduling
computational tasks on participating PVs poses an in-
teresting challenge (Zhang et al., 2019). PVs have
an inherent problem in that they may leave unexpect-
edly, perhaps in the middle of a task, which results
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in the system having to offload the interrupted task
elsewhere, delaying it further. Secondly, the VEC
network mainly communicates over wireless channels
and the overuse of such channels would cause an over-
load, thereby decreasing the quality of existing com-
munications (Whaiduzzaman et al., 2014). There are
also security and privacy challenges, but these lie out-
side the scope of this paper (Ma et al., 2018) (Wei
et al., 2018) (Kang et al., 2017) (Huang et al., 2011).

Huang et al. (Huang et al., 2018) designed an
interactive protocol with basic request and response
operations for service provision in PVC. Then, they
solve the resource scheduling optimization problem
using a Stackelberg game approach. Ge et al. (Ge
et al., 2020) proposed an efficient SEA algorithm to
solve the vehicle selection and task assignment prob-
lem regarding service migration, namely, the transfer
of tasks between base stations.

Wang et al. (Wang et al., 2019) implemented a
system-level simulator of LTE Sidelink C-V2X Com-
munication for 5G. This simulation showed that the
volume of data severely increased as the number of
users in the network increased. The packet reception
ratio (PRR) also drastically decreased as the network
size grew, reaching as low as 80.36% in a 1,920 user
setting. As VEC is expected to be implemented on
scales much larger than that, it is essential to maintain
the quality of communication in these settings.

However, there are currently very few works that
address the potential issues of large-scale implemen-
tation, specifically in terms of wireless communica-
tions. The current paradigm for wireless communi-
cation in vehicular networks is C-V2X, which has
strict requirements on Quality of Service (QoS) such
as high reliability and low latency (Lianghai et al.,
2018). Therefore, it is necessary for VEC networks to
not only provide reliable high-speed service but also
to maintain the quality of the communication chan-
nels used.

In this paper, we propose a many-to-one stable
matching algorithm to assign tasks to vehicles in such
a way that not only minimizes task delay but also
maintains the quality of the wireless communication
channels. Stable matching is chosen since we are fac-
ing a multi-objective problem. Stable matching al-
lows both the set of vehicles and the set of tasks to
have preference rankings over the other set which can
accurately represent both objectives of the problem.

The main contributions of this paper are summa-
rized as follows:

• To reflect the multifaceted problem of task assign-
ment within a VEC environment, we propose a
novel formulation that includes a weighted multi-
objective that aims to minimize both task delay

and wireless channel load. We then prove the NP-
completeness of the problem.

• We propose a many-to-one stable matching based
heuristic to efficiently assign tasks to vehicles.

• We evaluate and confirm the performance of the
proposed heuristic through various simulations.

The work done in this paper is included as part of Jia
He Sun’s master thesis with Queen’s University (Sun,
2022).

2 SYSTEM MODEL

We consider one cell which has one BS, M users, and
N PVs with available computing resources. During
high usage hours, the BS will be overloaded and un-
able to complete all of the tasks offloaded to it by
the users. Then, it will have to offload K tasks to
nearby PVs. The time-slot model is adopted where
the set of tasks and PVs remain fixed within each time
slot while varying across different slots. Therefore, in
each time slot we have defined the following variables
(it is assumed that this information will be available to
the scheduling system):

• N = number of vehicles

• K = number of tasks

• pi = computational power offered by vehicle i

• ti = parking time estimation of vehicle i (the as-
sumption of having knowledge of this variable
will be discussed)

• w j = computational power required for task j

• l ji = task completion speed of task j if assigned to
vehicle i

To summarize the system model, the task assignment
problem can be described as assigning K tasks to N
vehicles where each task is assigned to only one ve-
hicle, each vehicle can be assigned multiple tasks but
cannot exceed their computational capacity, assigned
tasks’ computation time should not exceed their vehi-
cle’s estimated parking time.

2.1 Problem Formulation

Now, we will formulate the task assignment problem
as a weighted multi-objective ILP.
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minimize
x,y

α

K

∑
j=1

N

∑
i=1

x jil ji +β

N

∑
i=1

yi (1a)

subject to
N

∑
i=1

x ji = 1, j = 1, . . . ,K, (1b)

K

∑
j=1

w jx ji ≤ piyi,i = 1, . . . ,N, (1c)

K

∑
j=1

l jix ji ≤ ti, i = 1, . . . ,N, (1d)

yi ∈ {0,1} i = 1, . . . ,N, (1e)
x ji ∈ {0,1} j = 1, . . . ,K, i = . . . ,N (1f)

2.1.1 Variables

The two variables in the formulated ILP are:

• x ji = 1 if task j is assigned to vehicle i and 0 oth-
erwise

• yi = 1 if vehicle i is assigned at least one task and
0 otherwise

2.1.2 Constraints

The constraints can be summarized as follows:

• (2b): each task is assigned to only one vehicle.

• (2c): the assigned tasks cannot go over vehicle’s
max load.

• (2d): the task for each vehicle must be able to fin-
ish before the vehicle leaves.

• (2e): yi = 1 if vehicle i is assigned a task and 0
otherwise (integrality constraint).

• (2f): x ji = 1 if task j is assigned to vehicle i and 0
otherwise (integrality constraint).

2.1.3 Objective

Firstly, α and β are constant objective weights. Their
values decide which which objective should be priori-
tized. The first objective is to minimize the task com-
pletion time which is crucial in a VEC task assign-
ment environment. The task completion time consists
of two parts: computation time, and transmission time
(both ways). For a particular task, its computation
time, lcomp, depends on the vehicle it is assigned to,
so lcomp

ji is the amount of time it takes vehicle i to com-
pute task j. For the transmission time of a task, ltrans

ji ,
it depends on the transmission power of the BS. Then,
total task completion speed is the computation time
plus the transmission time as shown in Equation 2.

l ji = lcomp
ji + ltrans

ji (2)

The second objective is the number of vehicles
used for task assignment. This is because the deploy-
ment of tasks and any other form of information be-
tween the VEC base station and the parked vehicles
will be done through wireless channels which are lim-
ited in size. To maintain the quality of communication
on these wireless channels, especially in highly popu-
lated metropolitan areas, the number of vehicles used
is also minimized.

Theorem 1. (NP-Complete) The formulated ILP is
NP-Complete.

Proof. Consider the corresponding decision ver-
sion of this problem. That is, given M, is there a task
assignment that is within the defined constraints that
has an objective value ≤ M? Certificate: A certifi-
cate would be an assignment of tasks to the vehicles
denoted by the (K,N) matrix x where x ji = 1 if task
j is assigned to vehicle i and 0 otherwise. To ver-
ify this certificate, we would need to check that the
assignment satisfies each constraint and calculate the
objective value, that is:

1. First obtain vector y from x where yi = 1 if vehicle
i has a task and 0 otherwise

2. Verify each task is assigned to only 1 vehicle

3. Verify assigned tasks do not go over vehicle’s max
load

4. Verify the assigned tasks finish before the vehicle
has to leave

This would take O(NK) time, which means verifying
a solution is polynomial. We will now show that bin
packing reduces to the formulated ILP (Cook et al.,
1995). First set the objective weights α= 0 and β= 1.
Then, set all pi = B, where B can be any constant.
Then set all l ji and ti = 0. Then the optimization prob-
lem becomes:

minimize
x,y

N

∑
i=1

yi (3a)

subject to
N

∑
i=1

x ji = 1, j = 1, . . . ,K, (3b)

K

∑
j=1

w jx ji ≤ Byi,i = 1, . . . ,N, (3c)

yi ∈ {0,1} i = 1, . . . ,N, (3d)
x ji ∈ {0,1} j = 1, . . . ,K, i = . . . ,N (3e)

Notice that this is an exact formulation of the bin
packing problem where w j is the size of item j and
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B is the capacity of each bin. The decision bin pack-
ing problem is known to be NP-complete. Thus, the
decision version of our optimization problem is NP-
complete. Therefore, our optimization problem is
NP-complete.

3 PROPOSED SOLUTION

The heuristic proposed is a stable matching based
algorithm. The algorithm it is based on has sev-
eral names including: “Extended Gale-Shapley al-
gorithm”, “the Capacitated Gale-Shapley algorithm”,
“the Roth-Shapley algorithm”, and “the deferred ac-
ceptance algorithm”. Following, it will be referred
to as the RS algorithm (Roth, 2008). The proposed
heuristic is a version of the RS algorithm that is modi-
fied to fit the dynamic nature of the PVC environment.
The assignment of tasks to vehicles can be described
as a many-to-one matching.

Definition 1 (Matching). A matching A is a mapping
from the set of tasks T to the set of vehicles V , T →V ,
which satisfies all of the following:

• for any task j ∈ T , |A( j)| ≤ 1
• for any task j ∈ T , and any vehicle i∈V , A( j) = i

if and only if j ∈ A(i)

The proposed algorithm requires both sets V and T to
have preference rankings over each other. That is, for
all i ∈ V , i must have a preference ranking including
all j ∈ T and vice versa.

Definition 2 (Preference Ranking). For any vehicle
i ∈ V , its preference ranking is a list L including all
tasks in T . If task j ∈ T comes before task j′ ∈ T in
L, we say that vehicle i prefers task j to task j′. For
tasks in T , their preference rankings are defined vice
versa.

How these rankings are to be computed are dis-
cussed later in this section. Next, we will define a
stable matching, but first we will define two types of
blocking pairs.

Definition 3 (Type 1 Blocking Pair). Given a match-
ing A, ( j, i) ∈ (T,V ) forms a type 1 blocking pair if
all of the following conditions hold:

• task j prefers vehicle i over A( j)
• there exists task k with vehicle i ∈ A(k) such that

vehicle i prefers task j to task k and the removal of
task k allows the assignment of task k onto vehicle
i

The existence of a type 1 blocking pair ( j, i) ∈ (T,V )
in a given matching A is unstable since it means that
task j can be assigned to a more preferred vehicle and

vehicle i can be assigned a more preferred task at the
cost of a less preferred task. Apart from the type 1
blocking pair, there is also the type 2 blocking pair.

Definition 4 (Type 2 Blocking Pair). Given a match-
ing A, ( j, i) ∈ (T,V ) forms a type 2 blocking pair if
all of the following conditions hold:

• task j prefers vehicle i over A( j)
• vehicle i has enough resources to be assigned task

j

The existence of a type 2 blocking pair ( j, i) ∈ (T,V )
in a given matching A is unstable since vehicle i is
wasteful by not making full use of its resources.

Definition 5 (Stable Matching). Given a matching A,
A is a stable matching if and only if there are no type
1 or type 2 blocking pairs.

3.1 Algorithm Design

A key characteristic of the RS algorithm is the pref-
erence ranking made by both parties. Since the pref-
erence ranking by either party is made independent
of the other, they can be made to represent different
objectives which is a desired trait in multi-objective
problems such as the one discussed in this paper. The
crux of the RS algorithm is how the preference rank-
ings are formulated. For the algorithm to be effective,
the preference rankings must be a good reflection of
the optimization objectives.

• Preference ranking for tasks: prefer vehicles with
the most tasks, tie breaks between vehicles by
which vehicle completes said task faster. Task
j prefers vehicle n over vehicle k if ∑

K
i=1 xin >

∑
K
i=1 xik.

• Preference ranking for vehicles: prefer tasks that
complete the fastest on said vehicle. Vehicle i
prefers task a over task b if lai < lbi.

The preference ranking for tasks aims to primarily
minimize the number of vehicles used which de-
creases the load on the wireless channels. The prefer-
ence ranking for vehicles aims to primarily minimize
the task completion speed. Together, these two pref-
erence mechanics accurately represent the two objec-
tives of the ILP formulated in the previous section.

Consider another matching algorithm, bipartite
matching, where the optimization objective is repre-
sented only by edge weights. It is extremely difficult
to formulate an accurate representation of both objec-
tives when confined to a single form. In our case, it is
especially difficult to represent the second objective,
number of vehicles used, in such a way since it means
we are minimizing the number of nodes covered in a
bipartite matching. Hence, we can easily observe the
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motivation behind designing a heuristic based on the
RS algorithm.

The proposed algorithm based on the RS algo-
rithm is deployed to produce a stable matching. The
proposed algorithm runs as follows: (The pseudocode
is given in Algorithm 1):

1. Put all tasks into a list called unmatched. Go to 2.

2. Update preference rankings for vehicles. Go to 3.

3. Update preference ranking for tasks. Take any
task in unmatched, j, and go to 4. If none, end
algorithm.

4. Consider task j’s most preferred vehicle, i. Go to
5. If task j has no preferred vehicle remaining,
remove task j from unmatched list and go to 3.

5. If vehicle i can accommodate task j (has enough
computational power and time). Match task j to
vehicle i and go to 3. If vehicle i does not have
enough time remaining, remove vehicle i from
task j’s preferences and go to 4. If vehicle i does
not have enough computational power, go to 6.

6. Consider all vehicle i’s currently matched tasks.
Then of these tasks, consider the set of tasks that
vehicle i prefers less than task j, call it U . Iter-
ate through U from least preferred to most pre-
ferred. If unmatching task k allows vehicle i to
have enough resources to be assigned task j, then
unmatch task k and match task j. Then remove ve-
hicle i from task k’s preference ranking and go to
3. If not, then remove vehicle i from task j’s pref-
erence and consider task j’s next most preferred
vehicle and go to 5.

3.2 Algorithm Analysis

First, we will analyze the output of the algorithm.

Lemma 2 (No Type 1 Blocking Pairs). The proposed
algorithm produces a matching A that has no type 1
blocking pairs.

Proof. Suppose for contradiction that produced
matching A has type 1 blocking pair ( j, i) ∈ (T,V ).
Then, consider the point in the algorithm at which
task j was assigned to vehicle l = A( j). Since task
j prefers vehicle i over vehicle l, that is ∑

K
i=1 x jl >

∑
K
i=1 x ji, vehicle i must have been considered before

vehicle l. Then, vehicle i must have rejected task j at
this point which means for all tasks k with A(k) = i
either of the following is true: no tasks who is as-
signed to vehicle i is less preferred than task j, or
pi + wk < w j. Then vehicle i would have been re-
moved from task j’s preferences. This contradicts the
assumption that task j prefers vehicle l over vehicle

i. Therefore, the matching A cannot have a type 1
blocking pair ( j, i) ∈ (T,V ).

Algorithm 1: Pseudocode of the proposed RS Based
Heuristic.
Require: preference ranking for both vehicles and

tasks
1: while there are unmatched tasks do
2: for any unmatched task j do
3: update preference ranking of each task
4: i⇐ task j’s most preferred vehicle
5: if pi ≥ w j then
6: assign task j to vehicle i
7: break
8: end if
9: if l ji > ti then

10: remove vehicle i from task j’s prefer-
ences

11: break
12: end if
13: if pi > wi then
14: U ⇐ tasks currently matched to vehi-

cle i that is less preferred
15: than task j in order from least pre-

ferred to most preferred
16: for task k ∈U do
17: if unmatching task k allows as-

signment of task j then
18: unmatch task k and assign task

j to vehicle i
19: remove vehicle i from task k’s

preference ranking
20: break
21: end if
22: end for
23: remove vehicle i from task j’s prefer-

ence ranking
24: end if
25: end for
26: end while

aLemma 3 (No Type 2 Blocking Pairs). The proposed
algorithm produces a matching A that has no type 2
blocking pairs.

Proof. Suppose for contradiction that produced
matching A has type 2 blocking pair ( j, i) ∈ (T,V ).
Then, consider the point in the algorithm at which
task j was assigned to vehicle l = A( j). Since task
j prefers vehicle i over vehicle l, that is ∑

K
i=1 x jl >

∑
K
i=1 x ji, vehicle i must have been considered before

vehicle l. Then, it must be that vehicle i rejected task
j which means pi < c j or ti < l ji. Then vehicle i would
have been removed from task j’s preferences which is
a contradiction to the assumption of the existence of
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Table 1: Experiment Variables.

Variables Experiment Settings
pi random between 20-25
ti random between 15-30
w j random between 4-5
l ji random between 1-20

type 2 blocking pair ( j, i).
Theorem 4 (Stable Matching). The proposed algo-
rithm produces a stable matching A.

Proof. According to Lemma 1 and Lemma 2, there
are type 1 or type 2 blocking pairs in the produced
matching A. Therefore, the produced matching is sta-
ble.

Now, we will analyze the termination condition
and the complexity of the proposed algorithm.
Theorem 5 (Termination). The proposed algorithm
terminates after at most NK iterations.

Proof. First, notice that in each iteration of the al-
gorithm, a task is either matched to a vehicle (may be
after the unmatching of another task) or is removed
from the algorithm. That is to say, the number of
unmatched tasks never decreases in any iteration of
the algorithm. Then, for an infinite loop to exist,
there must be an infinite number of times where a
task is unmatched from a vehicle. However, when-
ever a task is unmatched from a vehicle, it is removed
from the vehicle’s preference ranking. That is, the
removed task will never be assigned to the vehicle it
was once unmatched with. Therefore, there can be at
most NK number of unmatchings and thus, an infinite
loop is impossible and the algorithm is guaranteed to
terminate. Furthermore, for any given iteration, for
unmatchings to occur, some task must have been as-
signed to some vehicle. There can be at most NK
number of such assignments since each task can be
assigned to each vehicle at most once. Therefore, the
algorithm will take NK iterations to terminate in the
worst case.

4 EXPERIMENTAL RESULTS

There are two baseline algorithms that are used for
evaluation. The first is a randomized algorithm that
randomly assigns a vehicle as the “current” vehicle.
Then, it will iterate through the tasks in an arbitrary
order, assigning each task onto the “current” vehicle.
If a task cannot fit onto the “current” vehicle, the sys-
tem will choose another random vehicle as the “cur-
rent” vehicle. It will be referred to as the next fit algo-
rithm. The second baseline algorithm is the standard
greedy algorithm that organizes tasks from largest to

smallest, then orders the vehicles from most to least
computational power offered. Then, the system will
iterate through the tasks in order and, for each task, it
will iterate through the vehicles in order until a vehi-
cle is found able to take on the task. This algorithm
is based on a greedy algorithm for the bin packing
problem (the formulated problem is similar to the bin
packing problem as shown by the NP-complete proof
in Section 2). The complexity of these algorithms are
O(K +N) and O(KN) respectively. Other algorithms
are not chosen as there are no other works that evalu-
ate the two objectives at the same time.

Figure 1: Average Experimental Loss with 50 Vehicles.

4.1 Approximation Loss

To evaluate how well the RS based heuristic performs,
we will test its objective value against that of the op-
timal to find the approximation loss. However, due to
the high computational demands of computing the op-
timal solution of an ILP at large scales, this evaluation
had at most 50 vehicles. The objective weights will
be 1 and 10. This evaluation will be done at three dif-
ferent vehicles to task ratios to emulate how busy the
environment is. The three ratios are: 1:1 (abundance
of computational resources compared to tasks); 1:2
(moderate amount of computational resources com-
pared to tasks); and 1:3 (scarcity of computational re-
sources compared to tasks).

The variables for the experiments are once again
randomized as indicated in Table 1 To minimize the
effect of the randomized variables, each instance of
the experiment was ran 20 times and the averaged
results of the approximation loss experiment are dis-
played in Fig. 1. The y-axis represents how far from
the optimum the results are. For example, the match-
ing algorithm (1:1) gives a solution that is 1.7 times
the optimum. Evident in these results, the matching
algorithm performs significantly better than the other
two algorithms, especially in settings with more tasks.
Comparing different task to vehicle ratios, more tasks
correlate to worse performance. This is to be expected
as it is much more difficult to assign tasks optimally
when computational resources are more limited.

ICORES 2023 - 12th International Conference on Operations Research and Enterprise Systems

198



Figure 2: Objective Weights α = 1,β = 10, Delay Objective.

Figure 3: Objective Weights α = 1,β = 10, Number of Vehicles Used Objective.

4.2 Large Scale Experimentation

To examine the performance of the RS based heuristic
at a large scale, several experiments on various set-
tings were performed and evaluated against the two
baseline algorithms. The same three different vehicle
to task ratios were tested (1:1, 1:2, 1:3).

Two different pairs of objectives weights were
tested. These different objective weights are designed
to emulate different valuations of the objectives (the
first number is the weight of the delay objective α and
the second number is the weight of the “number of
vehicles used” objective β): (1, 10) - for situations
where we mostly care about delay and not about the
number of vehicles used, and (1, 100) - for situations

where we mostly care about the number of vehicles
used.

Each experiment will be run on a scale from 50 ve-
hicles to 500 vehicles at intervals of 50 using all three
algorithms. The two different objectives are evaluated
separately. The variables for the experiments are once
again randomized as indicated in Table 1. To mini-
mize the effect of the randomized variables, the exper-
iment was performed 20 times. The CV was at most
0.15, indicating very low variance in the data sample.
Furthermore, any particular data point was at most
31% away from the mean. Therefore, it is reasonable
to conclude that the randomness of the initialized vari-
ables has little impact on the result of the experiments.
The experimental results for objective weights (1, 10)
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Figure 4: Objective Weights α = 1,β = 100, Delay Objective.

Figure 5: Objective Weights α = 1,β = 100, Number of Vehicles Used Objective.

are displayed in Fig. 2 and Fig. 3. In this case, where
the delay objective dominates the number of vehicles
used objective, the RS based matching algorithm per-
forms significantly better in terms of delay while per-
forming similarly to the other two algorithms in terms
of the number of vehicles used.

In the second case, where the number of vehicles
used objective has weight 100, the simulation results
are displayed in Fig. 4 and Fig. 5. Again, the proposed
RS based algorithm outperforms the other two algo-
rithms by a large margin while performing similarly
in terms of the other objective.

Another simulation is performed where the vehi-
cle to task ratio is 1:5 to replicate an extremely busy
environment where most vehicles need to be used.
Fig. 6 displays the results of this simulation. We can

see that, on average, the proposed RS based algo-
rithm performs slightly better than the two baseline
algorithms. In this type of setting, where most avail-
able vehicles need to be used, assigning the right tasks
to the right vehicles becomes increasingly important.
Therefore, the RS based algorithm’s performance in
the number of vehicles used objective is slightly bet-
ter than the other two baseline algorithms while still
performing significantly better in the delay objective.

5 CONCLUSION

This paper proposes a formulation of the task assign-
ment problem in the PVC environment as a weighted
multi-objective optimization problem that aims to
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Figure 6: Objective Weights α = 1,β = 10, Both Objectives.

minimize both task delay and wireless channel load.
Then, a heuristic based on the RS algorithm is pro-
posed and evaluated against two other baseline algo-
rithms on various simulation settings on a scale of up
to 500 vehicles and 1,500 tasks.

The formulation of the optimization problem is a
key area. Currently, only the total task completion
speed is measured in terms of delay as it is the sim-
plest measure of delay. However, practically speak-
ing, there may be deadlines imposed on certain tasks.
Then, a deadline constraint would have to be added.
We could also incorporate deadlines and ignore how
fast the tasks are done as long as they are done before
their deadline. Furthermore, the transmission delay
is part of the total delay objective in the formulation.
However, that is related to the state of the wireless
channels, which is related to the number of vehicles
in use. So, perhaps the objective function could have
the transmission delay be dependent on the number of
vehicles used.

Secondly, only a general formulation of an incen-
tive mechanism is proposed in this paper. Future work
could include a formal formulation of such a mecha-
nism and evaluating the ability of the incentive mech-
anism to provide accurate remaining parking time es-
timates through various simulations. This should then
be compared against the effectiveness of remaining
parking time estimation via statistical modeling. An-
other extension would be designing a hybrid solution
using both statistical analysis and incentivized user
submissions.
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