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Abstract: This work addresses lung cancer diagnosis, and more specifically disease staging, as a major clinical challenge, 
crucial for further treatment decisions. The procedure is currently performed by experts based on clinical and 
medical imaging data and is time consuming and costly. Within INCISIVE, an EU-funded research project 
which aims to develop a pan-European federated image repository for cancer and implement Artificial 
Intelligence (AI) tools for clinical practice, clinical challenges have been identified that can be supported by 
AI in medical imaging data to facilitate accurate diagnosis and support treatment planning. The support and 
automation of lung cancer staging has been identified as a priority among the INCISIVE clinical challenges. 
In this scope, we propose a method to automatically classify between the group that represents disease stages 
I and II (low severity), vs the group that includes stages III and IV (severe). Tumour-Node-Metastasis system 
is used as a reference for staging. Based on lung CT image series with tumour and lung volume segmentation, 
we calculate and harmonise radiomics features and we propose the combination of tumour and lung lobes 
radiomics features towards improving the classification performance. Having a rich feature set as a basis, 
several combinations of feature selection and classification methods are tested and compared. Multiple 
repetitions of cross-validation and external testing splits are used to reach robust manner. The proposed 
method is trained and tested on an integrated dataset comprised of two open datasets (the NSCLC-Radiomics 
and the NSCLC-Radiogenomics dataset from the Cancer Imaging Archive). It achieves average Precision and 
Recall of 77.5% and 78.7% respectively, which could be further improved with a more extensive training set. 
Therefore, this can be the basis for a prioritisation tool regarding lung cancer cases and detailed 
staging/treatment decisions. 

1 INTRODUCTION 

Lung cancer is the leading cause of cancer-related 
mortality for both males and females with the daily 
deaths to be more than 2.5 times more than colorectal 
cancer, the second most common non-gender specific 
cancer, or more than breast, prostate, and pancreas 
cancer-related deaths together (Siegel et al, 2022). 
Primary or second-hand smoking, COPD, family 
history, or exposure to carcinogens, such as asbestos, 
cadmium or diesel fumes, are some of the risk factors 
(Thandra et al, 2021). Early diagnosis will have a 
great impact on the management of lung cancer 
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patients since it is found that the five-year survival 
rates reach the 57% when the cancer is diagnosed in 
its early stages (Raz et al, 2007). 

In INCISIVE project (https://incisive-project.eu/), 
we aim to address some major challenges in lung 
cancer diagnosis and treatment, using Artificial 
Intelligence tools and big data. Supporting and 
automating lung cancer staging has been recognized 
as one of the important challenges, which can 
facilitate accurate diagnosis and support treatment 
planning. 

Specifically, non-small cell lung cancer is one of 
the two main categories of lung cancer. The disease 
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stage can reveal information regarding the size of the 
tumour  if it has spread in parts of the body and it is 
important information when planning what kind of 
treatment is required. Staging is performed at the 
initial diagnosis of the patient and at a second time 
after the beginning of treatment, using the Tumour-
Node-Metastasis system (TNM) (Rami-Porta et al, 
2009).   

Cancer imaging is mainly used for diagnosis, 
evaluation and treatment planning. In Lung cancer, 
CT screening is recommended for the detection of 
lung cancer but also as a screening for high-risk 
populations. Imaging data are used for the evaluation 
of disease severity with the TNM classification 
scheme proposed (Amin et al, 2017). In addition, the 
National Comprehensive Cancer Network (NCCN – 
https://www.nccn.org) has proposed guidelines for 
the selection of the appropriate therapy based on the 
TNM classification and staging of the patients, and 
thus the accurate staging of the cancer remains a 
major clinical challenge. The staging procedure is 
currently performed by experts through inspection 
and assessment of physical exams, biopsy results and 
imaging tests, which involve health costs, time effort, 
and invasive methods. 

Introducing digital tools to facilitate this 
procedure, in terms of speed, cost, or accuracy, would 
be of great benefit. In this direction, radiomic analysis 
aims to extract characteristics of specific structures 
found in medical images, leading to the quantitative 
analysis of images. Radiomics features have already 
been combined with machine learning methods to 
detect malignancy in lung cancer (Anagnostopoulos 
et al, 2022), while additional clinical features, such as 
histopathological analysis results, have been used to 
improve the success rates of the above algorithms. 

A number of previous research efforts have 
proposed methods to identify the stage of the patient 
non-invasively, using biomarkers that are extracted 
from medical images. Yu et al. (Yu et al., 2019) 
implemented a machine learning algorithm for 
radiomics-based prediction of the pathological stage 
of lung cancer. They reported that their results were 
promising, being able to predict the tumour stages 
with high accuracy, especially for lung 
adenocarcinoma type of cancer. Another paper on this 
topic, from (Kasinathan and Jayakumar, 2022), 
presents a cloud-based system and one of its 
components is a classifier for staging. They report a 
97% accuracy of the model in this task for images 
automaticallysegmented. In (Ubaldi et al., 2021),  
authors,report a machine learning pipeline that 
utilizes open data and radiomic feature extraction for 
histological and overall stage classification. They 

approached stage classification as a binary problem 
between stages I – II and achieved the best results 
with a Random Forest (AUC = 0.72 ± 0.04) and 
Support Vector Machine (0.84 ± 0.03) classifier. 
Interestingly, they also mention that while using 2 
datasets, one for training and another for testing, they 
obtained better results when they used the 1st dataset 
for training and the 2nd for testing, than with the 
opposite order. They attributed this to the 
misrepresentation of the two classes (stages I-II) for 
the 2nd dataset. Indeed, the accuracy of the reference 
information and the harmonization requirements may 
increase the complexity of the problem.  

The goal of our study is to employ radiomic 
features, extracted from both healthy and pathological 
tissue to develop a machine learning model for the 
accurate staging of the lung cancer case. We present 
a binary classification scheme, which classifies stage 
I and II vs stage III and IV using lung CT imaging 
data. We propose the use of tumourcharacteristics 
combined with those of both lung lobes for the 
characterization of staging. Upon full automation, 
this can be a valuable decision support tool for first-
line diagnosis. 

 

Figure 1: Overview of the analysis steps. 
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2 METHODS 

Cancer staging is originally a multiclass problem. In 
this work, we reduced it to a 2-class problem. Our 
proposed solution makes use of two publicly 
available datasets. Thus, the need for harmonization 
and the need to synthetically balance and augment the 
two classes were two crucial points. An overview of 
the proposed approach is presented in Figure 1. To 
increase statistical robustness, a repetitive procedure 
was chosen for feature selection, and consensus 
features were selected. Following model training and 
testing were also repeated multiple times, with 
different training/testing splits for cross-validation 
and external testing, to produce more stable results.  

2.1 Data Description 

The unified dataset used for the development of the 
model is comprised of two datasets available in the 
TCIA archive: 

 The Radiomics dataset (Aerts et al, 2014). It 
contains 422 cases of non-small cell lung 
cancer (NSCLC). For each case, pre-treatment 
CT scans, segmentations of ROIs of the images 
and clinical data are included. A manual 
delineation by a radiation oncologist of the 3D 
volume of the primary gross tumour volume 
("GTV-1") and selected anatomical structures 
(i.e., lung) are available. The clinical variables 
available included age, TNM stages, Overall 
stage (inferred from TNM), gender, survival 
and other. The overall stage variable includes 
data belonging to stages: I, II, III. 

 The Radiogenomics database. It contains 211 
cases of NSCLC (Bakr et al, 2018). It includes 
data belonging to classes I to IV.  For each case, 
CT images and tumour segmentations are 
available, together with biological and clinical 
data, including among other survival, age, 
gender. In this work, lung volume 
segmentations were not available, and 
therefore we applied the lungmask automated 
segmentation pipeline, based on deep learning 
(Hofmanninger et al, 2020). 

In this work, the stages are grouped in two classes, C0 
(I and II subtypes), and C1 (III, and IV subtypes). The 
rationale behind this choice is twofold: a) this 
distinction reflects the severity and need for different 
treatment options, and b) the multiclass problem 
would require a much higher number of samples per 
class, therefore the simplification to a two-class 
problem can lead to a more robust and useful 

approach. After rejecting problematic and incomplete 
samples, the final unified dataset includes 434 
samples: 126 of which from the Radiogenomics 
database, and the rest from the Radiomics database. 
C0 has 198 samples and C1 has 236 samples, which 
include annotations for the tumour volume, left and 
right lung lobes, and needed clinical information. The 
percentage of stages represented is as follows: Stage 
I:147, Stage II:51, Stage III:232, and Stage IV:4. 

2.2 Radiomics Features 

2.2.1 Calculation of Radiomics Features 

We employed radiomics features for the quantitative 
description of medical images. The pyradiomics 
pipeline (van Griethuysen et al, 2017) was employed 
for the calculation of radiomics features from the 3D 
volumes, resulting in 1218 features. These 
corresponded to features from the original images, the 
Laplacian filtered images, and the Wavelet images, 
including First Order Statistics, Shape-based (3D and 
2D) descriptors, Gray Level Co-occurrence Matrix 
(GLCM), Gray Level Run Length Matrix (GLRLM), 
Gray Level Size Zone (GLSZM), Neighbouring Gray 
Tone Difference Matrix and Gray Level Dependence 
Matrix (GLDM).  

Using the above-mentioned established pipeline, 
we calculated radiomics features for the following 
volumes: tumour volume, left lobe volume, right lobe 
volume. These volumes were already segmented, 
either manually or automatically, as mentioned in 
section 2.1. The calculation of features on the 
different volumes resulted in the Tu, LVR, and RVR 
radiomics vectors, respectively. 

2.2.2 Multi-Source Harmonization of 
Radiomics Features 

Harmonization at image level or feature level is a 
necessary step for multisite analysis (Mali et al, 
2021), but also analysis of data produced by 
modalities of different vendors, to remove unwanted 
variation when combining data across scanners and 
sites. In the dataset used in this work, two sites and 
multiple vendors were identified. The data originating 
from vendors with very small representation were 
rejected, as harmonization of these data could be 
problematic. The chosen approach included the 
harmonization of radiomics features with Combat 
(Orlhac et al., 2022) method. Specifically, the steps 
followed were:  

 Harmonisation of data from same vendor in the 
two databases (batch per database), which 
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incorporated most samples coming from the 
two databases. 

 Harmonisation with the remaining data from 
other vendors in the two databases (batch per 
vendor) 

In each step, the Combat pipeline was applied to 
the feature set, with batches defined as above, and the 
type of volume (e.g. tumour, left lobe, right lobe) as a 
confounder. Any non-harmonized features that 
presented statistically significant differences between 
batches after harmonization were removed, to avoid 
any bias related to batch effects. 

2.2.3 Feature Extraction 

Based on the radiomics of the tumour and those of the 
two lung lobes, new features were extracted, to 
express the tumour in contrast to background, and the 
differences between the two lobes. More specifically, 
the feature vectors Tu, LVR, RVR, defined in section 
2.2.1, were employed to calculate the normalized 
tumour radiomics TuNo, which expresses the tumour 
radiomics features Tu divided by the average between 
the left and right volume radiomics features (LVR, 
RVR). This is expected to normalize the tumour 
radiomics values (tumour values with respect to 
background values), decrease the inter-subject 
variability, and improve the harmonization effort 
(Escudero Sanchez et al, 2021). TuNo features were 
calculated as in Eq 1. 

TuNo =2* Tu/(LVR+RVR) (1)

In addition, the inter-lobe relative difference VRD 
was calculated between the radiomics features 
vectors RVR and LVR as: 

VRD=2* |ܴܸܮ − ܴܸܴ| /(LVR+RVR) (2)

The VRD feature vector is expected to introduce 
information about the environment around the 
tumour. We chose to use the whole lobe volumes 
instead of a region around the tumour border, to 
increase simplicity and support automated pipelines, 
rather than options that involve human annotation.  

Eventually, the feature vector set available for 
feature selection includes the Tu, TuNo and VRD 
features, i.e. the tumour features, the normalized 
tumour features and the inter-lobe relative 
differences. 

2.3 Cancer Staging Models 

The feature selection and classification model 
methodology are described below. One important 
point introduced in this work is the need to address 

the problem of availability of a large number of 
features, also correlated, in a dataset with comparable 
dimension. To improve robustness, the procedure is 
repeated multiple times. In each time, a different 
training and external testing dataset are split, and 
average behaviour among repetitions is eventually 
considered. 

2.3.1 Feature Selection 

The challenge in this feature selection was the high 
number of features, which are to some extent 
correlated. 

We considered as pre-processing steps: a) 
removing linearly correlated features, b) removing 
non statistically significant features based on 
kruskall-wallis test (KW) with threshold 0.05/N, 
(N=number of features). 

Following, for the selection of the most 
informative features, we considered three methods, 
namely Recursive Feature Elimination (RFE), Boruta 
method and SCAD-L2 method (Zeng and Xie, 2014).  

Using the above methods, we introduced an 
iterative procedure (100 iterations), which included in 
each step the following actions: 

 Formation of a new Training/testing set split 
(80%) 

 In the training set, application of the pre-
processing step for the removal from the 
feature list of statistically unsignificant and 
correlated features.  

 Data Augmentation via SMOTE (Chawla et al, 
2002) in the training set to balance the classes 
and increase the data size  

 Feature selection with one of the above 
methods (RFE, Boruta, SCAD+L2). 

Based on the result of the repeated feature selection 
procedure, we introduced a voting mechanism to 
filter-in the features that were consistently selected in 
at least 50% of the iterations. These constitute our 
final feature list.  

2.3.2 Training Ml Models 

These final feature sets were used as inputs in model 
training. The classification models employed in this 
work were: a) SVM with linear kernel, b) Random 
Forest, c) generalized linear model via penalized 
maximum likelihood (R package ‘glmnet’) 
(Friedman, 2010), d) Stacked Autoencoder Deep 
Neural Network (R package ‘deepnet’), e) a majority 
voting model, f) an ensemble model based on 
generalized linear model (glm) of the above 
pretrained models. The train/test split was again 
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repeated 100 times, and in each repetition, the 
following steps took place:  

  Train/test set split (80%),  
  Training data Augmentation via SMOTE,  
  Classification models with internal 5-fold 

cross-validation and hyperparameter 
optimization,  

  Test performance metrics in each repetition. 

The average test set performance metrics among 
the 100 repetitions was calculated and used for further 
model comparison. 

 

 

Figure 2: For two TuNo features (log sigma 3.0mm glszm 
Large Area Emphasis and wavelet LLL first order Total 
Energy), the distribution of values in the two classification 
groups, taking into account the whole dataset. "log sigma 
3” refers to features calculated after Laplacian filtering with 
sigma=3, wavelet LLL refers to low-pass filtering in all 
directions. 

3 RESULTS 

3.1 Selected Features 

The procedure started with a large number of features. 
The harmonization procedure rejected not well 
harmonized features, to avoid the introduction of 

unwanted batch bias. Following, after the generation 
of the TuNo and VRD features based on tumour and 
lung volumes, the number of Tu, TuNo, VRD features 
entering the feature selection pipeline was 1418. 
Effort was paid to end-up with a smaller number of 
important features for model training.   

In each feature selection cycle, the pre-processing 
step (cross-correlation and KW test) rejected several 
features and resulted in a range of around 400 
statistically significant features, which constituted the 
pool of features for feature selection by RFE or 
Boruta or Scad+V2.  

Following, based on the intermediate feature 
selection sets, i.e. the features selected by each of the 
three mechanisms in each of the 100 training set 
repetitions described above, the consensus features 
for each feature selection method was produced, 
including the tumour (Tu), tumour normalized 
(TuNo) and relative volume differences (VRD) types 
of features. In RFE, 15 features were selected, 9 of 
which were TuNo features, and 6 VRD features. The 
majority (9/15) was wavelet features, and the rest 
were log (based on the Laplacian filtered image). In 
Boruta, 368 features were selected, 117/ 177 /74 in 
Tu, TuNo and VRD types, respectively. The features 
originated from original, log filtered and wavelet-
based images. The SCAD+L2 method resulted in 187 
features, with only a small number of features coming 
from original images, and 32/117 /38 in Tu, TuNo and 
VRD types. Figure 2 depicts the distribution of values 
per class for two features.  

Overall, these are texture features in their 
majority. Most of them belong to the normalized 
tumour feature type (TuNo), and some more in the 
relative volume difference type (VRD), will only a 
few selected features from the initial tumour 
radiomics (Tu). This supports the choice for the 
“meta-features” introduced in this work. All relative 
difference texture features show higher relative 
difference in wavelet HHH texture feature values in 
C0 than C1, i.e. higher relative difference in the two 
lobes in the less metastatic stages. Most tumour 
normalized texture values are lower in C0, showing a 
clear difference between the tumour and background 
in the less severe stages.  

3.2 Classification Results 

Table I presents test set performance metrics, as 
median and quartiles of the test set performance 
metrics, repeated 100 times with different train/test 
set split. The median precision ranges between 75-
80%, which suggests that when C1 (more severe 
class) is predicted, it is in general true, and the False 
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Positive is small. The recall is slightly lower (71-
79%), which suggests that there are a few False 
Negatives, i.e. some C1 that are not identified, an 
issue that needs improvement. The best precision-
recall case is found in the SCAD+L2-RD method, with 
both having values above 77%. It is worth noting that, 
as identified by (Webb et al, 1993) and (Wu et al, 
2020), an interrater variability exists in the domain 
and the clinical staging accuracy and concordance 
with pathological values also can improve. The 
average balanced accuracy, and its standard 
deviations for all classification schemes are presented 
in Table II. It can be seen that RF classifier overall 
outperforms other schemes. 

Table 1: Average Performance Metrics (Median and 1st -3rd 
Quartile) in the Test Set. C1: Positive Class. 
Sen=Sensitivity, Spec=Specificity, Prec=Precision, 
Rec=Recall, BA = Balanced Accuracy. Ens=ensemble 
classifier. 

 Boruta RFE SCAD+L2 

Perf RF Ens RF Ens RF Ens 

Sen  78.72 
70.218
2.98 

76.6 
71.818
1.38 

74.47 
70.217
8.72 

71.28 
65.967
4.47 

78.72 
72.348
0.85 

78.72 
72.348
2.98 

Spec  71.79 
66.677
6.92 

69.23 
64.107
4.36 

78.21 
71.798
2.05 

76.92 
74.368
2.05 

74.36 
69.237
6.92 

71.79 
66.677
6.92 

Prec 76.47 
74.007
9.17 

75 
71.967
8.05 

79.49 
76.68 
83.72 

79.07 
76.098
2.61 

77.55 
75.518
0.85 

76.7 
73.758
0.12 

Rec 78.72 
70.218
2.98  

76.6 
71.818
1.38 

74.47 
70.217
8.72 

71.28 
65.967
4.47 

78.72 
72.348
0.85 

78.72 
72.348
2.98 

F1  77.42 
73.458
0.00 

76.68 
73.287
8.79 

76.57 
73.338
0.85 

74.6 
70.817
8.36 

77.49 
74.148
0.85 

77.49 
74.167
9.60 

BA 
74.6 
71.96 
76.81  

72.79 
71.16 
75.48  

75.27 
72.078
0.17 

73.6 
70.687
7.63 

75.37 
72.977
8.89 

74.71 
71.637
8.09 

The most important feature for the random forest 
classification was in the TuNo type, and belonged to 
the log filtered image features, expressing texture as 
‘glszm Large Area High Gray Level Emphasis’. This 
is a measure of the distribution of large area size 
zones, with a greater value indicative of more larger 
size zones and more coarse textures. In the TuNo 
normalised version, a lower value in C0 class would 
mean (as depicted in Fig 1), potentially relating also 
to the size of the tumour. The most important features 
per feature selection method are listed in the 
supplementary section.  

4 CONCLUSIONS 

In the current study, a data-driven approach is 
presented towards the development of a classification 
model for lung cancer staging.  

Radiomic features, applied on CT images during 
initial diagnosis, from the tumour volume and the 
lung lobe volumes, were selected following three 
feature selection methods. These were combined and 
used as input in a machine learning model. Most 
features selected from each of the three feature 
selection methods (RFE, Boruta, SCAD+L2) belong 
to the Tumour normalized (TuNo) and relative 
volume differences (VRD) types of features, which 
shows the virtue of this multipositional radiomics 
approach. This can be related to the findings of 
(Escudero Sanchez et al, 2021) with respect to 
increased robustness of texture features after 
normalisation with normal tissue, although in our 
case the tissue comes from the tumour organ 
environment and cannot be classified as perfectly 
healthy. The less severe class (C0) shows higher 
relative difference in wavelet texture values among 
the two lobes, and lower normalised tumour textural 
characteristics. However, as mentioned by 
(Demircioğlu, 2022), one cannot conclude with a 
minimal number of radiomics as digital biomarkers, 
because “Feature relevance in radiomics strongly 
depends on the model used” and “Considering 
features selected by a single model is misleading”. 
Therefore, a more comprehensive approach will be 
employed to conclude with the most important 
features from multiple models as candidate 
biomarkers. With a balanced accuracy of 75 % and a 
F1-score 77.5%, the results are quite promising, 
although there is still room for improvement.  

Although the sample size of the combined dataset 
was larger than the ones analysed in similar studies, 
we are positive that a larger sample would be 
preferable. Thus, we aim to retrain the model with 
data from other available open datasets, but also data 
collected as part of the INCISIVE project. As a result, 
also given the expected heterogeneity of the data 
collected from different clinical sites, special 
attention will be paid to the improvement of 
harmonization techniques, both regarding the raw 
imaging data but also the harmonization of radiomic 
features.  

The novelty of this work compared to other 
efforts, lies in the combined use of a unified dataset 
from two sources, a set of enhanced features based on 
the relative differences of the lungs' and tumour's 
radiomic features and a repetitive data split/testing to 
eliminate possible variation in the predictive 
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performance of the model. We strongly believe that 
there is room for improvement, therefore we plan to 
enrich the dataset by including clinical data, and 
features that relate to TNM logic as well as combine 
clinical and pathological staging features. Upon 
availability of a larger dataset, additional 
classification algorithms will be investigated as to 
whether they improve the classification results, 
before moving to a finer multiclass classification 
scheme. Finally, the incorporation of a fairness and 
an explainability component is among the necessary 
future steps, to ensure better credibility of the 
proposed system, and facilitate its validation from a 
clinical perspective (or health expert’s) as well as its 
deployment in a clinical environment. 

Table 2: Average Performance Metrics for all  
model combinations. In bold the best performances.  
BA = Balanced Accuracy. 

Feature set Model Mean 
BA 

Std BA 

RFE Linear SVM 73.78 3.81 

 RF 76.03 5.11 

 Dnn 62.22 5.98 

 Glmnet 73.82 4.08 

 Majority 
ensemble 73.62 4.28 

 glm ensemble 74.43 5.13 

Boruta Linear SVM 66.03 5.53 

 RF 74.26 5.03 

 Dnn 68.16 6.14 

 Glmnet 67.77 5.73 

 Majority 
ensemble 70.80 4.68 

 glm ensemble 72.61 4.64 

SCAD+L2 Linear SVM 68.84 4.60 

 RF 75.34 4.70 

 Dnn 69.39 6.00 

 Glmnet 70.64 4.81 

 Majority 
ensemble 73.18 4.86 

 glm ensemble 74.78 4.41 
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