
How to Train an Accurate and Efficient Object Detection Model on any
Dataset

Galina Zalesskaya1, Bogna Bylicka2 and Eugene Liu3

1Intel, Israel
2Intel, Poland

3Intel, U.K.

Keywords: Deep Learning, Computer Vision, Object Detection, Light-Weight Models.

Abstract: The rapidly evolving industry demands high accuracy of the models without the need for time-consuming and
computationally expensive experiments required for fine-tuning. Moreover, a model and training pipeline,
which was once carefully optimized for a specific dataset, rarely generalizes well to training on a different
dataset. This makes it unrealistic to have carefully fine-tuned models for each use case. To solve this, we
propose an alternative approach that also forms a backbone of Intel® Geti™ platform: a dataset-agnostic
template for object detection trainings, consisting of carefully chosen and pre-trained models together with a
robust training pipeline for further training. Our solution works out-of-the-box and provides a strong baseline
on a wide range of datasets. It can be used on its own or as a starting point for further fine-tuning for specific
use cases when needed. We obtained dataset-agnostic templates by performing parallel training on a corpus
of datasets and optimizing the choice of architectures and training tricks with respect to the average results
on the whole corpora. We examined a number of architectures, taking into account the performance-accuracy
trade-off. Consequently, we propose 3 finalists, VFNet, ATSS, and SSD, that can be deployed on CPU using
the OpenVINO™ toolkit. The source code is available as a part of the OpenVINO™ Training Extensionsa

ahttps://github.com/openvinotoolkit/training extensions.

1 INTRODUCTION

Over recent years, deep learning methods have been
increasingly used for Computer Vision tasks, includ-
ing Object Detection. While most of the architec-
tures are optimized on well-known benchmarks like
COCO (Lin et al., 2014) (Wang et al., ) (Zhang et al.,
2022), further remarkable results have been obtained
using CNNs for domain-specific tasks, such as medi-
cal (Yang and Yu, 2021), traffic (Ye et al., 2020), envi-
ronmental (Li et al., 2020) etc. Such domain-specific
solutions, however, are usually heavily optimized for
a specific target dataset, starting from carefully tai-
lored architecture to choice of training tricks. This
not only makes them time-consuming and computa-
tionally heavy to obtain but also is the reason why
they lack good domain generalization. Training mod-
els in such a way suffers from the caveat of overly
adjusting the techniques to a specific dataset. That
leads to, on one hand, great predictions for a given
dataset, on the other, showing poor transferability to

a different one. Meaning, such a model is unlikely to
train well on a new, previously unseen dataset, with-
out additional time-consuming and computationally
expensive experiments to find the optimal tweaks of
the model architecture and training pipeline. Hence,
such an approach, even though used in the past with
great successes, is not flexible enough for the rapidly
evolving needs across a wide variety of computer vi-
sion use cases with a focus on time to value.

In this paper we propose an alternative approach
aimed at those situations, addressing the needs of fast-
paced industry and real-world applications. We pro-
vide a dataset-agnostic template for object detection
that is ready to be used straight away and guarantees a
strong baseline on a wide variety of datasets, without
needing additional time-consuming and computation-
ally demanding experiments. The template also pro-
vides the flexibility for further fine-tuning, however,
it is not required. This methodology includes a care-
fully chosen and pre-trained model, together with a
robust and efficient training pipeline for further train-

770
Zalesskaya, G., Bylicka, B. and Liu, E.
How to Train an Accurate and Efficient Object Detection Model on any Dataset.
DOI: 10.5220/0011781400003417
In Proceedings of the 18th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2023) - Volume 5: VISAPP, pages
770-778
ISBN: 978-989-758-634-7; ISSN: 2184-4321
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)



ing.
To achieve this, we base this study on a care-

fully chosen corpus of 11 datasets that cover a wide
range of domains and sizes. They differ in both num-
ber of images as well as their complexity, including
the number of classes, object sizes, distinguishabil-
ity from the background, and resolution. The train-
ing procedure involves parallel experiments on all the
datasets from the corpus, optimizing the model with
respect to average metrics over all corpora.

To summarize, we introduce:

• a training paradigm together with a choice of a
corpus of datasets,

• a universal, dataset-agnostic model template for
object detection training,

• additional patience parameters for ReduceOn-
Plateau and Early Stopping, to correct for the
different sizes of datasets and avoid over/under-
fitting,

• choice of data-agnostic augmentations and spe-
cific tricks for each of our 3 models that work on
a wide range of datasets

This methodology in the Intel® Geti™ computer
vision platform enables platform users to acceler-
ate their object detection training workloads for their
real-world use cases across a variety of industries.

2 RELATED WORK

2.1 Architectures

In this section, we will briefly describe the architec-
tures we explore in our experiments.

SSD. Since its introduction, SSD (Liu et al., 2016)
has been a go-to model in the industry, thanks to its
high computational efficiency. As an anchor-based
detector, it predicts detections on the predefined an-
chors. All generated predictions are classified as pos-
itive or negative, and then an extra offset regression
on the positives is done for the final refinement of the
bounding box location. However, anchor-based mod-
els present a serious disadvantage, they need manual
tuning of the number of anchors, their ratio, and scale.
This fact negatively affects their ability to generalize
to different datasets.

FCOS. Anchor-free detectors address these con-
cerns. Instead of anchor boxes, they use single points
for detection, determining the center of the object.
FCOS (Tian et al., 2019) approaches object detection

in a per-pixel way, making use of the multi-level pre-
dictions thanks to FPN (Feature Pyramid Network).
Since the predictions are made for pixels, a new way
to define positives and negatives is introduced to re-
place the traditional IoU-based strategy. This brings
further improvements. Additionally, to suppress the
low-quality detections during NMS, centerness, eval-
uating localization estimation, is used in combination
with classification score as a new ranking measure.

YOLOX. (Ge et al., 2021) is a new anchor-free
member of another classic family of models. As a
basis it takes YOLOv3 (Redmon and Farhadi, 2018),
still widely used in the industry, then boosting it for
modern times with the newest tricks, including de-
coupled head, to deal with classification VS regres-
sion conflict, and advanced label assigning strategy,
SimOTA.

ATSS. (Zhang et al., 2020) improves performance
of detection, due to introduction of Adaptive Training
Sample Selection. It is a method that allows for an
automatic selection of positive and negative samples
based on the statistical characteristics of objects.

VFNet. (Zhang et al., 2021) builds on FCOS and
ATSS advances, topping it up with a new ranking
measure for the NMS stage, to suppress low-quality
detections even more efficiently. The proposed met-
ric, the IoU-aware classification score, combines to-
gether information on the classification score and lo-
calization estimation in a more natural way and in
only one variable. This not only gives better results
in terms of the quality of detections but also avoids
the overhead of the additional branch for localization
score regression.

Faster R-CNN and Cascade R-CNN. All the mod-
els considered so far were one-stage detectors. Faster
R-CNN (Ren et al., 2015) is a two-stage detector,
where in the first stage the model coarse scans the
whole image to generate region proposals, on which
it concentrates in more detail in the second stage. A
Region Proposal Network is introduced for the effec-
tive generation of region proposals. It is an anchor-
based detector with a definition of positive and nega-
tive samples through IoU threshold. Cascade R-CNN
(Cai and Vasconcelos, 2018) is a multi-stage detec-
tor addressing this issue. It consists of a sequence of
detectors trained with increasing IoU thresholds.

How to Train an Accurate and Efficient Object Detection Model on any Dataset

771



2.2 Towards More Universal Models

Recently a lot of work has been done in the area
of moving towards more flexible, generalizable mod-
els in computer vision. This ranges from multi-task
training (Crawshaw, 2020), where a model is simul-
taneously trained to perform different tasks, to do-
main generalization (Gulrajani and Lopez-Paz, 2021),
where the goal is to build models that can predict well
on datasets out-of-distribution from those seen during
training. Another interesting direction is a few-shot
dataset generalisation (Triantafillou et al., 2021). In
this approach parallel training on diverse datasets is
used to build a universal template that can adapt to
unseen data using only a few examples. Similar work
to ours has been done in the classification domain
(Prokofiev and Sovrasov, 2021), where adaptive train-
ing strategies are proposed and proved to be working
by training lightweight models on a number of diverse
image classification datasets.

3 METHOD

This section describes in detail our approach to train
dataset-agnostic models from the architecture to the
training tricks.

3.1 Architecture

To create a scope of the models that are applicable
for the various object detection datasets regardless
of difficulty and object size, we experimented with
architectures in three categories: the light-weighted
(about 10 GFLOPs), highly accurate, and medium
ones. A detailed comparison of the different archi-
tectures used can be found in Table 2.

For the fast and medium models we took light
and accurate enough MobileNetV2 backbone (San-
dler et al., 2018), which is commonly used in the
application field. For the accurate model we used
ResNet50 (He et al., 2016) as a backbone.

For the light model we used really fast SSD with 2
heads, which can be even more optimized for CPU us-
ing OpenVINO™ toolkit; for medium - ATSS head;
and for accurate - VFNet with modified deformable
convolutions (DCNv2 (Zhu et al., 2019)). In our ex-
periments, as described later, we were not limited
with these architectures to achieve specific goals of
performance and accuracy. For example, we also tried
lighted ATSS as a candidate for the fast model, and
SSD with more heads as a candidate for the medium
model. But the final setup with 3 different architec-
tures worked best.

3.2 Training Pipeline

Pretraining Weights. To achieve fast model con-
vergence and to get high accuracy right from the
start, we used pretrained weights. Firstly, we trained
MobileNetV2 classification model with ImageNet21k
(Ridnik et al., 2021), so a model could learn to differ-
entiate trivial features and patterns. Afterward, we
only took the trained MobileNetV2 backbone weight,
cutting off the fully connected classifier head. Then,
we used this pretrained backbone for our object de-
tection model and trained ATSS-MobileNetV2 and
SSD-MobileNetV2 on the COCO object detection
dataset (Lin et al., 2014) with 80 annotated classes.
For VFNet we used pretrained COCO weights from
OpenMMlab MMDetection.

Augmentation. For augmentation, we used some
classic tricks that have gained the trust of researchers.
We augmented images with a random crop, horizontal
flip, and brightness and color distortions. The multi-
scale training was used for medium and accurate mod-
els to make them more robust. Also, after a series of
experiments we carefully and empirically chose cer-
tain resolutions for each model in order to meet the
trade-off between accuracy and complexity. For ex-
ample, SSD performed best on the square 864x864
resolution, ATSS on the rectangle (992x736), and for
VFNet we used the default high resolution without
any tuning (1344x800). During resizing we did not
keep the initial aspect ratio for 3 reasons:

1. to add extra regularization;

2. to avoid blank spaces after padding;

3. to avoid spending too much time on model resiz-
ing if the image aspect ratio differs a lot from the
default.

The impact of these tricks on accuracy and training
time can be found in the Ablation study (section 4.4).

Anchor Clustering for SSD. Despite the wide ap-
plication of the SSD model, especially in produc-
tion, its high inference speed, and good enough re-
sults, its dependence on careful anchor box tuning
is a huge drawback. It relies on the dataset and ob-
ject size characteristics. So, it becomes a challenge to
build dataset-agnostic training using SSD model. For
that reason, we followed the logic in (Anisimov and
Khanova, 2017) and used information from the train-
ing dataset to modify the anchor boxes before train-
ing started. We collect object size statistics and clus-
ter them using KMeans algorithm to find the optimal
anchor boxes with the highest overlap among the ob-
jects. These modified anchor boxes are then passed

VISAPP 2023 - 18th International Conference on Computer Vision Theory and Applications

772



for training. This procedure is used for each dataset
and helps to make the light model more adaptive, im-
proving the result without additional model complex-
ity overhead.

Early Stopping and ReduceOnPlateau. The com-
plexity and size of the input dataset can vary drasti-
cally, making it hard to predict the number of epochs,
needed to get a satisfying result and could often lead
to large training times or even overfitting. To pre-
vent it, we used Early Stopping (Prechelt, 2000) to
stop training after a few epochs if those did not im-
prove the result further. Further, we used average
precision (AP@[0.5,0.95]) on the validation subset
as a target metric. This problem with the unfixed
number of epochs also creates uncertainty in deter-
mining learning rate schedule for the given scenario.
We utilized the adaptive ReduceOnPlateau scheduler
in tandem with Early Stopping, as commonly em-
ployed, to circumvent this problem. This scheduler
reduces the learning rate automatically if the consec-
utive epochs do not lead to improvement in the target
metric - average precision for the validation dataset in
our case. We implemented both of these algorithms
for the MMDetection (Chen et al., 2019) framework
that forms the backbone of our codebase. It also pow-
ers the Intel Geti computer vision platform. It is an
OpenVINO™ toolkit fork of the OpenMMLab repos-
itory.

Iteration Patience. Another challenge is that the
number of iterations in the epoch differs drastically
from dataset to dataset depending on its length. This
creates a problem to choose an appropriate ”patience”
parameter for Early Stopping and ReduceOnPlateau
in case of the dataset-agnostic training. For exam-
ple, if we use the same patience for large datasets and
small ones, the training with a small amount of data
will stop too early and will suffer from undertraining.
A possible solution here would be to copy the training
dataset several times for every training epoch, increas-
ing the number of iterations in the epoch. However,
this will also lead to large datasets suffering from
overfitting and long training times.

To overcome this, we adapted the classic ap-
proaches of ReduceOnPlateau and Early Stopping by
adding iteration patience parameter. It works simi-
larly to the epoch patience parameter but also ensures
that a specific number of iterations were run during
training on those epochs.

This approach increased the accuracy on the small
datasets however it has some drawbacks as well.
The iteration patience could vary from architecture
to architecture and must be chosen manually, which

causes adding an extra hyperparameter. It leads to
a less universal training pipeline and careful hyper-
parameter selection is required in case of trying new
architectures, which could be time-consuming.

Another caveat is that on small datasets a large
part of the training cycle is still spent on the validation
and checkpoint creation because of the short epochs.
It leads to the fact that up to 50% of the training is
spent on not-so-useful checkpoints which are clearly
undertrained and not really informative. Therefore,
ideally, you should maximize the time spent on train-
ing compared to the time spent on validation and
checkpoint creation.

4 EXPERIMENTS

4.1 Datasets

For training purposes, we used 11 public datasets
varying in terms of the domains, number of images,
classes, object sizes, overall difficulty, and horizon-
tal/vertical alignment. Most of them were obtained
from Roboflow public dataset storage. BCCD, Pot-
hole, WGISD1(Santos et al., 2020), WGISD5(Santos
et al., 2020) and Wildfire datasets represent the cat-
egory with the small number of train images. Here
WGISD1 and WGISD5 share the same images, but
WGISD1 annotates all objects as 1 class (grape),
while WGISD5 classifies each grape variety. Aerial,
Dice, MinneApple(Häni et al., 2020) and PCB(Huang
and Wei, 2019) represent datasets with small objects
that average size is less than 5% of the image. The
PKLOT and UNO are large datasets with more than
4000 images.

The samples of the images can be found in Fig-
ure 1. For illustration purposes, images were cropped
to the square format. The detailed statistics with split-
ting into sections can be found in Table 1.

4.2 Evaluation Protocol

For validation, we used a COCO Average Precision
with IoU threshold from 0.5 to 0.95 (AP@[0.5,0.95])
as the common metric for the object detection task.

AP = ∑
n
(Rn −Rn−1)Pn

where Pn and Rn are the precision and recall at the
n-th threshold. AP averages 10 values because IoU
thresholds belong to [0.5,0.95] with an interval 0.05.

We collected train, validation, and test AP for
each dataset, evaluating the final weights on the train,

How to Train an Accurate and Efficient Object Detection Model on any Dataset

773



BCCD Pothole Wildfire
WGISD1 and 

WGISD5
PKLot

Aerial Dice MinneApple PCB Uno

S
m

al
l 

d
at

as
et

s
S

m
al

l 
o
b

je
ct

s 

Large datasets

Figure 1: Samples of the Training Datasets.

Table 1: Object Detection Training Datasets.

Dataset Number of Average object Number of Images
classes size, % of image Train Validation

BCCD 3 17x21 255 73
Pothole 1 23x14 465 133
WGISD1 1 7x16 110 27
WGISD5 5 7x16 110 27
Wildfire 1 18x15 516 147
Aerial 5 4x6 52 15
Dice 6 5x3 251 71
MinneApple 1 4x2 469 134
PCB 6 3x3 333 222
PKLOT 2 5x8 8691 2483
UNO 14 7x7 6295 1798

validation, and test subset respectively. The differ-
ence between train and validation accuracy was used
to monitor if the model was overfitted. In addition,
the test AP showed how used techniques affected the
accuracy on the unseen parts of the datasets and thus
its generalization ability. The validation AP acted as
the main metric for comparison and choosing the best
approach.

To rank the different training strategies and archi-
tectures, the train, validation, and test AP scores for
each dataset were averaged across the data corpus.
Each of these AP scores contributes equally to the fi-
nal metric without any weighting strategy. As an aux-
iliary metric we used the same average AP scores but
on different subsets:

• on datasets with small objects where average ob-
ject size is less than 5% of the image - to monitor
how the network handles a hard task of the small
object detection

• on large datasets that contain more than 4000 im-
ages - to monitor how the network uses the poten-

tial of the large dataset and how its size impacts
the training time.

4.3 Results

After more than 300 training rounds, we have cho-
sen the 3 best architectures in terms of accuracy-
performance trade-off: the lightweight and fast, the
medium, and the heavy but highly accurate. These
are SSD on the MobileNetV2, ATSS on the Mo-
bileNetV2, VFNet on the ResNet50 respectively. To
increase the overall accuracy and keep training time
within acceptable ranges we applied some common
and architecture-aware practices, which are listed be-
low and described in detail in Training pipeline sec-
tion 3.2. The contribution of each of these techniques
in both improving the accuracy and reducing the train-
ing time could be found in the Ablation study (section
4.4).

To choose the best models, we also experimented
with well-known architectures in the scope of the
lightweight, medium, and heavy models, such as

VISAPP 2023 - 18th International Conference on Computer Vision Theory and Applications

774



Table 2: Architecture Comparison.

AVG AP on the
Model AVG AP∗, % GFLOPs small small object large

datasets,% datasets, % datasets,%
Fast models

YOLOX 49.6 6.45 48.8 35.1 80.7
SSD 52.0 9.36 46.9 38.7 91.2

Medium models
FCOS 56.7 20.86 52.2 43.8 93.8
ATSS 60.3 20.86 55.2 49.7 94.1

Accurate models
Faster R-CNN 61.8 433.40 55.4 53.7 94.0

Cascade R-CNN 62.5 488.54 56.2 55.0 93.6
VFNet 64.7 347.78 59.5 56.1 95.2

∗The average AP on the validation subsets was reported here

Table 3: Detailed Results of the Chosen Models on All Datasets.

Model Small datasets Datasets with small objects Large datasets

B
C

C
D

Po
th

ol
e

W
G

IS
D

1

W
G

IS
D

5

W
ild

fir
e

A
er

ia
l

D
ic

e

M
in

ne
A

pp
le

PC
B

PK
L

O
T

U
N

O

Fast models
YOLOX 63.5 44.7 44.1 47.7 47.7 24.2 58.2 23.0 34.9 80.9 80.5

SSD 60.0 37.5 45.9 40.2 51.0 22.7 61.3 31.1 39.8 94.7 87.7
Medium models

FCOS 63.5 42.4 55.2 55.0 44.7 29.3 59.8 39.5 46.7 97.3 90.2
ATSS 63.5 47.9 57.5 55.4 51.5 36.8 73.8 41.0 47.3 97.7 90.5

Accurate models
Faster R-CNN 64.2 50.2 59.4 52.3 51.1 45.3 77.8 40.9 50.8 97.3 90.7

Cascade R-CNN 65.5 51.2 60.5 53.2 50.4 45.9 79.5 42.7 51.7 95.9 91.3
VFNet 65.2 55.1 63.8 59.5 53.9 46.3 81.2 44.4 52.4 98.6 91.8

The average AP on the validation subsets was reported here

YOLOX, FCOS, Faster R-CNN, and Cascade R-
CNN. We have tuned parameters, resolution, training
strategy, and augmentation individually to achieve the
best accuracy with comparable complexity. The accu-
racy and complexity of these architecture experiments
could be found in Table 2.

For all of the models we used the following train-
ing setup:

• start from the weights pretrained on the COCO;

• augment images with a crop, flip, and photo dis-
tortions;

• use ReduceOnPlateau learning rate scheduler with
iteration patience;

• use the Early Stopping to prevent overfitting on
the large datasets and iteration patience to prevent
underfitting on the small ones.

Additional special techniques included:

• for SSD: anchor box reclustering and pretraining
COCO weights on ImageNet-21k(Ridnik et al.,
2021)

• for ATSS: multiscale training and using
ImageNet-21k weights

• VFNet - multiscale training

Detailed results of the validation accuracy of de-
scribed models on all datasets are in Table 3 below.

4.4 Ablation Study

To estimate the impact of each training trick on the
final accuracy, we conducted ablation experiments,
by removing each of them from the training pipeline.
Based on our experiments, each of these tricks im-

How to Train an Accurate and Efficient Object Detection Model on any Dataset

775



Table 4: Impact of Each Training Trick on the Accuracy of the Candidate Models.

Configuration SSD ATSS VFNet
AVG AP∗,% AVG AP,% AVG AP,%

Final solution 52.0 60.3 64.7
w/o pretraining on the COCO 51.2 56.8 47.7
w/o Iteration patience 44.6 58.6 64.3
w/o ReduceOnPlateau LR scheduler 50.9 58.9 63.7
w/o Multicsale training - 59.2 64.0
Architecture aware features
w/o Anchor reclustering 48.2 - -
w/o modified DCN - - 64.1
∗The average AP on the validation subsets was reported here

Table 5: Impact of Each Training Trick to the Training Time∗ of the Candidate Models.

SSD ATSS VFNet
Configuration AVG training AVG AVG training AVG AVG training AVG

time, min epochs time, min epochs time, min epochs
Final solution 45.18 145 36.27 92 230.91 71
w/o Early Stopping 245.20 300 306.25 300 986.96 300
w/o Tuning resolution 56.64 136 50.64 111 - -
∗GeForce RTX 3090 was used to benchmark training time.

proved the accuracy of the target metric approxi-
mately by 1 AP See results in Table 4. The iteration
patience parameter showed great improvement (7.4
AP) for the fast SSD model, which stopped too early
without the new parameter. The best trick for medium
ATSS is using COCO weights, which improved accu-
racy by 3.5 AP. For the VFNet the most productive
trick was to use COCO weights which increased the
accuracy by 17 AP as well.

Since we focused not only on the overall accuracy
but also on getting results within an acceptable time
range and fast inference of the trained model, we also
used some tricks to reduce the training time and com-
plexity of the model, while preserving the accuracy of
predictions. We measured time spent on training in a
single GPU setup, using GeForce 3090. See Table 5
for certain numbers.

The first thing it is seen here, which is counter-
intuitive, is that the small SSD model averagely re-
quires more epochs and more time to fulfill its poten-
tial and train enough than the medium ATSS model.
Talking about training time tricks, the most powerful
was to use Early Stopping, which reduced the training
time by 4.2-8.6 times. Also, using the standard high
resolution (1344x800) of the input images increased
the training time for SSD and ATSS architectures by
25-40%. However, for SSD architecture, the accuracy
decreased by 0.9 AP due to the image resolution being
too high for such a small model. And, for ATSS, the
accuracy increased by 1.7 AP, mostly due to datasets
with small objects. But it slowed inference time by

1.5 times, rendering it too slow for our criteria for a
medium model.

5 CONCLUSIONS

In this research, we have outlined an alternative ap-
proach to training deep neural network models for
fast-paced real-world use cases, across a variety of
industries. This novel approach addresses the need
for achieving high accuracy without performing time-
consuming and computationally expensive training or
fine-tuning for individual use cases. This methodol-
ogy forms the backbone of the Intel Geti computer vi-
sion platform that enables rapidly building computer
vision models for real world use cases.

As a first step, we have proposed a corpus of pub-
licly available 11 datasets, spanning across various
domains and dataset sizes. Subsequently, we have
performed more than 300 experiments, each consist-
ing of parallel trainings – one per each dataset in the
selected corpus. We have selected average AP results
over all datasets in the corpus as a target metric to op-
timize our final models.

Using this methodology, we have analyzed a num-
ber of architectures, concretely, SSD and YOLOX
as fast model architectures for inference, ATSS and
FCOS as medium model architectures, and VFNet,
Cascade-RCNN, and Faster-RCNN as accurate mod-
els. In the process, we have identified tricks and par-
tial optimization that helped us optimize the average

VISAPP 2023 - 18th International Conference on Computer Vision Theory and Applications

776



AP scores across the dataset corpus.
We encountered a significant challenge adjusting

the optimal training time while building a universal
template for a wide range of possible real-world use
cases. This also affected the learning rate sched-
uler. To solve this we introduced an additional iter-
ation patience parameters for early stopping and Re-
duceOnPlateau along with the epoch patience param-
eter. This enabled us to balance the requirements for
small and large datasets while maintaining optimal
training times irrespective of the dataset sizes.

Our efforts result in 3 (one per 3 different
performance-accuracy regimes) dataset-agnostic tem-
plates for object detection training, that provide a
strong baseline on a wide variety of datasets and can
be deployed on CPU using the OpenVINO™ toolkit.

REFERENCES

Anisimov, D. and Khanova, T. (2017). Towards lightweight
convolutional neural networks for object detection. In
2017 14th IEEE international conference on advanced
video and signal based surveillance (AVSS), pages 1–
8. IEEE.

Cai, Z. and Vasconcelos, N. (2018). Cascade r-cnn: Delving
into high quality object detection. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 6154–6162.

Chen, K., Wang, J., Pang, J., Cao, Y., Xiong, Y., Li, X.,
Sun, S., Feng, W., Liu, Z., Xu, J., Zhang, Z., Cheng,
D., Zhu, C., Cheng, T., Zhao, Q., Li, B., Lu, X., Zhu,
R., Wu, Y., Dai, J., Wang, J., Shi, J., Ouyang, W., Loy,
C. C., and Lin, D. (2019). MMDetection: Open mm-
lab detection toolbox and benchmark. arXiv preprint
arXiv:1906.07155.

Crawshaw, M. (2020). Multi-task learning with deep
neural networks: A survey. arXiv preprint
arXiv:2009.09796.

Ge, Z., Liu, S., Wang, F., Li, Z., and Sun, J. (2021). Yolox:
Exceeding yolo series in 2021. arXiv preprint arXiv:
Arxiv-2107.08430.

Gulrajani, I. and Lopez-Paz, D. (2021). In search of lost
domain generalization. In International Conference
on Learning Representations.

Häni, N., Roy, P., and Isler, V. (2020). Minneapple: a bench-
mark dataset for apple detection and segmentation.
IEEE Robotics and Automation Letters, 5(2):852–858.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 770–778.

Huang, W. and Wei, P. (2019). A pcb dataset for de-
fects detection and classification. arXiv preprint
arXiv:1901.08204.

Li, S., Yan, Q., and Liu, P. (2020). An efficient fire de-
tection method based on multiscale feature extrac-
tion, implicit deep supervision and channel attention

mechanism. IEEE Transactions on Image Processing,
29:8467–8475.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P.,
Ramanan, D., Dollár, P., and Zitnick, C. L. (2014).
Microsoft coco: Common objects in context. In Euro-
pean conference on computer vision, pages 740–755.
Springer.

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu,
C.-Y., and Berg, A. C. (2016). Ssd: Single shot multi-
box detector. In Leibe, B., Matas, J., Sebe, N., and
Welling, M., editors, Computer Vision – ECCV 2016,
pages 21–37, Cham. Springer International Publish-
ing.

Prechelt, L. (2000). Early stopping - but when?
Prokofiev, K. and Sovrasov, V. (2021). Towards effi-

cient and data agnostic image classification training
pipeline for embedded systems.

Redmon, J. and Farhadi, A. (2018). Yolov3: An incre-
mental improvement. arXiv preprint arXiv: Arxiv-
1804.02767.

Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster
r-cnn: Towards real-time object detection with region
proposal networks. Advances in neural information
processing systems, 28:91–99.

Ridnik, T., Ben-Baruch, E., Noy, A., and Zelnik-Manor,
L. (2021). Imagenet-21k pretraining for the masses.
arXiv preprint arXiv:2104.10972.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and
Chen, L.-C. (2018). Mobilenetv2: Inverted residu-
als and linear bottlenecks. In Proceedings of the IEEE
conference on computer vision and pattern recogni-
tion, pages 4510–4520.

Santos, T. T., de Souza, L. L., dos Santos, A. A., and Avila,
S. (2020). Grape detection, segmentation, and track-
ing using deep neural networks and three-dimensional
association. Computers and Electronics in Agricul-
ture, 170:105247.

Tian, Z., Shen, C., Chen, H., and He, T. (2019). Fcos:
Fully convolutional one-stage object detection. In
2019 IEEE/CVF International Conference on Com-
puter Vision (ICCV), pages 9626–9635.

Triantafillou, E., Larochelle, H., Zemel, R., and Du-
moulin, V. (2021). Learning a universal template
for few-shot dataset generalization. arXiv preprint
arXiv:2105.07029.

Wang, C., Bochkovskiy, A., and Liao, H. Scaled-yolov4:
Scaling cross stage partial network. arxiv 2020. arXiv
preprint arXiv:2011.08036.

Yang, R. and Yu, Y. (2021). Artificial convolutional neural
network in object detection and semantic segmenta-
tion for medical imaging analysis. Frontiers in Oncol-
ogy, 11:573.

Ye, T., Zhang, X., Zhang, Y., and Liu, J. (2020). Railway
traffic object detection using differential feature fusion
convolution neural network. IEEE Transactions on
Intelligent Transportation Systems, 22(3):1375–1387.

Zhang, H., Li, F., Liu, S., Zhang, L., Su, H., Zhu, J., Ni,
L. M., and Shum, H.-Y. (2022). Dino: Detr with im-
proved denoising anchor boxes for end-to-end object
detection. arXiv preprint arXiv:2203.03605.

How to Train an Accurate and Efficient Object Detection Model on any Dataset

777



Zhang, H., Wang, Y., Dayoub, F., and Sunderhauf, N.
(2021). Varifocalnet: An iou-aware dense object de-
tector. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 8514–8523.

Zhang, S., Chi, C., Yao, Y., Lei, Z., and Li, S. Z. (2020).
Bridging the gap between anchor-based and anchor-
free detection via adaptive training sample selection.
In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR).

Zhu, X., Hu, H., Lin, S., and Dai, J. (2019). Deformable
convnets v2: More deformable, better results. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 9308–9316.

VISAPP 2023 - 18th International Conference on Computer Vision Theory and Applications

778


