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Abstract: The extensive use of virtualization technologies in cloud platforms has caused traditional security measures 
to partially fail. It was a hard struggle for static protection mechanisms to get work done in time when facing 
constantly evolving network threats. In this paper, an active defense approach is proposed to address the 
dynamic and variable security threats in cloud environment. Stochastic game model is introduced to model 
the cloud platform security elements. An attack-defense payoff function and matrix are also defined based on 
the features of the cloud platform. To accurately describe the attack action and the corresponding defense 
action, the overall attack graph and single-point defense graph are optimized. Based on proposed game model 
and attack-defense graph, the optimal defense strategy algorithm for the cloud platform is designed. The 
optimal defense strategy is obtained after a multi-stage stochastic game considering the long-term gain. 
Finally, the model's reliability is evaluated using stochastic Petri nets and Markov chains. Experimental 
simulation demonstrates that the presented model outperforms the existing mainstream game models, such as 
the evolutionary game model and Bayesian game model, in terms of the optimal strategy, defense success 
rate, and steady-state availability.  

1 INTRODUCTION 

While cloud platforms bring various beneficial 
services, they also increase more security threats and 
challenges (Almorsy et al., 2016). On one hand, the 
complexity of resources allocated in cloud platforms, 
such as data, compute, services, and tenants, leads to 
an expanded attack surface. Because the cloud 
platform stores more data, the risks associated with 
data leakage will be more severe. Easy key or 
certificate systems, weak passwords, and simple 
authentication methods are the main sources of 
attacks. A multi-tenant computing architecture is 
introduced by the cloud platform, allowing many 
tenants to share memories, databases, and other 
nearby resources. As a result, more users are affected 
at once by known system flaws and software security 
problems, increasing the cloud platform's attack 
surface. On the other hand, cloud platforms have 
more serious security issues than traditional networks 
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because they comprise virtual machines, cloud 
resources, cloud management systems, etc. (Sabahi, 
2011).  After attacking the cloud platform's virtual 
machines and other resources, they can access the 
relevant servers. If the cloud platform's 
administration system is breached, the attacker can 
also get access to a lot of important data, including 
user names and passwords, information about virtual 
machines and servers, etc. In order to reduce data loss, 
user privacy leakage, cloud service paralysis and 
other problems, it is necessary to study the cyber 
security of cloud platforms and prevent it in time. 
Traditional attack-defense techniques must be paired 
with active attack-defense measures in order to 
effectively defend against the growing network 
threats. At the same time, game theory is the key 
technology in active attack-defense, where players 
make decisions that are best for themselves under the 
influence of each other. In network security, game 
theory has been applied to capture the essence of 
network conflicts, attackers and defenders be 
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modeled as competitors in the game model, the 
attacker’s decision strategy is closely related to the 
defender’s, and vice versa (Liang & Xiao, 2013). 

The popular active attack-defense game models 
include Stackelberg game, evolutionary game, 
Bayesian game, signaling game, and stochastic game. 
These game models have been used in network 
security modeling by numerous domestic and 
international academics. (Jiang et al., 2019) 
constructs an attack-defense game based on the 
Stackelberg game to model the interaction between 
the attacker and the defender. (Abdalzaher et al., 
2016) devises two protection schemes based on the 
Stackelberg game model to protect the nodes of WSN. 
However, the Stackelberg game has an action 
sequential order for both attackers and defenders, 
which has limitations for practical scenarios. In a 
evolutionary game, players’ actions and strategies are 
modified and improved through continuous imitation 
and learning (Sotomayor et al., 2020). the authors 
constructed a network attack-defense multi-stage 
game model based on bounded rationality constraints 
(Huang et al., 2017). A security method for 
generating attack and defense graphs is applied to 
Vehicular Ad Hoc Network in (Zhang et al., 2019), 
which is based on evolutionary game theory and 
offensive and defensive interaction models. However, 
the design of dynamic replication equations for 
evolutionary games and the process through which 
they attain a stable state are more challenging. a 
detection means of wireless ad hoc network based on 
the Bayesian game model is presented to analyze the 
interactions between pairs of attacking/defending 
nodes (Islam et al., 2021). (Liu et al., 2021) studies 
the quantitative and automatic modeling and analysis 
of cyber-physical attacks on ICS key information 
systems and physical equipment. (Lalropuia & Gupta, 
2020) constructs a Bayesian game model to capture 
the interaction between attackers and defenders under 
bandwidth spoofing attacks. While Bayesian games 
are based on games with imperfect information, their 
predictions are inaccurate. Taking into account the 
dynamic confrontation of spear phishing attacks in 
ICS and the cost of defense strategy deployment, a 
multi-stage spear-phishing attack-defense signal 
game model is constructed (Chen et al., 2019). A 
method of active defense strategy selection based on 
a two-way signal game is designed in (Liu et al., 
2019). However, the signal game not only suffers 
from the issue of the attackers' and defenders' action 
sequential, but also plays with inadequate information.  

The stochastic game is a combination of game 
theory and Markov decision, which mainly applies to 
the defense with bounded rational constraints and the 

active attack-defense of cloud computing networks 
(van Ravenzwaaij et al., 2018). The virtual machine 
migration technology and the optimal strategy of 
honeypot deployment are well applied to improve the 
security of the cloud computing network. The attack 
path is also predicted qualitatively and quantitatively 
using the stochastic game, the invasion of a black box, 
and the attack-defense map (Kandoussi et al., 2020). 
However, the current model adopts staged game 
methods, which provide limited guidance for the 
continuous real-time selection of a network defense 
strategy (Chen et al., 2019). (Elmir et al., 2022) studies 
the interaction between service providers and attackers 
using a stochastic game model and optimizes cloud 
computing security. However, the game model does 
not take into account potential long-term benefits. The 
SBS structure and offensive and defensive actions are 
modeled as a two-player stochastic game model (Fanti 
et al., 2016), and the optimal strategy is obtained by 
calculating the Nash equilibrium. However, both attack 
chains and attack trees have to be remodeled if the 
architecture of the system is modified (Jakóbik, 2020). 

Aiming at the issues with the aforementioned 
model, a new stochastic game model for the cloud 
platform is proposed, which takes into account the 
long-term interests and determines the current 
optimal attack-defense strategy after a multi-stage 
stochastic game. The overall attack graph and single-
point defense graph of the cloud platform are also 
optimally designed to accurately describe the system 
attack-defense information. In addition to this, we use 
stochastic Petri nets and Markov chains for reliability 
modeling and compare the loss rate of the system 
under different policies. Experimental simulations 
demonstrate that the presented model can raise 
system reliability. 

The rest of the paper is organized as follows. 
Section 2 describes the definitions related to the 
proposed game model, discusses the attack-defense 
graphs, the attack-defense payoff matrix and the 
optimal strategy algorithm design, and analyzes them 
with instances. Section 3 presents experimental 
simulations and a reliability study of this model based 
on real environment data, and compares it to popular 
gaming models. Section 4 discusses the conclusion 
and future works. 

2 STOCHASTIC GAME MODEL 
FOR CLOUD PLATFORM 

A new game model is proposed based on the 
stochastic game. In this model, the offense-defense 
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payoff function, the offense-defense payoff matrix, 
and the offense-defense graph model are redesigned. 
In addition, stochastic Petri nets and Markov chains 
are used to model and analyze the reliability. 

2.1 Definition of Game Model 

The stochastic game model for cloud platform 
(CSGM) is represented by a 6-tuple CSGM = (N, S, A, D, U, 𝛿), which is described below. 

(1) N = {NA, ND} represents the set of game 
players, where NA represents the network attacker, 
and ND represents the defense system for cloud 
platform. 

(2) S={S0, S1, ... , Sn} represents the state set of 
CSGM. S indicates that the offensive and defensive 
confrontation is at different stages, where attacker 
gains different privileges and the defending system 
loses differently. 

(3) A = {a1, a2, ... , an} represents the set of 
attacker actions. The set of attacker’s actions under 
state Sk,  Ak = {a1, a2, ... , ak} and Ak ⸦ A. 

(4) D = {d1, d2, ... , dn} represents the set of 
defender actions. The set of effective defense actions 
for the attack action ak, Dk = {d1, d2, ... ,dk} and 
Dk⸦D. 

(5) U = (U1, U2, ..., Un) represents the set of payoff 
functions for game players. We consider the player's 
long-term gain and design the utility function for 
attacker and the defender, U = Unow + Uexp, where 
Unow is the current gain and Uexp is the expected future 
gain. The utility function formulas for both sides are 
designed as shown in Eq. (1) and (2). Uaୱ୧ୟ୧  =  (1 − 𝛽)(Rୱ୧  + δ ∙ Rୱ୨)  +  𝛽(−Cୟ୧) (1)Udୱ୧ୟ୧  =  𝛽Rୱ୧  + (1 − β)( 𝛿 ∙ Rୱ୨  −  Cୢ୧) (2)Uaୱ୧ୟ୧  represents the attacker’s gain for selecting 
action ai under state Si; Udୱ୧ୟ୧ represents the defender’s 
gain for selecting action ai under state Si; Rsi is the 
current gain under state Si and Rsj is the expected gain 
under the next state Sj; 𝛽 represents the probability of 
defense success;  𝛿  represents the discount factor, 
which indicates the attack-defense preference of 
current and future payoffs; Cai and Cdi denote the cost 
of attack action ai and defense action di, respectively. 

2.2 Attack-Defense Diagram Model 

The essence of network security is the game between 
network attackers and defenders, so network security 
modeling should be considered from the perspective 
of both attackers and defenders. The attack-defense 
diagram comprehensively reflects the essence of 

network attack and defense by incorporating network 
security information into security analysis and 
decision-making, including attack actions, defense 
measures, and corresponding cost. It is built from the 
perspective of the defender and is often referred to as 
a defense diagram. 

Considering the characteristics of the cloud 
platform such as variable states and various means of 
attack and defense, we separately store the attack path 
and defense path of the defense diagram.The overall 
attack graph and single-point defense graph are 
designed to precisely explain the network status, 
attack action, and corresponding defense action for 
each state. The overall attack graph is shown in 
Figure 1, where S0~Sk denote the k game states and 
a1~am denote the m attack actions. If Si can reach Sj, 
there is a matching attack action ai, otherwise, there 
is none. 

a1 a2 am
...

a2 a3 am... ...

S0

S1 S2 S3

S2 S3 Sk
 

Figure 1: Overall attack graph. 

...

... ...

S0

a1 a2 am

d1 d2 dn
 

Figure 2: Single-point defense graph. 

2.3 Attack-Defense Payoff Matrix 

A matrix of attack-defense activities, as shown in Eq. 
(3), is a typical attack-defense payoff matrix. Under 
the state Sk, the set of attacker actions is 
A=(a1,a2, ...,ank), and the set of defender actions is 
D=(d1, d2, ..., dmk). A complex game matrix Gk of 
order nk×mk, whose elements represent the direct 
gains achieved by the attacker and the defender under 
attack-defense strategies (ai, dj), can be used to 
represent the game in state Sk. 
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𝑑ଵ 𝑑ଶ ⋯ 𝑑  

Gk = 

𝑎ଵ𝑎ଶ⋮𝑎  ⎝⎜
⎛ 𝑟ଵଵ∗ 𝑟ଵଶ∗ ⋯ 𝑟ଵೖ∗𝑟ଶଵ∗ 𝑟ଶଶ∗ ⋯ 𝑟ଶೖ∗⋮ ⋮ ⋮ ⋮𝑟ೖଵ∗ 𝑟ೖଶ∗ ⋯ 𝑟ೖೖ∗ ⎠⎟

⎞
 (3)

 

Combined with our game model and algorithm, 
the designed attacker gain matrix is shown in Eq. (4). 
The matrix tuples represent the gains of the attacker 
and the defender when the attack action ai is taken in 
state Sj. The calculation method of Uaୱ୧ୟ୧ is shown in 
formula (1), and the calculation method of Udୱ୧ୟ୧  is 
shown in formula (2). 𝑎ଵ 𝑎ଶ ⋯ 𝑎  

G = 

𝑆𝑆ଵ⋮𝑆  ⎝⎛
Uaୱୟଵ, Udୱୟଵ Uaୱୟଶ, Udୱୟଶ ⋯ Uaୱଵୟ୫, Udୱଵୟ୫Uaୱଵୟଵ, Udୱଵୟଵ Uaୱଵୟଶ, Udୱଵୟଶ ⋯ Uaୱଵୟ୫, Udୱଵୟ୫⋮ ⋮ ⋮ ⋮Uaୱ୩ୟଵ, Udୱ୩ୟଵ Uaୱ୩ୟଶ, Udୱ୩ୟଶ ⋯ Uaୱ୩ୟ୫, Udୱ୩ୟ୫⎠⎞ 

(4)

2.4 Algorithm for Optimal Strategy 
Selection 

Aiming at the fact that the majority of current payoff 
computations are based on current payoffs, a multi-
stage gaming algorithm is proposed that takes into 
account long-term payoffs. The play the game 
multiple times until the end condition is reached, and 
then calculates the impact of future gains on the 
present. For each state, iterates over all of the attack 
actions associated with that state to determine the 
long-term benefits under various assault actions. 
Simultaneously, the attack success rate and the 
defense success rate are computed, so the long-term 
process is also considered when computing the 
success rate. The flow of the optimal strategy 
selection algorithm is shown below. 
 

Input:  CSGM = (N,S,A,D,U,δ) 
Output: payoff matrix and optimal attack-defense 
strategies 
Step1:  

Input parameters:  
S<-(S0,S1,...,Sk) 
A<-(a1,a2, ... ,am)  
D<-(d1, d2, ... , dn). 
1) Input attributes of the parameter S, which contains 

the set of available attack action attlist  and the system 
loss rate. 

2) Input attributes for parameter A, which include 
benefit, cost, next state, valid set of defenses, and attack 
success rate. 

3) Input attributes for parameter D, which include 
benefit, cost, and defense success rate. 

4) Determine the value of discount factor  

step2:  
For Si ∈  S and (i=1,2, ... ,k), ai ∈  Si.attlist is 

calculated by the Eq. (1) and (2). Rsj denotes the future 
expected gains, which is obtained after a multi-stage 
game. 
Step3: 

When either of the following game-end conditions is 
encountered: a. the final state Sk is visited, b. the current 
state has been visited, or c. there is no optional attack 
action in the current state, return (Uaୱ୧ୟ୧,Udୱ୧ୟ୧)=(0,0) as the 
future expected gain Rsj and bring it into the above 
formula for calculation, otherwise, repeat the steps of 
step2 and step3. 
Step4: 

In the above procedure, the attack/defense success 
rate is calculated recursively at the same time. Attack 
success rate equals iteration of defense failure 
probability, defensive success rate equals iterative 
defensive success rate 
Step5: 

Obtain the payoff matrix and the attack/defense 
success rate matrix, based on these matrices, produce the 
optimal attack-defense strategies. 
End 

2.5 Instance and Analysis 

2.5.1 Experimental Environment of the 
Instance 

To further clarify the game model and optimal 
strategy algorithm described in the preceding section, 
we describe a common cloud network topology 
example, as shown in Figure 3. 

FTP Server

SMTP Server

Database 
Server

Firewall

Extranet

Cloud platform 
environment

Router

Attacker

VM VM ę VM

VM VM ę VM

 
Figure 3: Network topology graph. 

In this instance, the cloud platform consists of 
three servers: a FTP server, a SMTP server, and a 
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database server. Using virtualization technology, 
each server is partitioned into many virtual machines. 
FTP server and SMTP server are servers that users 
can rent and utilize. The database server manages the 
FTP server and SMTP server, which is inaccessible 
to common users. An attacker in the extranet, who 
initially has no access to servers, can launch attacks 
on the above cloud platform. 

2.5.2 Attack-Defense Diagram of Instance 

The overall attack graph of the cloud platform is shown 
in Figure 4, including 9 states and 17 attack actions. 

S0

S1 S2

S3

S7

S9

S4 S5

S6

S8

a1

a3
a2 a4

a6

a5

a7

a9

a11

a12 a13a8

a10 a14

a15 a17

SMTP VM FTP VM

SMTP Server FTP Server

Data Server

a16

a15

 
Figure 4: Overall attack graph of Instance. 

The definitions of each state are shown in Table 1. 
For the state S0, the attacker can take the attack action 
when he has not obtained any authority A0 = 
{a1,a2,a3,a4,a5,a6}. Similarly, the set of attack actions 
in other states can be obtained, A1 = {a7, a8}, A2 = 
{a9}, A3 = {a10}, A4 = {a11, a12}, A5 = {a13}, A6 = {a14}, 
A7 = {a15, a16}, A8 = {a17}. 

Table 1: This caption has one line so it is centered. 

State Definition 
S0 Normal State 
S1 Gain SMTP VM user privileges 
S2 Gain SMTP VM memory privileges 
S3 Gain  SMTP virtual machine Root privileges 
S4 Obtain virtual machine user access to FTP 
S5 Obtain virtual machine memory access to FTP  
S6 Obtain virtual machine Root access to FTP  
S7 Gain host Root privileges of SMTP  
S8 Gain host Root privileges of FTP 
S9 Obtain database server Root privileges 

Each state is owned with a unique single-point 
defense graph. As shown in Figure 5, the single-point 
defense graph for state S0 is utilized as an illustration. 
There are six optional attack actions in state S0, where 
a1 corresponds to the effective defense action D1 = {d1, 
d2, d3, d15}. 

S0

a1 a2 a3 a4 a5 a6

d1 d2 d3 d15 d4 d5 d3 d6 d15 d7 d8 d1 d5 d9 d15
 

Figure 5: Single-point defense graph of S0. 

2.5.3 Optimal Strategy Algorithm of 
Instance 

In this instance, the inputs to the optimal strategy 
algorithm are S = {S0, S1, S2, ... , S9}, A = {a1, a2, a3, 
... ,a17}, D = {d1, d2, d3, ... ,d15}. For parameter S, the 
set of attack actions in each state is A0 = 
{a1,a2,a3,a4,a5,a6}, ..., A8 = {a17}; for the parameter A, 
we take a1 and a17 as examples, a1 = {benefit, cost, 
next state, valid set of defenses, attack success rate} 
= {10.0, S1, (d1, d2, d3, d15) , 0.6}, a17 = {7.5, S9, (d14, 
d16), 0.4}, where benefit, next state, and probability 
of defense success can all be calculated based on the 
CVSS security vulnerability assessment system; for 
parameter D, we take d1 and d15 as examples, d1 = 
{benefit, cost, defense success rate} = {50, 20, 0.5} 
and d17 = {10, 5, 0.5}, where the benefit is determined 
by the amount of attack activities that can be 
successfully defended, the cost is related to the 
complexity of defense, and the defense success rate = 
1 - attack success rate. 

Table 2: State/attack-defense payoff matrix of instance. 

 
The optimal strategy algorithm is implemented 

using Python language. The state/attack-defense 
payoff matrix are obtained as shown in Table 2. The 
corresponding attack success rate and defense success 
rate for each state are obtained as Pa = {0.06, 0.36, 
0.14, 0.24, 0.36, 0.14, 0.24, 0.4, 0.4, 0} and Pb = {0.03, 
0.14, 0.09, 0.14, 0.14, 0.09, 0.14, 0.24, 0.24, 0.24, 0}, 
respectively. Based on this matrix and the attack-
defense success rates, the optimal attack- defense 
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strategy for each state are obtained as Aopt = {'a4', 'a8', 
'a9', 'a10', 'a12', 'a13', 'a14', 'a16', 'a17', 'a1'} and Dopt = {'d8', 
'd2', 'd2', 'd2', 'd2', 'd2' , 'd2', 'd14', 'd14', 'd15'}. 

2.5.4 Reliability Analysis 

Combined models such as reliability block diagrams, 
fault trees, and s-t connectivity networks are 
commonly used for system reliability and availability 
analysis. These models can offer a succinct 
description and an effective evaluation for the system 
under study, but they are unable to capture the 
dependencies that exist in real systems (Sahner & 
Trivedi, 1987) (Veeraraghavan & Trivedi, 1988), 
such as non-zero detection/reconstruction times, 
incomplete coverage, correlated failures, repair 
dependencies, and performance reliability 
dependencies. On the other hand, state-space-based 
models, such as Markov model, are able to capture 
various dependencies that appear in reliability/ 
availability models (Dugan et al., 1986) (Goyal et al., 
1986). In this paper, stochastic Petri nets (SPN) and 
Markov model are used to model and analyze the 
system's reliability. 

P0

p1 p2

p3 p4

p5 p6

p7

Get user priviliges of 
virtual machine

Get root priviliges of 
virtual machine

Get root priviliges 
of host

Get database 
server priviliges  

Figure 6: SPN model of instance. 

M0

M1

M2

M7

M3

M4

M5

M6

β5

λ5

β7

λ7

β4
λ6

β8

λ8

λ3

β3

λ4

β6

β9 λ9

 
Figure 7: Markov chain model of instance. 

The SPN model of the instance is shown in Figure 
6, where the black rectangular nodes indicate the 
attack action, the white rectangular nodes indicate the 
defense action, and the circular nodes indicate the 

system states in which the attacker has different 
system privileges.  

The Markov chain model corresponding to the 
SPN is shown in Figure 7, where Mk related to the 
different states of the system, and λi and βj represent 
the transfer probability between different states. λi 
and βj correspond to the attack and defense success 
rate respectively. 

We set the following assumptions: 
 state M1 can be transfered from state M0 by 

various attack actions as A1{a1,a2,...,an}. 
 the set of defensive actions corresponding to 

the attack action ai is Di{d1,d2,...,dn}. 
 the optimal defense action for ai is dopti, and its 

defense success rate is Pdopti. 
 The steady-state probability of M0-M7 is SSP = 

{m0,m1,.... .m7} 
 The system loss rate of M0-M7 is Loss = {0, 0.2, 

0.2, 0.25, 0.25, 0.3, 0.3, 0.4} 
Based on the above assumptions, λi and βj are 

calculated as shown in Eq. (5) and (6). In addition, the 
reliability of the system is calculated as shown in  
Eq. (7) 𝜆𝑖 = ൫1 − 𝑃ௗ௧ଵ൯ + ൫1 − 𝑃ௗ௧ଶ൯ + ⋯ + ൫1 − 𝑃ௗ௧൯𝑛 (5)

𝛽𝑗 = (𝑃ௗ௧ଵ + 𝑃ௗ௧ଶ + ⋯ + 𝑃ௗ௧)𝑛  (6)

Ra = 1-(m0*0)-(m1+m2)*0.2)-((m3+m4)*0.25)-
(m5+m6)*0.3-(m7*0.4) (7)

3 EXPERIMENT SIMULATION 

3.1 Experiment Data  

The experimental data of a cloud platform is collected 
and stored using neo4j as shown in Figure 8. The 
orange node represents the attack condition, which 
must exist before the attack action can be carried out. 
The blue node represents the attack action, which the 
attacker carries out in order to reach a specific attack 
state. The red node denotes the system state, where 
the attacker's authority varies. The gray node denotes 
the defense action, where there may be numerous 
defense actions for one attack action or a single 
defense action may apply to multiple attack actions. 

The relationships include trigger, gain, further, 
and defense. The relationship between orange nodes 
and blue nodes is trigger, which indicates that if 
specific attack conditions are met, a particular attack 
action can be triggered. The gain connect blue nodes 
and red nodes, that is, after an attack action is 
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launched, another state can be reached. Red nodes 
and blue nodes have a further relationship, which 
means that the attacker can initiate further attacks in 
a certain state. Defense is the interaction between gray 
nodes and blue nodes, and it is a strong defensive 
response to an attack. 

 
Figure 8: Attack-defense graph of Experiment. 

3.2 Optimal Strategy Algorithm of 
Experiment  

We gather the necessary data from the above 
experimental environment, including the information 
of state, attack action, and defense action. We can get 
the following values from the Neo4j database for the 
attributes of state and attack action: Sk = {status_id, 
attack_list}; ak = {attack_id, 0, attack_reward, 
attack_cost, defense_list, attack_prob}. For the 
attributes of defense action, we set dk = {defense_id, 
0.44, 33.5, 1.2}. The gathered information is inputted 
into the optimal strategy algorithm and the attack-
defense payoff matrix is obtained as shown in Table 3. 

Table 3: State/attack-defense payoff matrix of experiment. 

 
Based on the payoff matrix, the attack/defense 

profit sum is calculated as shown in Figure 9. The 
horizontal coordinate represents the eight system 
states of the cloud platform with unique number, and 

the vertical coordinate indicates the profits. The 
optimal attack/defense strategy for each state is also 
obtained, as shown in Figure 10.  The meanings of the 
horizontal coordinates are consistent with Figure 9, 
and the red dots and blue dots indicate the optimal 
strategies of attackers and defenders in a certain state, 
respectively. In addition to this, the attack/defense 
success rate is obtained as shown in Figure 11. 

 
Figure 9: Attack and defense profit sum. 

 
Figure 10: Attack and defense optimal strategy. 

 
Figure 11: Attack and defense success rate. 
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3.3 Reliability Simulation 

To verify the validity of the presented model in this 
paper, reliability simulations are conducted in four 
cases based on above experiment environment. 
Simulations verify that the system loss rate is lower 
and the reliability is higher under the proposed model. 
We assume that the initial state vector is P0 = ( PM0, 
PM1, PM2, PM3, PM4, PM5 , PM6, PM7 ) = ( 0.5, 0.15, 0.15, 
0.08, 0.08, 0.02, 0.02, 0 ). Also assume that: state loss 
rate = attack profits in the state / total attack profits, 
Loss = {0.16, 0.05, 0.24, 0.05, 0.27, 0.05, 0.09, 0.09}. 

In the first scenario: all defensive actions are 
deployed, and the attacker chooses the attack action 
averagely. The transfer probability between states is 
equal to the average success rate of the optional attack 
actions. Using Python to walk through the Markov 
transfer process, the final steady-state probabilities 
are obtained as shown in Figure 12, Pm = ( m0, m1, m2, 
m3, m4, m5, m6, m7) = ( 0.117, 0.132, 0.221, 0.127, 
0.121, 0.127, 0.08, 0.077). Calculate the system's 
reliability based on Eq. (6): Ra = 86.2%. 

 
Figure 12: State transfer probability for first case. 

In the second scenario: the defender deploys the 
optimal defense strategy according to the game model, 
while the attacker merely takes into account the short-
term profit and selects the most profitable attack 
action. If the defense action is effective against the 
attack action, the state transfer probability is the 
attack success rate, otherwise, the state transfer 
probability is 1. All other calculations are left 
unaltered, and the state transfer probabilities are 
obtained as shown in Figure 13. The final steady-state 
probabilities are Pm = ( m0, m1, m2, m3, m4, m5, m6, 
m7) = (0.0, 0.0, 0.444, 0.17, 0.0, 0.0, 0.0, 0.255). 
Calculate the system's reliability based on Eq. (6): Ra 
= 84.1%. 

 
Figure 13: State transfer probability for second case. 

In the third scenario: The attacker still takes into 
account the short-term profit and selects the most 
profitable attack action, while the defender do not 
deploy any defense strategy. Without modifying any 
other calculations, the probability of transition 
between states is derived as depicted in Figure 14. 
The final steady-state probabilities are Pm = ( m0, m1, 
m2, m3, m4, m5, m6, m7) = (0.008, 0.003, 0.406, 0.123, 
0.024, 0.014, 0.139, 0.283). Calculate the system's 
reliability based on Eq. (6): Ra = 84.1%. 

 
Figure 14: State transfer probability for third case. 

In the fourth scenario: Based on the proposed 
game model, the defender deploys the optimal 
defense strategy in advance and the attacker launch 
the action according to long-term gain. The 
calculation is the same as in the previous scenarios. 
The state transfer probabilities are as shown in Figure 
15. The final steady-state probabilities are Pm = ( m0, 
m1, m2, m3, m4, m5, m6, m7) = (0.099, 0.151, 0.22, 
0.084, 0.099, 0.151, 0.0, 0.126). Calculate the 
system's reliability based on Eq. (6): Ra = 87.4%.  
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Figure 15: State transfer probability for fourth case. 

Although the first scenario's reliability of 86.2% 
is also ideal, it necessitates the deployment of all 
defense actions, which will undoubtedly raise the cost 
of defense system. The reliability of the second and 
third cases are 84.1% and 84.9%, which are 
significantly lower than the proposed model in this 
paper. In summary, the proposed model improves the 
reliability of the system to a certain extent and also 
reduces the defense cost. 

3.4 Experimental Comparison 

3.4.1 Optimal Strategy Comparison 

In the existing game models, the optimal strategies 
calculated by Nash equilibrium are mostly mixed 
strategies that cannot be applied directly to the actual 
environment. In contrast, the optimal strategy in this 
paper is a pure policy that uses a recursive multi-stage 
game to calculate the current gain, which is more 
practical and decreases the complexity of 
management deployment. Table 4 compares the 
mixed strategies from the (Huang et al., 2017) with 
the pure strategies from the CSGM in this paper. 

Table 4: Optimal strategy comparison. 

 Game model of (Huang 
et al., 2017) CSGM 

 Attack 
strategy 

Defense 
strategy 

Attack 
strategy 

Defense 
strategy 

S0-
>S1 

{0.45,0.4, 
0.15} 

{0.5, 
0.5} a20 no 

S1-
>S2 

{0.3, 
0.7,0} {1,0,0} a46 M1026 

S2-
>S3 

{0.47, 
0.23,0.3} 

{045,0.5,
0.05} a38 M1048 

… … … … … 

 

Table 5: Defense success rate and profits comparison. 

 Highest 
defense 
success 

rate 

lowest 
defense 
success 

rate 

Average 
defense 
success 

rate 

Average 
defense 
profits 

SAR-
RG 

0.95 0.75 0.8 89.5 

GFQL 0.75 0.6 0.7 87.5 
IS-

RS/PS 
0.55 0.65 0.6 72.5 

CSGM 0.94 0.61 0.76 90.6 

3.4.2 Defense Success Rate and Profits 
Comparison 

Comparing the average gain, defense success rate, 
and detection accuracy of the three game models in 
the (Balaji et al., 2019), the superiority of the SAR-
RG model is highlighted. As indicated in Table 9, we 
compare the defense success rate and average profits 
of these three models to CSGM in this paper. In terms 
of defense success rate, The CSGM is demonstrably 
superior to the GFQL and IS-RS/PS models, and is 
comparable to the SAR-RG model. Moreover, this 
model has a greater average defense profits than the 
other three models. 

3.4.3 Steady-State Probability Comparison 

(Lalropuia & Gupta, 2020) analyzes the impact of 
DoS attacks on the system availability using 
stochastic reward network. The SSP variation of their 
simulations is shown as Table 6, with an average SSP 
of 0.85. The SSP obtained using CSGM for defense 
deployment is 0.874. The stability of the proposed 
model in this paper is superior to the presented model  
in the (Lalropuia & Gupta, 2020). 

Table 6: Steady-state probability comparison. 

 State SSP(simul
ation) 

Average 
SSP 

Game model in 
(Lalropuia & 
Gupta, 2020) 

ω=0.1 0.81 

0.855 ω=0.2 0.82 
… … 

ω=0.9 0.89 
CSGM Case 4 0.874 0.874 

4 CONCLUSIONS 

In order to satisfy the requirement for network 
security defense of cloud platforms, A new active 
defense model for cloud platforms is proposed which 
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is based on stochastic game theory and merges the 
concept of active defense. The model enhances the attack-
defense graph, redefines the reward function and payoff 
matrix, and provides the optimal defense strategy 
algorithm. This algorithm calculates the attack and defense 
payoff matrix by taking into account the long-term interests 
and then determines the best defense strategy based on this. 
To verify the effectiveness of the model, we simulate the 
reliability of four scenarios using stochastic Petri nets and 
Markov chains. The results demonstrate that the model 
outperforms both the deployment of all defense actions and 
the absence of defense actions. Compared with mainstream 
models, the proposed model outperforms in terms of 
optimal strategy form, defense success rate and gain, and 
system stability probability. The model's backtracking 
algorithm complexity is too high, making it more taxing for 
larger cloud platform systems. In the future, we will 
continue to optimize the algorithm's time complexity. 
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