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Abstract: Recently, many researchers have focused on 3D face analysis and its applications, and put a lot of work on 
developing its methods. Even though 3D facial images provide a better representation of the face in terms of 
accuracy, they are harder to acquire than 2D pictures. This is why, wide efforts have been put to develop 
systems which reconstruct 3D face models from 2D images. However, the 2D to 3D face reconstruction 
problem is still not very advanced, it is both computationally intensive and needs great space exploration to 
acquire accurate representations. In this paper, we present a 3D multi-image face reconstruction method built 
over a single image reconstruction model. We propose a novel 3D face re-construction approach based on 
two levels, first, the use of a single image 3d re-construction CNN model to represent vectorial embeddings 
and generate a 3d Face morphable model. And second, an unsupervised K-means model on top of the single 
image reconstruction CNN Model to optimize its results by incorporating a multi-image reconstruction. 
Thanks to the introduction of a hybrid loss function, we are able to train the model without ground truth 
reference. Further-more, to our knowledge this is the first use of an unsupervised model alongside a weakly 
supervised one reaching such performance. Experiments show that our approach outperforms its counterparts 
in the literature both in single-image and multi-image reconstruction, and it proves that its unique and original 
nature are very promising to implement in other applications.

1 INTRODUCTION 

Facial analysis is widely used in many different 
applications, we could cite for example interactions 
between humans and computers (Zhang et al., 2013), 
security applications (Kaplan et al., 2015), (Burton et 
al., 1999), motion pictures (Weise et al., 2011), 
(Weise et al., 2009), and health (EL Rai et al., 2015), 
(Suttie et al., 2013). In recent years, incorporating 3D 
data is becoming a trend to surpass some of the 
inherent issues of the vastly studied 2D facial 
analysis. A 2D image is insufficient to precisely 
represent the geometry and full data of a face due to 
its 3D nature, since it collapses one of the dimensions. 
Moreover, 3D imaging yields a representation of the 
facial shape that preserves more or less illumination 
and pose, two of the primary drawbacks of 2D 
imaging. As a result, the benefits provided by 3d face 
recognition techniques come at the expense of a more 
sophisticated imaging procedure., which is more 
demanding in data collection and exploration. Some 
of the well-known techniques for 3D facial 

information acquisition is stereo-vision systems 
(Alexander et al., 2010), (Beeler et al., 2011), 3D 
laser scanners (Lee et al., 1995) (e.g. NextEngine and 
Cyberware), and RGB-D cameras (such as Kinect). 
But, each of the mentioned tech-niques has its own 
drawbacks.  Stereo-vision and laser take precise facial 
scanning, but need controlled settings and costly 
equipment. As opposed to RGB-D cameras which are 
cheaper and easier to use, but provide scans with 
limited quality (Yang et al., 2015).  

Researchers propose a substitute approach to 
acquiring 3D facial scans, they propose to predict its 
shape from an uncalibrated image (Booth et al., 
2018), (Guo et al., 2019). This approach to recon-
struct 3D models from 2D images aims to incorporate 
the ease of 2D picture capture with the advantages of 
representing the face in a 3D geometry. Despite its 
attractive-ness, it is inherently ill posed: each and 
every one of the individual facial geometries, The 
head's position and texture (including lighting and 
color) must be retrieved from a single image., which 
leads to a much more complex problem. As a 
consequence, and due to the difficulty in determining 
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which of several 3D faces that make up a single 2D 
image is the one that best represents the underlying 
geometry, there may be ambiguities in the solution of 
the 3D from 2D face reconstruction. Recent research 
progress has helped to achieve remarkably 
convincing reconstructions based on newly proposed 
methodologies, enabling 3D from 2D face 
reconstruction to be used for number of disciplines 
(Tu et al., 2019), (Zhu et al., 2019).  

The use of past information to resolve ambiguities 
in the solutions is critical to assure best conditions for 
3d from 2d reconstruction approaches. Through 
literature we could identify in the last decade three 
techniques for incorporating this previous 
knowledge: statistical model fitting, photometric 
stereo, and Deep learning. 

A starting method builds a 3D facial model from 
a set of 3D facial scans, and then encoded prior 
knowledge into it which is later fitted to the input 
images.  

In another method, they often combine data from 
many photos, which therefore adds to the complexity. 
The facial surface normals are estimated using 
photometric stereo methods in conjunction with 3D 
face template or 3D facial models. 

In the third approach, the 2D to 3D 
correspondence is implemented using neural net-
work models. Given adequate training images, these 
networks can understand the descriptors required to 
connect the shape and look of faces. 

2 RELATED WORKS 

As stated earlier in the introduction deep learning 
techniques encode past information in the trained 
network's weights and effectively understand 
mappings between the 2D picture and the face model. 
And even though deep learning has proven to be 
highly useful in several applications, using it directly 
in 3D from 2D facial reconstruction is constrained by 
the absence of 3D facial scans that serve as a reliable 
source of data. To overcome this problem of a lack of 
ground truth data, academics have suggested many 
methods for creating and learning from realistic 
representative training data. 

In this section, we present the most relevant works 
in 3D-from-2D face reconstruction using deep 
learning as the main tool. Many elements are involved 
in the learning process. To simplify the study and 
keep it related to the approach we propose, we will 
only consider two representative ones in our literature 
review both the learning framework and the training 
set that were utilized to train the network. And, 

according to these elements, we have organized this 
section. 

2.1 Training Data Set 

The absence of ground truth data to be utilized as 
training data is, as we indicated above, the main 
challenge when using deep learning to 3D-from-2D 
face reconstruction. This is due to the complexity and 
hardship of obtaining a huge number of 3D facial 
scans together with their corresponding 2D pictures. 
To surpass this limitation, researchers proposed 
methods either for using 2d datasets and then 
compare the results to approaches based on 3D 
datasets or simply constructing artificial training sets 
and use 3DMMs that have already been constructed 
to more easily generate 3D faces. 

To create synthetic training sets, three basic 
methodologies can be distinguished. Fit&Render is 
how we ascribe to the first method.: It entails fitting a 
3DMM to real-world photos and then producing 
synthetic images with the predicted 3D faces. The 
second one, Generate&Render: involves creating 3D 
faces by randomly sampling from a 3DMM and then 
rendering synthetic pictures with the resulting 3D 
faces. On the other hand, in recent years, a novel 
method has emerged that involves self-supervised 
training, which eliminates the necessity for matched 
2D and 3D data, therefore the need for artificial data 
creation.  

(Zhu et al., 2016) first proposed the Fit&Render 
approach, which uses a face profile technique to 
create pictures for bigger poses and build the 300W-
LP (300W large poses) database. They began by 
fitting a 3DMM using (Romdhani & Vetter, 2005) 
and (Xiangyu Zhu et al., 2015) over the back-drop to 
estimate a 3D mesh over the provided facial picture. 
Next, the 3D mesh was projected over the image and 
rotated to create a synthetic version of the original 
image with a bigger posture. Many other writers have 
used this 300W-LP database (Bhagavatula et al., 
2017), (Feng et al., 2018) since it has complicated and 
realistic face images., as well as 3DMM and 
projection settings. 

The Generate&Render approach involves taking 
samples from a 3DMM to assemble real-world 3D 
faces and then generating matching 2D pictures by 
yielding the 3D faces under various circumstances. 
(Poses, lighting, etc.). Because this technique does 
not require a separate 3DMM fitting algorithm, the  
reconstructive procedure does not limit the network's 
capacity for learning. 2D pictures, however, are  
not realistic, as opposed to the Fit&Render  
method, because the rendering process is  completely 
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Figure 1: Overview of our approach. (a) The full pipeline of reconstruction using both models (b) The training pipeline of R-
Net using the hybrid loss function. 

syn-thetic, with synthetic backdrops, lighting settings, 
projection parameters, and so on. Furthermore, this 
strategy does not get beyond the drawback of learning 
from linearly-modeled data because a 3DMM is still 
needed to build the ground truth 3D faces. 

The works that employ the Generate&Render 
methodology provide a number of solutions to deal 
with these drawbacks, including the incorporation of 
real data, the addition of artificial deformations to 3D 
faces, and the use of more intricate training 
frameworks. 

With the scarcity of realistic ground truth 3D to 
2D coupled data and the limitations of using synthetic 
sets, self-supervision, an innovative method, gained 
popularity. The crucial idea is that teaching is 
provided by the data itself by introducing a render-er 
layer at the network's edge (Tewari et al., 2017), 
(Tewari et al., 2018), and (Shang et al., 2020).  

As a result, using the sampling probabilities 
discovered from photos of underlying data, the 
network forecasts attributes for photos without 
reference data. 

2.2 Learning Framework 

The core of the deep learning method is the network 
itself, namely how it is designed and how it gets to 
know its parameters. A single neural network trained 
in a single pass is the simplest basic learning 
framework. Alternatively, other researchers trained 
their networks iteratively and/or took advantage of 
the possibilities of more sophisticated designs 
composed of several networks, such as encoder-
decoder architectures or generative adversarial 
networks. In addition, some of the authors taught each 
of the many networks to execute certain subtasks. 
Despite the fact that triangular meshes are the most 
common means of expressing 3D face data, most 
works rely on alternative representations, such as 
depth maps and 3DMM parameters. This is ow-ing to 
the difficulty of traditional 2D convolution-based 
networks to interpret non-Euclidean input like 
meshes. However, a current study topic known as 

geometric deep learning investigates ways to extend 
convolutional networks to non-Euclidean inputs, 
allowing for direct dealing with 3D face models. 

When working with 2D data, convnets (CNNs) 
have shown impressive results, prompting 
researchers to employ CNNs to reconstruct the 3D 
face from uncalibrated 2D photos (Tewari et 
al.,2017), (Tewari et al., 2018), (Shang et al., 2020), 
and (Wu et al., 2019). (Tewari et al., 2017), (Tewari 
et al., 2018), (Shang et al., 2020) used the AlexNet 
(Misra et al., 2016) to teach a CNN to learn from a 
single image both the renderer (perception and 
illumination characteristics) and 3DMM 
configurations (form, ex-pressions, and texturing). At 
first, the resultant reconstructions in (Tewari et al., 
2017) work were crude, and face features were not 
preserved. They, later (Tewari et al., 2018), (Shang et 
al., 2020) improved the coarse face produced by using 
a model that was learned from the training data, 
AlexNet calculates relative motion for every polygon 
as coefficients 

Contrarily, (Wu et al., 2019)  and (Ramon et al., 
2019) used the CNN to retrieve information from the 
image, which were then processed by numerous 
adjacent layers to individually reconstruct the 3DMM 
and projection settings. Since the VGG-Net is a 
deeper network than the AlexNet (Misra et al., 2016), 
they used it as a feature extractor because it enables 
them to harvest more important properties even 
though it is slow.  

(Tran et al., 2018) used numerous perspectives in 
the same way as (Wu et al., 2019), and (Ramon et al., 
2019) did. The former sought face recognition and 
therefore taught the ResNet to be discriminative by 
utilizing a training set containing the same 3D face 
related to several images of the same individual. 
(Deng et al., 2019) retrieved the final reconstruction 
by linearly integrating single-image reconstructions 
based on confidence ratings calculated by a second 
network. As a result, a more precise reconstruction 
contributed more to the final re-construction, yielding 
better outcomes than averaging the forms. Unlike 
(Deng et al., 2019), (Shang et al., 2020) used different 
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perspectives to further push the reconstruction 
process. They used Multiview consistency to rebuild 
the 3D face matching to a target image from two 
nearby views, allowing them to tweak the final 
reconstruction using all three images at the same time. 
Nonetheless, this technique requires the authors to 
train their network using adjacent images, whereas 
(Deng et al., 2019) could train their networks with a 
collection of images that were “unrelated.” 

At contrary to the single pass training used by the 
works we just discussed, some writers advocated 
training their networks iteratively. We may 
differentiate two approaches: one is focused on 
iteratively enhancing the synthetic training set, while 
the other is based on repeatedly refining the previous 
iteration's outcome. The second technique is 
analogous to a cascaded regressor in that each 
regressor estimates an update of the input parameters 
estimated by the preceding regressor, bringing them 
closer to the ground truth. The majority of the planned 
works used the same architecture across all iterations 
(Richardson et al. 2016), (Sanyal et al. 2019). 

A ResNet-based network was proposed by 
(Richardson et al. 2016) and (Sanyal et al. 2019).  For 
the first team the pose is pre-computed using (Kazemi 
& Sullivan, 2014) and they trained the ResNet to 
estimate the 3DMM parameters. (Sanyal et al. 2019) 
estimated the pose in conjunction with the 3DMM 
parameters. They trained their network by making use 
of several perspectives and increasing the shape 
distance between parameters of different persons 
while decreasing it between parameters of the same 
person. 

3 MATERIALS AND METHODS 

Fig. 1 (a) shows how we use a convolutional neural 
network to regress the coefficients of a 3DMM face 
model. We additionally regress the lighting and facial 
pose for unsupervised/weakly supervised training 
(Tewari et al., 2017), (Tewari et al., 2018) to enable 
analytic image regeneration. Below a description is 
detailed of how our model works and outputs in 
further depth, namely using its three mathematical 
components; a 3D Face Model, an illumination 
model, and a camera model.  

An affine system of equations can clearly describe 
how the shape of a face, noted S, and its 
corresponding texture, noted T, can be represented: 𝑆 = 𝑆(𝛼, 𝛽) = 𝑆̅ + 𝐵ௗ𝛼 + 𝐵௫𝛽 𝑇 = 𝑇(𝛿) = 𝑇ത + 𝐵௧𝛿 

T̄ and S̄ represent the average values of T and S. 
We scale with a standard deviation the PCA bases of 
identity noted Bid, Bexp, and Bt. 

α, β, and δ represent the coefficient vectors for 
generating a 3D face. The well-known Basel Face 
Model from (Paysan et al., 2009) is used to determine 
S̄, Bid, T̄ and Bt.  And from (Guo et al., 2019) we use 
the expression bases Bexp which is built from 
FaceWarehouse (Chen Cao et al., 2014). By 
excluding the neck and ear regions an selecting a 
subset of the bases resulting in α ∈ R80, β ∈ R64 and δ ∈ R80 we can get our resulting model that contains 
36K vertices. 

A Lambertian surface for face is assumed. And 
the scene illumination is approximated with Spherical 
Harmonics (SH) (Ramamoorthi et al. 2001). Given 
the following equation: 𝐶(𝑛𝑡|𝛾) = 𝑡  𝛾𝜑(𝑛)మ

ୀଵ  

We can calculate Si being the radiosity of a vertex, 
ni being the surface normal, and ti being the skin 
texture.  Spherical harmonics basis functions are 
noted 𝜑: ℝଷ → ℝ  and their corresponding 
coefficients are noted 𝛾 . Just like (Tewari et al., 
2017),(Tewari et al., 2018), the number of bands is 
chosen as B=3 bands and monochromatic lights are 
assumed such that γ ∈ ℝଽ.  

For the geometry of the 3D-2D projection, we 
employ the perspective camera model with an 
experimentally chosen focal length. A translation t 
and a rotation R are used to represent the 3D face pose 
p such as 𝑹 ∈ 𝑺𝑶(𝟑) and 𝒕 ∈ ℝ𝟑. The output of our 
model is a vector representing the unknowns to be 
determined𝑥 = (𝛼, 𝛽, 𝛿, 𝛾, 𝑝) ∈ ℝ𝟐𝟑𝟗 . In this paper, 
by modifying the last fully-connected layer to 239 
neurons, we try to regress the mentioned coefficients 
using a ResNet-50 neural network (He et al., 2016) 
(Deng et al., 2019). Henceforth, we will be referring 
to this ResNet-50 model as R-Net. In the following 
sections, we present how we train it. 

3.1 Single Image Reconstruction 

As stated previously, R-net is used to regress a 
coefficient vector x as an output, and for this task the 
model’s input is an RGB image noted I. When 
passing the image I, we get its corresponding vector 
x as output, this vector is then used to analytically 
generate a reconstructed image I’ (Fig. 1. shows some 
examples of this process). By backpropagating a 
hybrid-level loss evaluated on I’, we can train R-net 
without any ground truth labels. 
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This hybrid-level loss is composed of two functions; 
an Image-level loss, and a Perception-level loss. 

As for the image level loss, we used the same 
skin-aware photometric loss as (Deng et al., 2019) 
such as: 𝐿௧(𝑥) = ∑ 𝐴. ‖𝐼 െ 𝐼ᇱ(𝑥)‖ଶ∈ெ ∑ 𝐴∈ெ  

Where: 
• i is pixel index. 
• M denotes the reprojected face region. 
• A is a skin attention mask created using a 

naïve Bayes classifier on a skin image 
dataset [26] and for each pixel setting 𝐴 =൜1 𝑖𝑓 𝑃  0.5𝑃 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  and as seen bellow Fig. 2. 

shows the results with (bottom row) and 
without (top row) a skin attention mask. 

 
Figure 2: The effect of using a skin attention mask. 

(Top row: without mask, bottom row with mask) 
(Deng et al., 2019) 

And for face alignment, we use the method of 
(Suttie et al., 2013) in detecting 68 facial landmarks 
{qn} for the training images. By projecting the 
landmarks vertices of our reconstructed shape onto 
the resulting image I’ we obtain {q’n} which we use 
to compute the loss as: 𝐿(𝑥) = ଵே  𝜔ฮ𝑞 െ 𝑞ᇱ(𝑥)ฮଶே

ୀଵ  

Experimenting with 𝜔 led to setting it to 20 for 
mouth and nose points and 1 for others.  

As for the perception-level loss, inspired by (Yang 
et al., 2015) and (Deng et al., 2019) we used the 
following cosine distance: 𝐿(𝑥) = 1 െ ൏ 𝑓(𝐼), 𝑓൫𝐼ᇱ(𝑥)൯ ‖𝑓(𝐼)‖. ‖𝑓(𝐼ᇱ(𝑥))‖ 

With f(.) and <.,.> representing correspondently 
deep feature encodings and vector inner product. 

In our work, we use as deep feature extractor a 
pretrained FaceNet structure (Schroff et al., 2015). 

The regressed 3DMM coefficients could contain 
some shape or texture degeneration on the face, in 

order to prevent this from happening we apply 
another loss function on said coefficients to impose a 
distribution respecting the mean face: 𝐿(𝑥) = 𝜔ఈ‖𝛼‖ଶ + 𝜔ఉ‖𝛽‖ଶ + 𝜔ఊ‖𝛾‖ଶ 
With: 𝜔ఈ = 1.0, 𝜔ఉ = 0.8, 𝜔ఊ = 1.7𝑒 െ 3 
The Basel 2009 3DMM contain some dried shading 
and we would like to maintain a constant skin shading 
like (Tewari et al., 2018), for this we add a constraint 
that reprimands the texture map variance: 𝐿௧௫(𝑥) =  𝑣𝑎𝑟(𝑇,ோ(𝑥))∈ሼ,,ሽ  

With R being a predefined skin region involving the 
forehead, cheek, and nose. 
To summarize our training loss L(x) could be 
described as a composition of three levels; a first level 
having two image-level losses Lphoto and Llan, a second 
level having one perceptual loss Lper, and a third level 
having two regularization losses Lcoef and Ltex . The 
corresponding weights for these losses are set to the 
following values throughout our experiment: 𝜔௧ = 1.9, 𝜔 = 1.6𝑒 െ 3,𝜔 = 0.2, 𝜔 = 3𝑒 െ 4,𝜔௧௫ = 5 

3.2 Multi-Image Reconstruction 

Even though reconstructing a face from a single 
image input seems to be a great endeavour, such 
reconstruction could be somewhat lacking in terms of 
precision and resolution. As we made clear from 
literature research, having multiple images of a face 
would affect greatly the performance of a model in its 
reconstruction task, since single images could be 
subject to bad lighting or occlusions. 

In this section of the paper, we propose building 
an unsupervised machine learning model that goes 
hands in hands with our previously created R-Net. 
This model would make use of the output obtained 
from R-Net and create a spacial representation of 
different images of the same object, thus gaining 
more information about the face and resulting in 
better metrics for the reconstruction. 

Creating and training a model with an arbitrary 
number of images representing the same entity is not 
a straightforward task. In this work we use K-means 
as an aggregation algorithm to search for a vector 
representation within a cluster of vectors obtained 
from R-Net. 

Given a set of M subjects with each having j 
images, our approach could be described as follows;  
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 For each subject, we start by generating the 
reconstructed image set {Ij’} of {Ij}. Thus, 
resulting in having 𝑥 = (𝛼, 𝛽, 𝛿, 𝑝, 𝛾) 
the output vector of R-Net for each image j. 

 After obtaining 𝑀 × 𝑗 vectors, we create a K-
means models with K = M the number of 
clusters. 

 Shuffle the vectors dataset and initialize the 
centroids. 

 Then, we keep iterating until centroids no 
longer change, meaning that the assignment of 
data points to individual clusters isn’t 
changing anymore. 

 By now, the algorithm computes the sum of 
the squared distance between centroids and all 
data points. 

 After computing distance equations, our 
model assigns each data point to its closest 
cluster. 

 Finally, the centroids for each cluster are 
computed by taking the average of the data 
points that belong to each cluster 

 The resulting clusters correspond each to a 
vector 𝑥 = (𝛼, 𝛽, 𝛿, 𝑝, 𝛾)  with 𝑖 ∈ [1, 𝑀] . 
Using these vectors, we reconstruct the face 
model for each person respectively. 

A last thing to note is that given the iterative nature of 
K-means algorithm and the random initialization of 
centroids at the start, an issue may arise with different 
initializations leading to different clusters. Therefore, 
we recommend using the same approach we did, 
which is to run the algorithm using different 
initializations of centroids and picking the run 
yielding the lower sum of squared distance. 
Moreover, since the nature of vectors obtained from 
R-Net correspond to facial identities convergence is 
achieved more easily since all the individual’s feature 
vectors are close to each other in distance. 

4 RESULTS 

Training the R-Net model was done using multiple 
sources namely; CelebA(Liu et al., 2015), 300W-
LP(Zhu et al., 2016), I-JBA(Klare et al., 2015), 
LFW(B. Huang et al., 2008) and LS3D(Bulat & 
Tzimiropoulos, 2017). Using these images, we took 
in consideration the balancing of pose and race 
distributions and got approximately 260K face 
images. 
 
 

The input size was set to 224x224. We used the 
pretrained weights of ImageNetas initialization and 
then trained the R-Net model using Adam optimizer, 
a batch size of 8 and starting with a learning rate of 
1e-4 ending after 500K iterations. 

As for K-means, we used an image set that is 
composed of our own facial recognition dataset, and 
300W-LP(Zhu et al., 2016) from which we choose 5 
random images for each person in various poses and 
lighting. The resulting data-set has approximately 
20K images of 5K identities.  

Some of the reconstruction results seen in Fig 3. 
bellow show the resulting images and 3D models of 
our R-Net model. As observed clearly, the obtained 
3D model is very smooth and lacks any visible 
anomalies. 

 
Figure 3: Examples of the results obtained through R-Net 
model. 

For fair comparison with previous results in the 
current literature, we studied the results of our models 
on the MICC Florence 3D Face Dataset (Bagdanov et 
al., 2011) which contains 53 subjects each having a 
neutral expression ground truth and three video 
sequences taken in 3 three different scenarios: 
cooperative, indoor, and outdoor. Table 1 and Fig 4 
shows a comparison between the results from our R-
Net , the results from (Tran et al., 2017), those from 
(Genova et al., 2018) and those from (Deng et al., 
2019). 

 
Figure 4: Comparison with the work done by (Genova et 
al., 2018) in the second row and ours in the last row. 
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Table 1: Mean Root Mean Squared Error (RMSE) across 
53 subjects on MICC dataset (in mm). We use ICP for 
alignment and compute point-to-plane distance between 
results and ground truth. 

Method Cooperative Indoor Outdoor
(Tran et 
al., 
2017) 

1.97±0.49 2.03±0.45 1.93±0.49 

(Genova 
et al., 
2018) 

1.78±0.54 1.78±0.52 1.76±0.54 

(Deng et 
al., 
2019) 

1.66±0.52 1.66±0.46 1.69±0.53 

Ours 1.65±0.49 1.66±0.57 1.69±0.53

As seen, our results surpass those of (Genova et 
al., 2018) and (Tran et al., 2017) both in visual renders 
and RMSE, even though we cut the ground truth 
meshes to compensate for (Tran et al., 2017) only 
containing part of the forehead. As for (Deng et al., 
2019) our results are very close to each other due to 
having arguably similar model architecture when it 
comes to R-Net and working on the level of single 
image reconstruction. 

However, working on multi-image 
reconstruction, table 2 below shows that using K-
means alongside R-Net clearly outperforms other 
methods. 

The fact that our R-Net produces smooth and 
superior quality face shapes, and that by itself it 
surpasses some of the literature results, would ensure 
that adding a second layer on top of it, in our case the 
K-means, converges for even better results. This, to 
our knowledge, is the first approach applying K-
means to face reconstruction attaining such results. 
And through qualitative analysis we further 
demonstrated the interesting contribution done in this 
paper. 

5 CONCLUSIONS 

In this paper, we designed and trained a ResNet based 
model for the task of face reconstruction from a single 
image. This model was trained using a custom loss 
function that exploits image data levels without the 
need for 3D ground truth shapes. And it showed great 
results in comparison with previous work done in the 
literature review.  

Furthermore, we improved the outcomes by using 
information from multiple image which provides 
better insights on the facial structure.  This  was  done 

Table 2: Results for multi-image recognition on MICC 
dataset, using the strategy of (Piotraschke & Blanz, 2016). 
S and G here denote segment-based aggregation and global 
based aggregation. 

Method Cooperat
ive

Indoor Outdoo
r 

All 

Shape 
averaging

1.97±0.4
9

2.03±0.
45

1.93±0.
49 

1.62±0.
51

(Piotrasc
hke & 
Blanz, 
2016)-G 

1.78±0.5
4 

1.78±0.
52 

1.76±0.
54 

1.65±0.
55 

(Piotrasc
hke & 
Blanz, 
2016)-S 

1.66±0.5
2 

1.66±0.
46 

1.69±0.
53 

1.65±0.
55 

(Deng et 
al., 2019) 

1.60±0.5
1 

1.61±0.
44 

1.63±0.
47 

1.56±0.
48 

Ours 1.59±0.5
3

1.61±0.
50

1.62±0.
51 

1.54±0.
52

by taking ad-vantage of the K-means algorithm 
through its characteristics that computes centroids of 
data cluster, resulting in far better understanding and 
representation of feature vectors. 
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