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Abstract: In 2013, the International Agency for Research on Cancer classified particulate matter (PM) as carcinogenic 
to humans. It is therefore essential to measure PM concentrations to minimize the exposure of individuals. 
Our objective was to investigate personal exposure to PM2.5 (PM with diameter ≤ 2.5 µm) in Grenoble 
(France) during commuting in different transportation modes: bike, walk, bus and tramway. PM2.5 
measurements were found to be the highest for bikes, followed by walk, bus, and tramway. In this study, 
conducted in spring during low pollution levels of PM, exposure levels are greatly influenced by the time of 
day. Pedestrian and cyclists’ exposure generally stayed under background reference values. Exposure in 
public transportation was usually below reference values, but when background PM2.5 levels went lower 
(evening), levels registered in the tramway or bus reached those of the reference. Therefore, public transport 
users could be less exposed than active commuters, except when ambient pollutant levels are low. 
Environmental parameters like wind might be important in Grenoble, and it would be worthwhile to reproduce 
this study at a time when wind speed is lower.    

1 INTRODUCTION 

Every year, it is estimated that outdoor air pollution 
causes 7 million deaths around the world (Fuller et 
al., 2022). Particulate matter (PM) is made of solid 
compounds suspended in the air that are small enough 
to be inhaled. Considered as the most dangerous form 
of air pollution, PM can enter blood circulation, and 
accumulate in numerous organs (Pryor, Cowley, & 
Simonds, 2022). Therefore, it is important to assess 
populations’ exposure to PM, which is generally done 
by official reference monitoring stations. However, 
more and more scientists state that stationary 
monitoring stations are not always representative of 
people’s exposure (Van den Bossche et al., 2015; F. 
Yang et al., 2019). This might be related to the time 
that people spend indoor and outdoor, in places where 
the pollutant levels do not always equal to reference 
values. Time spent in transportation could represent 
up to 30% of the inhaled dose (Dons, Int Panis, Van 
Poppel, Theunis, & Wets, 2012). According to Han et 
al. (2021), personal exposure to PM2.5 (PM with 
diameter ≤ 2.5 µm) measured by portable sensors, is 
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significantly associated with an increase in 
respiratory and systemic inflammatory biomarkers. 
However, the associations are weaker when ambient 
PM2.5 concentrations, measured by fixed reference 
stations, are used as an exposure proxy. Low-cost 
sensors demonstrate good accuracy to measure 
individual exposure to PM (Motlagh et al., 2021) and 
can therefore be used for exposure studies, especially 
during commuting. Few mobility studies involving 
low-cost sensors have been performed, especially in 
low-concentration situations. Many surveys take 
place in Asia where pollution levels are usually 
higher than in Europe. During 10 working days, we 
conducted a field experiment to collect PM 
measurements using four transportation modes 
around Grenoble (France): bike, walk, bus, and 
tramway. Our objective was to estimate personal 
exposures to PM2.5 with a low-cost sensor during 
commuting in different modes. Another purpose was 
to compare the so measured concentrations with 
reference values. We wanted to know whether the 
low-cost sensors could be used to assess differences 
between transport modes and the time of day. In 
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doing this, we hope to contribute to the exposure 
literature using low-cost sensors. 

2 MATERIALS AND METHODS 

2.1 Particulate Matter Sensor 

2.1.1 Monitoring Devices 

PM concentrations were measured using two 
AirBeam2 (HabitatMap), which entail an optical 
sensor (Plantower PMS7003). AirBeam2 are 
inexpensive ($249) and measure concentrations of 
PM1, PM2.5, PM10, temperature and relative humidity 
(RH). They are connected to a smartphone via 
Bluetooth and provide real time values to users. With 
the growth of the Internet of Things (IoT) sector (Das, 
Ghosh, Chatterjee, & De, 2022; Y. Yang et al., 2022), 
cheaper PM sensors are currently available on the 
market. However, they often have to be assembled 
with other components like microcontrollers or GPS 
modules, and an IoT platform has to be set-up for data 
visualisation. Designing a monitoring station, 
assembling components and developing a data 
visualisation tool are different steps which can be 
time-consuming. HabitatMap already provides an 
online platform (http://aircasting.org) for viewing and 
downloading AirBeam2 data. Furthermore, 
AirBeam2 are ready-to-use devices. South Coast Air 
Quality Management District (2018) compared the 
AirBeam2 PM2.5 measurements to values given by 
three Federal Equivalent Method instruments. They 
observed very strong correlations in the laboratory 
studies (R2 > 0.99) and moderate to strong 
correlations with different reference instruments from 
the field (0.68 < R2 < 0.79). More recently, Tong, Shi, 
Shi, and Zhang (2022) found that Airbeam2 
measurements correlated well with roadside official 
monitoring stations. They also reported a good 
agreement (R2 = 0.67–0.89) between Airbeam2 local 
measurements and the predictions from a model 
involving satellite observations. AirBeam2 is already 
calibrated by the manufacturer, but the calibration 
equations do not account for RH (HabitatMap, 2022). 
Huang et al. (2022) found that the accuracy and bias 
of the PM data reported by AirBeam2 sensors were 
affected by rainy weather and high humidity 
environments. Moreover, Zou, Clark, and May 
(2021) suggested that there was a significant linear 
relationship between RH and the relative response of 
the low-cost PM sensors to the research-grade 
instruments. Therefore, we calibrated the devices by 
accounting for RH. 

2.1.2 Calibration 

The calibration process involved two steps (Figure 1).  

 
Figure 1: Two steps calibration process. 

• Step 1: Calibration of a Fixed Low-Cost 
Sensor (“Gold Pod”) with a Reference Device 

Before this study, we had already calibrated a low-
cost fixed station by collocating it with a Palas GmbH 
200 (Reference) from Atmo Auvergne-Rhône-Alpes 
(Atmo AuRA) in Grenoble “Les Frênes” (Refer 
Figure 4).  This calibration was performed using a 
random forest regression technique developed by 
Schmitz et al. (2021) comparing this individual fixed 
sensor with the reference station. This low-cost fixed 
station, called “gold pod” used the same optical 
sensor (PMS7003) than the mobile devices.  

• Step 2: AirBeam2 Sensors Calibration with a 
Fixed Low-Cost sensor (“gold Pod”) 

Next, 44 days of calibration were performed from 
September 20, 2022 to November 3, 2022 where the 
two AirBeam2 were collocated close to the “gold 
pod”. The two mobile devices were calibrated 
independently: first, the AirBeam2 used by 
experimenter 1 (“mob1”) and then the device used by 
experimenter 2 (“mob2”). This was motivated by the 
observation that mob2 was delivering concentrations 
a bit higher than mob1. By using the nls() function 
from RStudio 2022.07.1 (R Core Team, 2022) on 
75% of the dataset, we applied the mechanistic 
equation (Equation 1) involving relative humidity and 
temperature for calibration:  
 PM .  a b .  c T    (1) 

 

where PM2.5 gp = PM2.5 concentrations in µg/m3 given 
by the “gold pod”, PM2.5 mob = PM2.5 concentrations 
(µg/m3) measured with the AirBeam2, RHmob = 
relative humidity in % determined by the AirBeam2, 
Tmob = temperature in °C given by the AirBeam2. For 
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mob1, we found a = 0.49, b = 0.91, c = 0.07 and d = 
0.43. For mob2, we had a = -0.1, b = 0.86, c = 0.08 
and d = 0.31. We then tested these two calibration 
formulas on the remaining 25% dataset, and we found 
the following performance indicators. For mob1, we 
had RMSE = 0.62 µg/m3 and R2 = 0.96 and for mob2, 
we found RMSE = 0.58 µg/m3 and R2 = 0.97. RMSE 
(root mean square error) reflects the accuracy of the 
model to predict actual PM2.5 values, and R2 
(coefficient of determination) refers to the correlation 
between the AirBeam2 values and the reference 
concentrations. Based on this, we decided to continue 
with these models as the indicators were good 
compared to what is found in the literature (Blanco et 
al., 2022; Haghbayan & Tashayo, 2021).  

2.2 Sampling Design 

2.2.1 Monitoring Routes 

The study took place in Grenoble, the largest city in 
the Alps, hosting around 450,000 inhabitants. Five 
different monitoring sites were selected (Figure 2): 
two wide streets (“Jaurès” and “Pain”) and two 
narrow (also called “canyon”) streets surrounded by 
higher buildings (“Grégoire” and “Blanchard”).  We 
also monitored PM when we commuted between 
Blanchard and Grégoire (“Cross” route). 
  

 
Figure 2: Monitoring routes used in the experiment. 
Credits: © OpenStreetMap contributors. 

2.2.2 Experimental Timings 

Ground measurements were conducted from April 25,  

2022 to May 12, 2022 during 10 working days 
(Figure 3). Three different measurement sessions 
were performed daily: a first session (S1, morning) 
between 8:00 and 9:00, a second session (S2, 
noontime) between 12:00 and 13:00 and a third 
session (S3, afternoon) between 16:00 and 17:00. 
Sometimes, for reasons related to the public transport 
timetables, the sessions went slightly beyond the time 
slots. Nine sessions were postponed because of rainy 
conditions. 

Two experimenters were involved in the study. 
For each session, they had to travel the same routes in 
parallel using different modes of transport: bike, 
walk, bus or tramway (Appendix). Each site was 
sampled for at least three days (Figure 3). On the days 
when we studied Blanchard and Grégoire, we also 
monitored PM while travelling in between the two 
sites (“Cross” route). Jaurès was sampled four times 
because this street, longer than the others, had many 
potential biases (intersections, stores, idling cars) and 
we thought it might be interesting to replicate the 
measurements further.  
 

 
Figure 3: Measurement campaign schedule. 

Next, we analysed carefully the public transportation 
schedules. A session example is reported in the 
Appendix. The same document was used as a 
roadmap by the experimenters for each session. 
Reproducing measurements on the same street is 
important to be representative (Van den Bossche et 
al., 2015). Every day, each experimenter performed 
at least 12 repetitions of the route.  

2.3 Data Cleaning 

In this paper, we decided to focus only on PM2.5 
analysis and on commuting times. We left PM10, PM1, 
and results related to waiting times for further work. 
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Data were extracted via AirCasting application and 
analysed with RStudio. We retrieved 214 comparison 
trips where the two experimenters were travelling 
along the same routes (428 trips in total, considering 
both experimenters). PM sensors can be vulnerable to 
inaccuracies resulting from drift, temperature, 
humidity and other factors (Motlagh et al., 2021). As 
both AirBeam2 were quite new, drift was not an issue, 
but we blew compressed air through the intake of the 
gold pod used for calibration as recommended by 
Bathory, Dobo, Garami, Palotas, and Toth (2021). As 
explained above, both AirBeam2 devices were 
calibrated using formulas accounting for RH and 
temperature. We also checked the presence of dust 
with CAMS (Copernicus Atmosphere Monitoring 
Service) satellite data (retrieved 0.1° x 0.1° resolution 
dust values from ENSEMBLE dataset (METEO 
FRANCE, 2020) (‘analysis’ type)). Fortunately, no 
dust event happened during the experiment period. 
We removed outliers in the dataset because we had 
peak events on trips, even inside public transports, 
mainly because of smokers or idling cars. In public 
transports, those peaks were often caused by door 
openings. All outliers with more than 1.5 times the 
interquartile range above the third quartile (Q3) or 
less than 1.5 times the interquartile range below the 
first quartile (Q1) were removed. Hourly background 
reference PM2.5 concentrations from Atmo AuRA 
were collected through their Application 
Programming Interface (https://api.atmo-aura.fr/). 
For this study, we used the average from two 
background reference stations (Les Frênes and Saint-
Martin d’Hères). Both references, placed at 
approximately 3 km from the experimental sites, were 
located in relatively open areas (Figure 4). For each 
measurement made every second with our mobile 
devices, we affected the corresponding hourly value  
 

 
Figure 4: Location of the Atmo AuRA reference stations (in 
red) and ROMMA meteorological station (in blue). Credits:  
© OpenStreetMap contributors. 

given by the reference stations. We also used 
meteorological data from the Réseau d’Observation 
Météo du Massif Alpin (ROMMA, 2022). Their 
nearest weather station (GPS coordinates: latitude = 
45.169°, longitude = 5.768°) was located around 3 km 
from the collocation site (Figure 4). A Davis Vantage 
Pro2 instrument registered all weather parameters. 
Wind speed (km/h) corresponded to a 10-mn average, 
with a measurement frequency of 2.5-3 s. We 
checked that all data sources used the same time zone 
(Europe/Paris). 

3 RESULTS 

3.1 Descriptive Statistics 

Collected PM2.5 data are summarized in Table 1. 
More measurements were performed on walking 
mode because, in order to replicate the experiment 
and use public transportation again, we had to walk 
back to the starting point. This was especially true on 
routes where public transport was only running in one 
direction. The number of measurements made on foot 
were also higher because walking the road segment 
took longer than cycling, taking the bus or tramway.  

Table 1: Descriptive statistics on PM2.5 concentrations and 
number of measurements (count) performed in different 
commuting modes. 

 

More outliers were identified for walking (5.3%) than 
for cycling (4.6%), tramway (4.1%) or bus (3.1%). 
Walkers are generally more exposed to PM coming 
from smokers, restaurants or bakeries. In addition, 
they are close to idling cars. When leaving outliers in 
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the dataset, cyclists were more exposed (median: 8.2 
µg/m3) than walkers (median: 8 µg/m3), followed by 
buses (median: 7.4 µg/m3) and tramway (median: 7.2 
µg/m3). Compared with cyclists, pedestrians were 
2.2% less exposed, bus users 9.4% less and tramway 
commuters 12.8% less. When removing outliers, the 
exposure ranking proved to be the same. Cyclists 
were more exposed (median value of 8.1 µg/m3) than 
walkers (median: 7.9 µg/m3), followed by bus users 
(median: 7.4 µg/m3) and tramway (median: 7.1 
µg/m3).  Compared to cyclists, walkers were 2.4% 
less exposed, bus commuters 8.6% less and tramway 
users 12.2% less. Qiu and Cao (2020) also found that 
walkers were more exposed than bus commuters. 
Peng et al. (2021) and Wang et al. (2021) found the 
same exposure ranking (bike>walk>bus). They used 
a PMS3003 device, similar to PMS7003. According 
to Shen and Gao (2019), cyclists and pedestrians can 
be directly exposed to other local particle emissions 
along the road, which probably results in elevated PM 
concentrations in specific areas and times. In a study 
taking place in Nantes (France), Muresan and 
François (2018) stated that public transport users 
would accumulate 4–11 times less PM in their lungs 
than nearby pedestrians walking the same route. We 
decided to pursue all further analyses after having 
removed outliers in our dataset. 

3.2 Comparison Between Travel Modes 

Exposure levels are greatly influenced by the time of 
day (Figure 5). The morning session (S1) showed 
higher PM2.5 concentrations, followed by the 
noontime (S2) and the afternoon session (S3). 

Of all transport modes combined, S1 PM2.5 
median was 12.9% higher than S2, while S2 median 
was 15.3% higher than S3. In the tramway, diurnal 
variations seem to be reduced compared to other 
modes. deSouza, Lu, Kinney, and Zheng (2021) also 
found that time of day (evening/morning) had an 
influence. In their ANOVA analysis, travel mode 
explained 9% of the variability in PM2.5 
concentrations whereas time of day explained 8% 
variability.  

All sessions considered, cyclists are the most 
exposed commuters. Abbass, Kumar, and El-Gendy 
(2021) studied morning and evening PM2.5 peaks. In 
their work, daily exposure patterns when walking or 
cycling looked similar, whereas microbus 
concentrations behaved differently, and cycling 
resulted in exposure to the highest average PM2.5 
concentrations. 
 

 
Figure 5: Boxplots of PM2.5 concentrations by 
transport mode. Upper and lower whiskers show the 
ranges of 5% to 95%, the central dark lines indicate 
the median. The bars outside the box represent 1.5 
times the interquartile range, and circles are outliers. 

Per session, we observe the same PM2.5 exposure 
ranking (bike > walk > bus > tramway) but, during 
S3, the levels measured in the bus get close to those 
measured in the tramway. When PM2.5 levels are high 
(S1), the differences between the transport modes are 
important, but when the levels are low, during the 
afternoon (S3), the differences become less 
pronounced. This suggests that when PM levels are 
low, public transports no longer play a “protective” 
role against PM2.5. In addition, relative differences 
between sessions are lower in the tramway than in the 
other transportation modes. This could mean that 
levels in the tramway are less influenced by 
background concentrations, which are higher in the 
morning.  

3.3 Comparison with Reference Value 

One of the objectives of this study was to compare the 
PM2.5 values measured by the mobile sensors with 
those returned by the reference stations. The graph 
below (Figure 6) shows PM2.5 levels measured by the 
mobile devices and the corresponding background 
reference levels. The hours marked in bold are the 
times when we carried out the most PM2.5 
measurements. As an example, the 10 am 
measurements were those that we were unable to 
perform as planned between 8 and 9 am. As this rarely 
happened, we got fewer observations for those extra 
hours.  

In general, PM2.5 levels given by the mobile 
sensors were lower than values given by background 
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Figure 6: Comparison between values measured by mobile devices and reference values. The 9 o'clock boxplot corresponds 
to the values measured by mobile sensors between 8 and 9 am. The hours in bold are the ones where we had the more 
measurements taken by mobile devices.  

stations, especially when considering hours when the 
counts were the highest (9, 13, and 17). This could 
come from microscale PM2.5 variations, as PM2.5 at 
the local scale could be affected by different factors. 
This was surprising that measured PM2.5 values were 
lower than reference values, because we were in a 
traffic situation and the reference stations are located 
in a background environment. Both reference 
stations, situated in opened areas, could be exposed to 
more PM2.5 which would be covered by the dense and 
high buildings of the city centre where experiments 
took place. The AirBeam2 calibration could also be 
an explanation. The ideal way to perform a calibration 
would have been to collocate our mobile devices 
directly with the reference station, without using a 
gold pod as an intermediary. It is also important to 
note that the calibration with the reference was 
performed at an hourly scale, and we had to apply it 
to values given at a fine scale (seconds). Knowing the 
RMSE related to step 1 calibration (Refer Figure 1), 
we could expect a maximal error of 0.7 µg/m3. The 
average difference between reference and mobile 
values during S1 and S2 (considering 9, 13 and 17 

o’clock timings) was about 1.1 µg/m3. Therefore, the 
calibration error alone could most probably not 
explain the observed difference. Motlagh et al. (2021) 
used low-cost sensors to measure PM2.5 in Helsinki 
and saw that roadside measurements were higher than 
reference values. But during spring or summer, the 
pollution levels in the train, bus or tramway were well 
below the ambient reference pollution levels. They 
attributed this to the fact that the transport fleet in 
Helsinki was quite modern and the indoor air heavily 
filtered. This should be the case for tramways in 
Grenoble. However, older buses might remain in 
operation, and the practice of using conditioned air 
depends on the weather and the driver. It would have 
been interesting to know if the air was filtered in the 
different buses and trams we used. Han et al (2021) 
also used low-cost sensors and observed that personal 
PM2.5 levels were consistently lower than ambient 
concentrations.  The Center for Advancing Research 
in Transportation Emissions, Energy, and Health 
(2019) measured exposure of urban cyclists in Atlanta 
(United States) with a PMS5003. They concluded that 
few segments recorded air quality worse than the 
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background concentration. During most of the routes, 
riders experienced a better air quality than the one 
registered at the monitoring location. 

In our study, wind could be an important factor 
determining PM2.5 levels. We observed that wind 
speed values were increasing starting from 10 am 
(Figures 7 and 8). The relief around Grenoble could 
contribute to this phenomenon. 

 

 
Figure 7: Wind speed values during the experiment. 

 
Figure 8: Average wind speed values between April 25, 
2022 and May 12, 2022. 

Interestingly, we observed that bus and tramway 
had levels close to the reference during S3 (Refer 
Figure 6). When PM levels in Grenoble were high, 
public transports provided an important advantage, 
but when PM levels were lower, close to their 
minimum, public transportation systems did not seem 
to offer this benefit any longer. Wang et al. (2021) 
also performed three daily measurement sessions 
(morning/noon/afternoon). Their GRIMM instrument 
showed that at lower pollutant levels, the 
concentrations registered in the bus were higher than 
the background levels. When pollutants levels were 
higher (noontime), the difference between inside and 
outside got larger, as in our study. They also observed 
lower levels of PM2.5 compared to the reference when 
the pollutant levels were higher. Furthermore, by 

using a similar low-cost sensor (PMS3003), they 
found as well that when PM2.5 levels were lower, the 
difference between reference levels and bus carriage 
levels was lower.  

4 CONCLUSIONS 

During this spring experiment, performed in 2022 at 
low pollutant levels, cyclists were more exposed than 
pedestrians, bus users and tramway commuters. This 
ranking was the same whether we removed outliers or 
not. We counted more outliers for walking than for 
cycling, tramway or bus.  

When comparing exposure values to reference 
stations measurements: (1) pedestrian and cyclists’ 
exposure generally stayed under background values, 
(2) public transportation systems were under 
reference values at 9 or 13 o’clock but when PM 
levels went lower, levels reached those of the 
reference value. Public transport users could be less 
exposed than commuters using active modes, except 
when ambient PM levels are low.  

The time of day seems to influence exposure more 
than mode of transport, with a gradual concentration 
decrease throughout the day. Environmental 
parameters like wind might play a role in Grenoble. It 
would be interesting to reproduce this work during 
another season when wind speed is lower.  

In the future, we will perform an inhalation dose 
calculation on the same dataset in order to consider 
breathing rate differences among commuting modes. 
In Grenoble, about 15% of the working population 
cycles to work (Agence de la Transition Écologique, 
2015), which makes the problem of PM exposure 
more acute. However, we must emphasize that 
cycling helps prevent many chronic diseases and 
brings environmental benefits.   
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ABBREVIATIONS 

Acronym Definition 

ANOVA Analysis of variance 
Atmo AuRA Atmo Auvergne-Rhône-Alpes 
CAMS Copernicus Atmosphere Monitoring Service 
IoT Internet of Things 
mob1 AirBeam2 used by experimenter 1 
mob2 AirBeam2 used by experimenter 2 
PM Particulate matter 
PM1 Particulate matter with aerodynamic diameter ≤ 1 µm 
PM2.5 Particulate matter with aerodynamic diameter ≤ 2.5 µm 
PM10 Particulate matter with aerodynamic diameter ≤ 10 µm 
R2 Coefficient of determination 
RH Relative humidity 
RMSE Root mean square error 
ROMMA Réseau d’Observation Météo du Massif Alpin 
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APPENDIX                                      

Example of a measurement session              
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