
Exploiting Meta-Model Structures in the Generation of Xtext Editors

Jörg Holtmann1 a, Jan-Philipp Steghöfer2 b and Weixing Zhang1 c

1Department of Computer Science & Engineering, Chalmers | University of Gothenburg, Gothenburg, Sweden
2Xitaso IT & Software Solutions GmbH, Augsburg, Germany

Keywords: Xtext, Textual Modelling, Modelling Language Engineering, Modelling Environments.

Abstract: When generating textual editors for large and highly structured meta-models, it is possible to extend Xtext’s
generator capabilities and the default implementations it provides. These extensions provide additional fea-
tures such as formatters and more precise scoping for cross-references. However, for large metamodels in
particular, the realization of such extensions typically is a time-consuming, awkward, and repetitive task. For
some of these tasks, we motivate, present, and discuss in this position paper automatic solutions that exploit
the structure of the underlying metamodel. Furthermore, we demonstrate how we used them in the devel-
opment of a textual editor for EATXT, a textual concrete syntax for the automotive architecture description
language EAST-ADL. This work in progress contributes to our larger goal of building a language workbench
for blended modelling.

1 INTRODUCTION

Xtext (Eysholdt and Behrens, 2010) is a framework
for the development of domain-specific languages
(DSLs). It can either take an existing meta-model
and derive a grammar from it or allows a language
engineer to create a grammar directly which is then
translated into a meta-model. Once a grammar exists,
Xtext can generate editors that integrate seamlessly
into the Eclipse IDE and offer many convenient fea-
tures such as an outline view of the file which is cur-
rently edited. On the other hand, it offers extension
mechanisms for more advanced editor features.

In practice, using these extensions mechanisms
can pose significant technical challenges. For ex-
ample, auto-formatting or the use of template pro-
posals — both common features in modern editors —
are not supported for DSLs based on Xtext out-
of-the-box. Despite comprehensive documentation
of the corresponding extension mechanisms, these
challenges re-occur and have to be solved manually.
In particular, implementing these features for suffi-
ciently large languages can be cumbersome and in-
volves a lot of repetitive code.

In other cases where Xtext provides support out-
of-the-box, the default implementations provided by

a https://orcid.org/0000-0001-6141-4571
b https://orcid.org/0000-0003-1694-0972
c https://orcid.org/0000-0003-2890-6034

Xtext are not always suitable for large DSLs since the
performance they provide (e.g., for cross-reference
auto-completion) is insufficient for practical purposes
or for certain use cases.

In the context of a prototype for a textual variant
of the automotive systems modeling language EAST-
ADL (Debruyne et al., 2004; Cuenot et al., 2007), we
implemented several automated solutions for these re-
occurring challenges by using custom Xtext generator
fragments that exploit the structure of the language’s
meta-model. These fragments are used when Xtext
generates the editors for a DSL. We created fragments
for formatting, content-assist, and template proposals.
In addition, we created a solution for providing the
scope of cross-references automatically suggested by
the editor which addresses several short-comings of
the default solution. In all cases, the structure of the
meta-model provides the necessary support to enable
the automation.

In this position paper, we discuss these automated
solutions and describe how other DSL engineers can
adapt them for their needs. Our solutions are partic-
ularly suitable for very large, but highly structured
DSLs that are available as a metamodel, but should
also translate to other situations in which Xtext is
used. Furthermore, we discuss the limitations of the
automatic solutions where present. Whereas these au-
tomations are not generic enough to add them to Xtext
properly, they are interesting for other language engi-

218
Holtmann, J., Steghöfer, J. and Zhang, W.
Exploiting Meta-Model Structures in the Generation of Xtext Editors.
DOI: 10.5220/0011745900003402
In Proceedings of the 11th International Conference on Model-Based Software and Systems Engineering (MODELSWARD 2023), pages 218-225
ISBN: 978-989-758-633-0; ISSN: 2184-4348
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

neers and can be applied to other languages as well.
Our work in progress contributes to a larger vi-

sion of a language workbench for blended modelling
in which editors for different concrete syntaxes for the
same abstract syntax co-exist and enable engineers to
seamlessly switch between the representations (Cic-
cozzi et al., 2019). Especially when used in conjunc-
tion with evolving languages where the meta-model
structure changes regularly, it is necessary to be able
to quickly regenerate the editors with as little manual
effort as possible.

2 RELATED WORK

Neubauer et al. proposed an approach (Neubauer
et al., 2015) to automatically create modern edi-
tors for XML-based DSLs by bridging the “technical
spaces” XMLware, grammarware, and modelware.
Their automation mainly focuses on providing auto-
matic customization of textual concrete syntaxes for
the target DSL, such as which symbols to use. In con-
trast, our automation mainly focuses on the enhance-
ment of the editors, such as automatically providing
default names for new elements, improved sugges-
tions for cross-references, etc.

Latifaj et al. focused on enabling different stake-
holders to perform blended modeling (David et al.,
2022) in an automated manner, i.e., using different
modeling notations to seamlessly handle overlapping
parts of the model (Latifaj et al., 2021). They discuss
four challenges to achieving this automation goal in
the commercial tool RTist. However, they do not ad-
dress the challenges of content assistance, template
proposals, etc., which are the core challenges dis-
cussed in this paper.

Cooper and Kolovos acknowledge some of the
challenges we address in this work in their paper
on requirements and challenges of blended mod-
elling (Cooper and Kolovos, 2019). For instance,
they consider scoping across concrete syntaxes to be
a challenge. We address this with our custom Scope-
Provider as discussed in Section 4.4.

3 BACKGROUND

In the following, we provide relevant information on
Xtext as well as EATXT, the textual variant of EAST-
ADL which we used as an exemplar and a case study
for our work.

3.1 Xtext

Xtext is a framework for the development of tex-
tual domain-specific languages (DSL) (Eysholdt and
Behrens, 2010). At its core is a grammar language
that allows defining the syntax of a DSL. Xtext can
either generate a grammar out of an existing meta-
model or the user can specify the grammar directly
and the meta-model is generated by Xtext. A gram-
mar can be used as the input to generate editors for
the Eclipse IDE or for browsers. In addition, Xtext
can generate a language server that allows integrating
the DSL into VS.Code or Eclipse Theia.

The generation process is controlled by a work-
flow for the Modeling Workflow Engine (MWE2)
(Eclipse Foundation, 2023b). Xtext provides a lan-
guage generator which can be customized and ex-
tended with custom fragments. A fragment gener-
ates code based on the generator’s configuration, the
grammar and the corresponding meta-model. Xtext
out-of-the-box provides a number of such fragments,
which can be extended or replaced. These fragments
add a number of features to the generated editors. For
instance, Xtext automatically generates a syntax val-
idator which highlights incorrect syntax directly in
the editor and in Eclipse’s “Problems” view. For ed-
itors in the Eclipse IDE, support for the outline view
is also generated. We use Xtext’s ability to change
the standard configuration to add custom fragments
that provide better formatting, content-assist and tem-
plate proposals as described below. These custom
fragments are written in Xtend (Eclipse Foundation,
2023a).

Xtext splits the generated code into different bun-
dles, distinguishing between the infrastructure for the
language itself, the user interface of the editors (bun-
dle name ends with “.ui”) and the integration into the
Eclipse IDE (bundle name ends with “.ide”).

3.2 EAST-ADL and EATXT

EAST-ADL is an automotive systems modeling lan-
guage (Cuenot et al., 2007) and is based on a large
metamodel with more than 200 metaclasses and a hi-
erarchy of nested elements describing different as-
pects of electronic vehicle systems. It can be edited
in EATOP, an Eclipse-based editing environment that
provides a hierarchical view of an EAST-ADL model
along with form- and table-based editing capabili-
ties. EATXT provides a textual syntax for EAST-ADL
with the goal to enable blended modeling (Ciccozzi
et al., 2019), that is, the ability to switch between the
hierarchy-based and the textual representation seam-
lessly depending on the editing task.

Exploiting Meta-Model Structures in the Generation of Xtext Editors

219

shortName: String [1..1]

Referrable

shortName: String [1..1]

Referrable

EAPackageEAPackage
EAPackagable-

Element

EAPackagable-

Element

EADatatypeEADatatype

EANumericalEANumerical

element

*

element

*

direction:

 EADirectionKind [1..1]

FunctionFlowPort

direction:

 EADirectionKind [1..1]

FunctionFlowPort

1..1type 1..1type

...

...

...

in

inout

out

«enumeration»

EADirectionKind

in

inout

out

«enumeration»

EADirectionKind

FunctionTypeFunctionType FunctionPortFunctionPort
port

*

port

*

Design-

FunctionType

Design-

FunctionType

...

Figure 1: EAST-ADL Metamodel Excerpt.

Figure 1 depicts an EAST-ADL metamodel ex-
cerpt, which we use in this paper as a running exam-
ple for illustrative purposes. The excerpt contains a
set of metaclasses (partially containing attributes) and
relationships (i.e., generalizations, compositions, and
cross-references), which we explain in the following.

An example of an EATXT file is shown in Fig-
ure 2. The textual concrete syntax follows the hi-
erarchy and structure of the EAST-ADL metamodel.
Metaclasses in EAST-ADL are represented as blocks
delimited by curly braces (e.g., the FunctionFlowPort
WipingCmd in lines 7–10 as part of the DesignFunc-
tionType WiperCtrl). Attributes are represented as
lists with the attribute name and the values (e.g.,
the attribute direction in line 8 as part the Function-
FlowPort WipingCmd). Cross-references are repre-
sented as the reference name followed by the ac-
tual path to the reference (e.g., the cross-reference
type points to “DataTypes.Integer uint8”). In the
case of EATXT, the Xtext grammar is specified in
such a way that the textual keywords representing
the metamodel concepts like metaclasses, attributes,
and cross-references are named as in the metamodel
(e.g., both the keyword and its corresponding meta-
class have the same name FunctionFlowPort).

4 CHALLENGES AND
SOLUTIONS

In this section, we explain our solutions to re-
occurring challenges in the development of Xtext-
based language workbenches by referring to Figure 3,

Figure 2: Excerpt from an EATXT File Specifying a Wind-
shield Wiper Control System.

which depicts the coarse-grained architecture of our
Xtext-based editor for EATXT.

As described in Section 3.2, EAST-ADL is a sta-
ble language based on an Ecore metamodel (cf. east-
adl22.ecore in the plugin o.e.eatop.eastadl22 in the
top-left corner of Figure 3). We conceived its textual
syntax by automatically deriving an initial grammar
from that metamodel with Xtext and subsequently
adapting the grammar to the stakeholders’ needs. Fig-
ure 3 indicates the resulting grammar as the artifact
Eatxt.xtext as part of the plugin org.bumble.eatxt. In
this grammar, we named the production rules and
keywords equally as the language concepts in the
metamodel (i.e., metaclasses, attributes, and ERefer-
ences). This enables the exploitation of the meta-
model structure and thereby the development of our
automatic solutions.

The green Xtend and Java classes that are part of
the plugin org.bumble.eatxt represent our solutions to
the re-occurring challenges described below, exploit-
ing the structure of the metamodel eastadl22.ecore.
Three of the solutions are custom fragments that are
executed by the Xtext language generator (cf. Sec-
tion 3.1) and generate further artifacts (depicted in
lilac) that are used in the EATXT runtime. Another
solution generates an artifact during the activation of
the plugin which can then be exploited at runtime. We
provide the implementation in our EATXT develop-
ment repository (Holtmann et al., 2023). In the fol-
lowing four subsections, we explain and discuss these
automatic solutions, the challenges they solve, and the
artifacts they generate.

MODELSWARD 2023 - 11th International Conference on Model-Based Software and Systems Engineering

220

o.e.eatop.eastadl22o.e.eatop.eastadl22

org.bumble.eatxtorg.bumble.eatxt

org.bumble.eatxt.ideorg.bumble.eatxt.ide

org.bumble.eatxt.uiorg.bumble.eatxt.ui

contentassist/

EatxtContentAssist

Fragment.xtend

contentassist/

EatxtContentAssist

Fragment.xtend

formatting2/

EatxtFormatter2

Fragment.xtend

formatting2/

EatxtFormatter2

Fragment.xtend

scoping/

EatxtScopeProvider.java

scoping/

EatxtScopeProvider.java

«import»«import»

Legend

Generated artifact
exploited at runtime

Automatic solution
executed at infrastructure
generation or plugin startup

formatting2/

EatxtFormatter.xtend

(transformed to .java)

formatting2/

EatxtFormatter.xtend

(transformed to .java)

templates/

templates.xml

templates/

templates.xml

eastadl22.ecore

Activator.javaActivator.java

Eatxt.xtext

Cross-references
lookup map

templates/

EatxtTemplate

Fragment.xtend

templates/

EatxtTemplate

Fragment.xtend

src-gen/contentassist/

EatxtProposalProvider.java

src-gen/contentassist/

EatxtProposalProvider.java

Figure 3: EATXT Architecture and Automatic Solutions for Re-occurring Challenges.

4.1 Template Proposals

The Eclipse IDE provides the possibility of using
code templates to enter complex code constructs that
contain a significant amount of text and are more
complicated than simple keywords. For instance, in
the case of the Java programming language, the pro-
posal of complete constructors or different kinds of
loops is handled by code templates. Eclipse ships
with a set of pre-defined code templates and allows
adding user-defined templates or customize existing
ones. Likewise, Xtext editors also provide the pos-
sibility to use and define code templates by support-
ing template proposals, which consist of the actual
code template and a context type (Eclipse Foundation,
2023g). During the editor generation, Xtext automati-
cally registers such a context type for each production
rule and keyword (e.g., the production rule for textual
instances of the EAST-ADL metaclass FunctionFlow-
Port), and it provides the context for the code template
proposal.

However, the development of template propos-
als is cumbersome, because the DSL engineer has to
define each template manually in an XML file tem-
plates/templates.xml as part of the UI plugin (cf. top
of the plugin org.bumble.eatxt.ui on the right-hand
side of Figure 3) (Eclipse Foundation, 2023g). More-
over, it is recommended practice to define them in
the runtime workspace of the Xtext editor through

a corresponding dialog and to export the resulting
templates.xml to the development workspace (Eclipse
Foundation, 2023g), which impedes rapid prototyp-
ing of the template proposals. Particularly, this man-
ual practice is awkward for large metamodels.

As an automatic solution to this challenge in
EATXT, we implemented the generator fragment tem-
plates/EatxtTemplateFragment.xtend as part of the
plugin org.bumble.eatxt (cf. fragment of the plugin
in Figure 3). This fragment is executed by the
MWE2 workflow and automatically generates the
XML file templates/templates.xml as part of the
plugin org.bumble.eatxt.ui. The fragment iterates
over the metamodel and generates a template pro-
posal for all metaclasses and all of their manda-
tory sub-elements (i.e., attributes, containments and
their nested structures, as well as cross-references).
We restrict the code templates to contain only sub-
elements that are mandatory in the metamodel instead
of proposing all potential sub-elements, because it
might be much effort for the user to delete all pro-
posed optional, but potentially not required, elements.

Figure 4 depicts the generation scheme of the frag-
ment using the example of the metaclass Function-
FlowPort and its mandatory attribute and mandatory
cross-reference. We specify the context type as the
name of the production rule, which in the EATXT case
is always named the same as the corresponding meta-
class (e.g., org.bumble.eatxt.Eatxt.FunctionFlowPort

Exploiting Meta-Model Structures in the Generation of Xtext Editors

221

shortName: String [1..1]

Referrable

shortName: String [1..1]

Referrable

EADatatypeEADatatype

direction:

 EADirectionKind [1..1]

FunctionFlowPort

direction:

 EADirectionKind [1..1]

FunctionFlowPort

1..1 type1..1 type

...

in

inout

out

«enumeration»

EADirectionKind

in

inout

out

«enumeration»

EADirectionKind

templates/

templates.xml

templates/

templates.xml

Figure 4: Exemplary Generation of a Template Proposal.

for the XML template attribute context). The ac-
tual code template is then generated as the name of
the production rule and metaclass (e.g., FunctionFlow-
Port) followed by a set of further texts as well as open-
ing and closing curly braces.

Beyond proposing simple static texts that would
typically not fit to the remainder of the text file and
hence would lead to error messages in the editor, the
template proposal approach also supports template
variable resolvers (Eclipse Foundation, 2023g). For
simple attributes, we distinguish the different plain
data types of attributes (e.g., String, Integer, Float)
and corresponding template variable resolvers. For
example in Figure 4, we translate the String attribute
shortName of the metaclass Referrable to a corre-
sponding template variable resolver ${shortName}.
For enumeration attributes, we generate enumeration
template variable resolvers. For example, the value of
the attribute direction is automatically set to the first
literal in of the enumeration EADirectionKind. Fur-
thermore, we also support cross-reference template
variable resolvers that propose an existing element
that fits to the type of the cross-reference. For exam-
ple, the cross-reference type is translated to the corre-
sponding resolver.

Figure 5 depicts a screenshot for the proposal of a
code template for the context type FunctionFlowPort
with its mandatory two attributes, where the default
enumeration value of the direction attribute as well as
a target candidate for the cross-reference type is di-
rectly proposed. In the case of EATXT, the generated
template file contains 194 code templates with a total
of more than 1,000 XML lines and covers all meta-
classes of the metamodel and their mandatory sub-
elements.

As we exploit the concept names of the underly-
ing metamodel for this solution, such a generation of
template proposals is restricted to grammars that have
the same concept names as the corresponding meta-
model (i.e., metaclass names, attribute names, asso-
ciation role names). Thus, the DSL engineer is not
allowed to rename the resulting keywords.

4.2 Content-Assist for New Model
Elements with Unique Names

Beyond the usual keyword-based content-assist
known from IDEs, Xtext provides a customizable
approach to provide content-assist for the specifica-
tion of new model elements by means of proposal
providers (Eclipse Foundation, 2023c). In this ap-
proach, Xtext generates an abstract proposal provider
class with default functionality with content-assist
methods for all metaclasses as well as an empty con-
crete subclass that can be customized. To customize
the content-assist for a specific model element type
(e.g., for the metaclass FunctionFlowPort with exem-
plary instances in lines 7–10 and 14–17 in Figure 2),
the DSL engineer has to override the corresponding
method in a concrete subclass.

In the case of EATXT, we had the requirement to
provide content-assist proposals with unique names
in the model namespace for all metaclasses with a
mandatory shortName attribute. Since almost all of
the more than 200 metaclasses in the EAST-ADL
metamodel have this mandatory attribute due to sub-
classing (cf. Figure 1), the implementation of the cor-
responding particular methods in the concrete pro-
posal provider would have been very repetitive.

MODELSWARD 2023 - 11th International Conference on Model-Based Software and Systems Engineering

222

Figure 5: Proposed Code Template.

In order to provide an automatic solution
for this challenge, we implemented a fragment
contentassist/EatxtContentAssistFragment.xtend
(cf. plugin org.bumble.eatxt in Figure 3). Again,
this fragment is executed by the MWE2 work-
flow and exploits the metamodel structure by
iterating over all metaclasses with the mandatory
attribute and generating the concrete subclass
src-gen/contentassist/EatextProposalProvider.java
(cf. plugin org.bumble.eatxt.ui on the right-hand side
of Figure 3).

Figure 6 depicts the scheme for the generation of
the proposal provider methods using the example for
the metaclass FunctionFlowPort. For each metaclass
with the mandatory attribute, this generated proposal
provider includes a corresponding overriding content-
assist method that proposes a unique name consist-
ing of the corresponding prefix <metaclassName >
followed by a randomized number for a new in-
stance of the metaclass. For example, we generate for
the metaclass FunctionFlowPort a corresponding pro-
posal provider method that proposes the prefix “Func-
tionFlowPort ” followed by the randomized number.
Overall, the generated EatxtProposalProvider encom-
passes 188 such methods.

Figure 7 depicts a screenshot of the content-assist
proposal for a new FunctionFlowPort instance.

4.3 Formatters

Formatting text documents (e.g., Java source code)
in the Eclipse IDE is the process of rearranging the
documents’ texts without semantically changing their
contents. Xtext in principle supports this process
as well, but does not provide out-of-the-box format-
ters (Eclipse Foundation, 2023e).

Instead, it requires that the language engineer ex-
tends an abstract formatter class and implements a
corresponding dispatcher method for any metaclass to
be formatted in its text representation. These meth-
ods are called when the formatting process is trig-
gered and apply a series of text replacements for the
corresponding model objects. As formatting should
treat the text document and its particular contents in a
uniform way, the implementation of these methods is
highly repetitive.

In order to automate this tedious task and to pro-
vide a way of formatting the particular model ele-
ments uniformly, we implemented the generator frag-
ment formatting2/EatxtFormatter2Fragment.xtend as
part of the plugin org.bumble.eatxt (cf. fragment of
the plugin in Figure 3). This fragment is executed
by the MWE2 workflow and automatically generates
the formatter class formatting2/EatxtFormatter.xtend
as part of the same plugin. The fragment iterates over
the metaclasses of the metamodel and generates the
corresponding dispatcher method for each container
metaclass. Furthermore, the fragment generates the
individual formatting methods for all nested contain-
ments or sub-elements of these container classes calls.
The generated formatter class in the EATXT case en-
compasses 51 dispatch methods and 141 calls of the
formatting methods for the nested sub-elements.

4.4 Scoping for Cross-References

Programming languages, DSLs, and metamodels typ-
ically provide means to establish links between the
semantic concepts defined in the corresponding mod-
els (e.g., for specifying the type of a language con-
cept through referencing a different type concept).
In the Xtext language development framework, such
links are called cross-references (Eclipse Foundation,
2023d). The scoping API of Xtext provides the means
for finding the target of a cross-reference based on its
source context (Eclipse Foundation, 2023f). For ex-
ample, the FunctionFlowPort instances in the lines 7–
9 and 14–17 in Figure 2 are source contexts, and their
elements type are cross-references pointing to target
objects typed by the metaclass EADatatype (cf. Fig-
ure 1). If the target concept is nested in a container
hierarchy (e.g., hierarchies of packages like the EA-
Package instance DataTypes in lines 1–3 in Figure 2),
this procedure for finding a cross-reference target par-
ticularly includes the computation of the scope within
the nested container hierarchy.

Xtext provides a default out-of-the-box approach
for the cross-reference scoping within container hi-
erarchies by means of a scope provider (Eclipse
Foundation, 2023f), where the scope provider also
enables content-assist for the cross-reference tar-
gets. In this default approach, the fully quali-

Exploiting Meta-Model Structures in the Generation of Xtext Editors

223

shortName: String [1..1]

Referrable

shortName: String [1..1]

Referrable

FunctionFlowPortFunctionFlowPort

...

src-gen/contentassist/

EatxtProposalProvider.java

src-gen/contentassist/

EatxtProposalProvider.java

Figure 6: Exemplary Generation of a Content-assist Method for Unique Names of new FunctionFlowPort Model Elements.

Figure 7: Content-assist for a new Model Element.

fied name of the cross-reference target in the con-
tainer hierarchy is only proposed by the content-
assist if the target is part of a different con-
tainer. For example in Figure 2, the type cross-
reference in line 9 as part of the container hierar-
chy FcnDesignTypes.WiperCtrl.WipingCmd points to
the model element Integer uint8 as part of the con-
tainer DataTypes). In contrast, if the target is part of
the same container as the source context, then only the
plain name of the target is proposed but not its fully
qualified name.

In the case of EATXT, a requirement is to provide
content-assist that always proposes the fully qualified
name. This requires a custom implementation of the
scope provider (see also (Latifaj et al., 2021) for a dif-
ferent use case requiring such a custom implementa-
tion). In such a custom implementation, the DSL en-
gineers have to compute for any source context meta-
class the corresponding cross-reference target candi-
date metaclasses. For example, for the source context
metaclass FunctionFlowPort and its cross-reference
type, they have to realize that the target candidates
are instances of the metaclass EADatatype (cf. Fig-
ure 1). In this context, multiple cross-reference target
metaclasses are possible if the source context meta-
class has multiple cross-references.

Basically, this computation is straightforward, but
needs to consider all cross-references of the underly-
ing metamodel, resulting in a large switch-case state-
ment (i.e., if the source context of a cross-reference
is an instance of a certain metaclass, return all can-
didates that are instances of the metaclasses of all
target references). Particularly for large grammars
and metamodels, this straightforward custom imple-
mentation is very awkward. Beyond that, both the
Xtext default approach and custom implementation
suffer from performance issues for large grammars
and metamodels with many cross-references. In the
runtime editor, the target candidate types are al-
ways computed on any content-assist keystroke for

the given source context type. In the worst case,
the lookup needs to traverse the entire switch-case-
statement, which consists of all n possible cases for a
complexity of O(n).

As an automatic solution for this challenge in
EATXT, we generate a cross-references lookup map
in the activator of the plugin (cf. Activator.java in
the plugin org.bumble.eatxt in Figure 3). This gen-
eration traverses the metamodel exactly once with a
complexity of O(n). This lookup map contains the
corresponding type of the cross-reference target for
any source context type, and we compute it by iterat-
ing over all cross-references in the metamodel. We
generate the lookup map during the first activation
of the plugin. After that, the scoping/EatxtScope-
Provider.java accesses it via an interface but does not
need to perform the same computation on every cross-
reference content-assist keystroke. The lookup map is
implemented as a Java HashMap whose get() method
has a complexity of O(1) in most cases. In the EATXT
case, the map encompasses the source context meta-
classes and corresponding target metaclasses for 261
cross-references of the EAST-ADL metamodel. Fig-
ure 8 depicts a screenshot of the content-assist for
cross-referencing an existing model element in a dif-
ferent container hierarchy.

Figure 8: Cross-referencing an Existing Model Element.

The solution has two advantages, in particular for
large grammars and metamodels. First, we auto-
mate the awkward custom implementation of a scope
provider with a generic solution that exploits the un-
derlying metamodel cross-references structure. Sec-
ond, it significantly improves the performance of the
Xtext scope provider approach by computing a cross-
reference lookup table once at plugin activation, in-
stead of computing the target types on every content-
assist keystroke for a source context. Thus, the ex-
pensive operation takes place only once rather than
repeatedly at runtime.

MODELSWARD 2023 - 11th International Conference on Model-Based Software and Systems Engineering

224

5 CONCLUSION AND OUTLOOK

Our solutions to the four challenges of template
proposals, formatters, content-assist, and scoping
have been developed and evaluated in the context of
EATXT, but are not only useful there. Instead, we ar-
gue that similar approaches are helpful for any highly
structured abstract syntax for which Xtext is used
to generate editors for a textual concrete syntax. A
specific language will benefit from adaptations, espe-
cially in the area of scoping. As such, our solutions
are not generic enough to contribute to Xtext directly,
but will hopefully serve as a blueprint that is useful to
other engineers with similar challenges.

We view our contributions in the light of a future
language workbench that supports the blended mod-
eling for large DSLs that evolve. As described in our
previous work (Holtmann et al., 2022), EAST-ADL is
such a language and support for its evolution within
Eclipse is a relatively new capability. Our work fur-
ther supports this approach by providing a stream-
lined way to generate the editors whenever the lan-
guage changes. When coupled with the generation
of a graphical editor (see, e.g., (Cooper and Kolovos,
2019)), this brings us closer to the ideal of a blended
modeling language workbench.

ACKNOWLEDGEMENTS

Parts of this research were sponsored by Vinnova un-
der grant agreement nr. 2019-02382 as part of the
ITEA4 project BUMBLE.

REFERENCES

Ciccozzi, F., Tichy, M., Vangheluwe, H., and Weyns, D.
(2019). Blended Modelling – What, Why and How.
In 22nd ACM/IEEE Intl. Conf. on Model Driven Engi-
neering Languages and Systems (MODELS) Compan-
ion Proceedings, pages 425–430. IEEE.

Cooper, J. and Kolovos, D. (2019). Engineering hy-
brid graphical-textual languages with sirius and xtext:
Requirements and challenges. In 2019 ACM/IEEE
22nd Intl. Conf. on Model Driven Engineering Lan-
guages and Systems (MODELS) Companion Proceed-
ings, pages 322–325. IEEE.

Cuenot, P., Chen, D., Gerard, S., Lönn, H., Reiser, M.-O.,
Servat, D., Sjostedt, C.-J., Kolagari, R. T., Torngren,
M., and Weber, M. (2007). Managing complexity of
automotive electronics using the East-ADL. In 12th
IEEE Intl. Conf. on Engineering Complex Computer
Systems (ICECCS 2007), pages 353–358. IEEE.

David, I., Latifaj, M., Pietron, J., Zhang, W., Ciccozzi,
F., Malavolta, I., Raschke, A., Steghöfer, J.-P., and

Hebig, R. (2022). Blended modeling in commercial
and open-source model-driven software engineering
tools: A systematic study. Software & Systems Mod-
eling.

Debruyne, V., Simonot-Lion, F., and Trinquet, Y. (2004).
EAST-ADL—an architecture description language. In
IFIP World Computer Congress, TC 2, pages 181–
195. Springer.

Eclipse Foundation (2023a). Xtend. https://www.eclipse.
org/xtend/. Last accessed Jan 2023.

Eclipse Foundation (2023b). Xtext reference documenta-
tion: Configuration. https://www.eclipse.org/Xtext/
documentation/302 configuration.html. Last accessed
Jan 2023.

Eclipse Foundation (2023c). Xtext reference documen-
tation: Content assist. https://www.eclipse.org/
Xtext/documentation/310 eclipse support.html#
content-assist. Last accessed Jan 2023.

Eclipse Foundation (2023d). Xtext reference documen-
tation: Cross-references. https://www.eclipse.org/
Xtext/documentation/301 grammarlanguage.html#
cross-references. Last accessed Jan 2023.

Eclipse Foundation (2023e). Xtext reference docu-
mentation: Formatting. https://www.eclipse.org/
Xtext/documentation/303 runtime concepts.html#
formatting. Last accessed Jan 2023.

Eclipse Foundation (2023f). Xtext reference documen-
tation: Scoping. https://www.eclipse.org/Xtext/
documentation/303 runtime concepts.html#scoping.
Last accessed Jan 2023.

Eclipse Foundation (2023g). Xtext reference documen-
tation: Template proposals. https://www.eclipse.
org/Xtext/documentation/310 eclipse support.html#
templates. Last accessed Jan 2023.

Eysholdt, M. and Behrens, H. (2010). Xtext: implement
your language faster than the quick and dirty way. In
ACM Intl. Conf. on Object oriented programming sys-
tems languages and applications companion, pages
307–309.

Holtmann, J., Steghöfer, J., and Lönn, H. (2022). Mi-
grating from proprietary tools to open-source software
for EAST-ADL metamodel generation and evolution.
In Kühn, T. and Sousa, V., editors, 25th Intl. Conf.
on Model Driven Engineering Languages and Sys-
tems (MODELS) Companion Proceedings, pages 7–
11. ACM.

Holtmann, J., Steghöfer, J.-P., and Zhang, W. (2023).
EATXT implementation excerpt. https://github.com/
joerg-holtmann/EATXT4MODELSWARD23. Last
accessed Jan 2023.

Latifaj, M., Ciccozzi, F., Mohlin, M., and Posse, E. (2021).
Towards Automated Support for Blended Modelling
of UML-RT Embedded Software Architectures. In
ECSA (Companion).

Neubauer, P., Bergmayr, A., Mayerhofer, T., Troya, J., and
Wimmer, M. (2015). XMLText: From XML schema
to xtext. In 2015 ACM SIGPLAN Intl. Conf. on Soft-
ware Language Engineering, pages 71–76.

Exploiting Meta-Model Structures in the Generation of Xtext Editors

225

