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Abstract:  Species Distribution models (SDMs) are widely used to study species occurrence in conservation science and 
ecology evolution. However the huge amount of data and its complexity makes it difficult for professionals 
to forecast the evolutionary trends of distributions across the concerned landscapes. As a solution, machine 
learning (ML) algorithms were used to construct and evaluate SDMs in order to predict the studied species 
occurrences and their habitat suitability. Nevertheless, it is critical to ensure that ML based SDMs reflect 
reality by studying their trustworthiness. This paper aims to investigate two techniques: SHapley Additive 
exPlanations (SHAP) and the Partial Dependence Plot (PDP) techniques to interpret a Multilayer perceptron 
(MLP) trained on the Loxodonta Africana dataset. Results demonstrate the prediction process and how in- 
terpretability techniques could be used to explain misclassified instances and thus increase trust between ML 
results and domain experts.  

1 INTRODUCTION 

Environment scientists assert that the magnitude, pace 
and severity of the current environmental crisis are 
unprecedented (B.Daley and R.Kent, 2005). Several 
regions are losing their biodiversity to make way for 
human dwelling and industry.   Therefore, in order to 
safeguard the environment, it’s crucial to implement 
well planned policies that take into consideration the 
environmental characteristics and biological 
outcomes of each region. 

As part of the conservation science, having a well- 
thought-out strategy for managing the environment 
requires a thorough understanding of its components, 
namely its climatic conditions and species distribu- 
tion. However, it’s hard to pinpoint the exact loca- 
tion of each individual of each species at any moment. 
Therefore, species distribution models (SDMs) are 
used to find whether a species is likely to be present or 
absent in a geographic location based on its environ- 
mental conditions. Their objective is to understand a 
particular ecosystem, its number of species, the com- 
position of its population, and to predict the spatial 
and temporal pattern of species occurrence. 

 
a  http://ensias.um5.ac.ma 
b  https://msda.um6p.ma/home 

The new technologies and the data they gener- ate 
hold great potential for large-scale environmental 
monitoring, however traditional statistical approaches 
limits its usage which inefficiently distill data into rel- 
evant information (D.Tuia et al., 2022). Conversely, 
data science community works to apply information 
technologies to gather, organize, and analyze biolog- 
ical data (American Museum of Natural History, ). 
Basically, they try to use machine learning (ML) to 
discover new insights and patterns from all the avail- 
able expeditions and remote sensing data. ML tech- 
niques are useful to perform predictive analytics since 
it gives a variety of tools to support complex data 
structures, and thus provides a powerful approach for 
assessing SDMs challenges. However, according to a 
review made by Beery et al. despite the considerable 
use of ML techniques in ecology, SDMs has received 
relatively little attention from the computer science 
community (S.Beery et al., 2021). 

In fact, ML contributed to this field in a cou-ple 
of areas, namely climate models that repre- sent our 
understanding of Earth and climate physics (Rolnick 
et al., 2019), forest management based on satellite 
imagery and 3D Deep Learning tech- niques(Liu et 
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al., 2021), mapping wetlands distribu- tion in highly 
modified coastal catchments (Wen and Hughes, 
2020),urban vegetation(Abdollahi and Prad- han, 
2021)and many more. 

There are two categories of ML algorithms: legi- 
ble white-box algorithms that provide readable rules 
(SEON, 2022), , and black-boxes which are opaque 
yet more powerful since they can identify nonlinear 
relationships in data. To remedy this limitation, in- 
terpretability attempts to explain model predictions to 
understand the reasoning behind the prediction pro- 
cess (AI, 2020), avoid bias and gain trust whether 
globally or locally. Global interpretability, exam- ines 
a model’s general behavior, whereas local inter- 
pretability concentrates on a particular scenario that 
was supplied as input to the model. 

Interpretability techniques have been used to im- 
prove the explainability of ML based species distri- 
bution models. For instance, Ryo et al. investi- gated 
explainable AI (xAI) techniques in the context of 
SDMs based on the African elephant dataset (Ryo et 
al., 2021). They used random forest (RF) as a black 
box algorithm to predict the presence/absence val- 
ues of the studied species. In terms of interpretabil- 
ity, they used: (1) feature permutation importance 
(FI) and the (2) Partial Dependence Plot (PDP) as 
global interpretability techniques, FI classifies the 
predictor variables according to their importance, 
while PDP demonstrate the marginal effect a feature 
may have on the ML model predicted outcome 
(Molnar, 2019), along with (3) Local Interpretable 
Model-Agnostic Explanation (LIME) (Ribeiro et al., 
2016) as a local interpretability technique. According 
to this study, the most relevant feature based on FI 
was the precipi- tation of the wettest quarter. 

This article aims to evaluate and interpret a basic 
Multilayer Perceptron (MLP) model trained to fore- 
cast the African elephant distribution (GBIF, 2021) 
using: (1) the SHapley Additive exPlanations (SHAP) 
(Lundberg and Lee, 2017), a local interpretability 
method that explains individual predictions based on 
the game theoretically optimal Shapley values; and 
(2) the Partial Dependence Plot (PDP): a global inter- 
pretability technique that visualizes the marginal ef- 
fect of an individual feature to the predictive value of 
the studied model (Molnar, 2019). This paper an- 
swers and discusses the following research questions: 

• RQ1: What is the overall performance of the 
con- structed MLP models? 

• RQ2: What is the local interpretability of the 
best performing model? 

• RQ3: How global interpretability enhances 
local explanations? 

The main contributions of this study are the fol- 

lowing: 
• Assessing and comparing the performance of 

12 MLP based classifiers that were 
generated by combining 3 different 
Hyperparameters using GridSearch. 

• Interpreting 3 randomly chosen instances 
locally using SHAP and comparing them with 
their true labels. 

• Explanation of misclassified instances using 
PDP. 

The remainder of this paper is organized as fol- 
lows: Section2 introduces explainable AI and the 
difference between Global and Local Interpretability. 
Section 3 describes the used dataset and performance 
metrics to select the best performing model. Section4 
presents the experimental design followed during this 
study. A discussion about the obtained results and 
findings is presented in Section 5. Section 6 covers 
the threats to validity and the conclusion. 

2 BACKGROUND 

This section presents the feed-forward neural net- 
work used in this research, along with the used in- 
terpretability techniques namely SHAP and PDP. 

2.1 Artificial Neural Networks: MLP 

ANNs are a collection of simple computational units 
interlinked by a system of connections (Cheng and 
Titterington, 1994) that were inspired from the 
brain’s neuron architecture. They are frequently used 
in data modelling, as they are perceived as better 
substitute to standard nonlinear regression or cluster 
analysis prob- lems (Gurney, 1997). 

In general, ANNs are organized in layers and this 
is where the MLP comes in, it is a typical example of 
the feed-forward ANN where information travels in 
one direction from input to output (Hakkoum et al., 
2021). A MLP is constituted of 3 types of layers: the 
input layer, which receives the data to be processed, 
one or more hidden layers, which together constitute 
the network’s true engine, and the output layer. 

As to optimize the MLP Hyperparameters tuning 
phase, GridSearch a technique that specifies a search 
space as a grid of Hyperparameters and evaluates ev- 
ery position in the grid (Brownlee, 2020)was used. 
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Table 1: Bioclimatic variables. 

Variable Description Abbreviations Range 
Elev Elevation Elev [-61 ; 3508] 
Bio1 Annual Mean Temperature AMT [7,810688 ; 29,427000]
Bio2 Mean Diurnal Range MDR [6,640182 ; 18,048876]
Bio3 Isothermality (BIO2/BIO7) (×100) Isothermality [26,918064 ; 92,384308]
Bio4 Temperature Seasonality TempSeasonality [15,199914;1039,296265]
Bio5 Max Temperature of Warmest Month MaxTempWM [17,118000;41,708752]
Bio6 Min Temperature of Coldest Month MinTempCM [-9,583250 ; 22,415842]
Bio8 Mean Temperature of Wettest Quarter MeanTempWQ [6,682958 ; 31,448957]

Bio12 Annual Precipitation AnnualPrecip [3,000000 ; 3369,000000]
Bio13 Precipitation of Wettest Month PrecipwettestM [1,000000 ; 535,000000]
Bio14 Precipitation of Driest Month PrecipDriestM [0,000000 ; 105,000000]
Bio15 Precipitation Seasonality PrecipSeasonality [12,457452 ; 153,643448]
Bio18 Precipitation of Warmest Quarter PrecipWQ [0,000000 ; 728,000000]
Bio19 Precipitation of Coldest Quarter PrecipCQ [0,000000 ; 948,000000]

 
2.2 Interpretability 

Interpretability is determined by whether the model 
has a transparent process that allows the users to un- 
derstand how inputs are mathematically mapped to 
outputs (Doran et al., 2017). It represents the degree 
to which a human can consistently predict the model’s 
result, and evaluate the forecasting process by giving 
the relative importance of each variable.  

Interpretability methods can be categorized ac- 
cording to various criteria, depending on how they are 
used: Intrinsic/ post-hoc; model-specific/ model- 
agnostic; global/ local (Molnar, 2019). Global inter- 
pretability describes how the entire model behaves, 
meanwhile local interpretability focuses on the pre- 
diction of a particular instance; it is similar to a zoom 
in on a single instance and then examining the reasons 
behind the model’s prediction for this input. 

This paper uses SHAP to examine the local inter- 
pretability of the best performing MLP model. It ex- 
plains the model’s individual predictions using Shap- 
ley values, a cooperative game theory concept that 
calculates the contribution of each feature to the dif- 
ference between the predicted value and the aver- age 
of all predictions. Shapley values compute the 
marginal contribution of each feature to the end out- 
come by perturbing the input features and observ- ing 
how these changes correspond to the final model 
prediction. The Shapley value is then calculated by 
taking the average of all marginal contributions 
(Gopinath and Kurokawa, 2021). SHAP is a model- 
agnostic method, meaning that SHAP’s process re- 
main the same regardless of the used ML algorithm. 

In addition to SHAP, PDP was used to study the 
marginal effect a feature may have on the target vari- 
able. It shows whether the relationship between the 

target and a feature is linear, monotonic or more com- 
plex(Molnar, 2019). 

3 DATA DESCRIPTION AND 
PERFORMANCE CRITERIA 

The following section describes the used datasets, and 
introduces the performance measures. 

3.1 Data Description 

To run a SDM, two types of data are needed: 
occurrence data, which presents the coordinates of the 
locations where the studied species occurs, and 
environ- mental data, that describes the bioclimatic 
conditions of those locations (EcoCommons, 2022). 

For occurrence data GBIF LoxodontaAfricana 
tabular data were used. It contains 10494 rows and 
257 columns, its relevant features are decimal Lon- 
gitude, decimal Latitude and the occurrenceStatus. 
The decimal longitude and latitude define the species 
geographical locations, while the occurrenceStatus 
presents the occupancy / absence values at those lo- 
cations. 

The original record contains 10466 row of pres- 
ence data and 28 row of absence data. To resolve this 
imbalanced data problem a sample of 8019 back- 
ground points were randomly generated using dismo 
package in R to sum up with 16511 occurrences of 
which 8979 are presence data and 8019 are pseudo- 
absences. 

Despite the existence of different methods  
to generate background points, the randomly  
selected pseudo-absences  yielded  the  most  reliable. 

distribution models (Barbet-Massin et al., 2012).  
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Figure 1: Experimental Design. 

It is critical to consider the credibility of the generate 
background points, a location with no occurrences of 
the species does not imply the absence of the species 
in this loca- tion, it could be an area with no data or a 
location out of land. To avoid such problems the 
dismo package provides different methods dedicated 
to SDMs challenges, such as sampling the random 
points from a study area to form the pseudo-absences 
afterwards or using a mask to exclude the areas not on 
land (Spatial Data Science, 2021).  

For the environmental data, the WorldClim stan-
dard bioclimatic variables were extracted from 19 
GeoTiff (.tif) file using ‘biovars’ function in the dismo 
R package. Table1 presents the used bioclimatic vari- 
ables and how they were encoded in this work. 

3.2 Performance Criteria 

The MLP based models performance is reported and 
compared in terms of 4 different metrics: Accuracy, 
Precision, Recall, and AUC. After calculating these 
metrics, the Borda Count, a ranked voting technique 
that ranks the models in order of preference, was used 
to select the best MLP classifier using the accuracy, 
precision, recall, and AUC metrics as voters (Lipp- 
man, ). 

4 EXPERIMENTAL DESIGN 

This section describes in details the steps followed in 
this case study. It starts with model configuration and 
selection, then the local interpretation using SHAP’s 

Waterfall plots, and finally the PDP plots generation. 
The steps are showed in detail in Figure1. 

4.1 Data Retrieval and Cleaning 

As mentioned in section 3, this study used two types 
of data: Loxodonta Africana occurrence data from 
GBIF and environmental data from WorldClim, which 
were concatenated using R based on their com- mon 
geographic points. Missing values, outliers, data 
balancing, and normalization were all resolved during 
the Data Cleaning phase. 

4.2 Models Construction 

The MLP classifiers were built using one hidden 
layer. Three different hyper-parameters were used to 
control the model’s learning process: the batch size, 
which represents the number of samples processed 
before the model is updated, the solver for weight op- 
timization where SGD refers to Stochastic Gradient 
Descent, known as the most basic form of gradient 
descent while ‘Adam’ is an extension to SGD that 
provides faster results (Brownlee, 2017) , however 
different studies argue that although Adam converges 
faster, SGD generalizes better than Adam and thus 
results in improved final performance (Park, 2021).   
Finally, we have the hidden layer size that represents 
the number of hidden nodes on the first hidden layer, 
its selected range was chosen as to provide good 
performance but without requiring a huge amount of 
time in the training phase since the aim of this 
empirical evaluation was interpretability and not 
performance. 
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GridSearch was employed to optimize the Hyper- 
parameter tuning phase with 10 cross validation 
training. Table 2 presents the used configuration. Note 
that the hidden layer sizes were selected based on 
previous experimentations where the highest 
performance scores were found close to the mentioned 
range in table 2. The batch size and the solver values 
were chosen as a standard configuration commonly 
found in literature.  

Table 2: Hyperparameters configuration. 

Hyperparameters Selected Range
Hidden Layer Size [(20,),(25,),(30,)]

Batch size (32,64)
Solver [’sgd’, ’adam’]

4.3 Interpretability 

This step tries to interpret the MLP classifier results 
locally using SHAP’s waterfall plot. It explains a set 
of 3 different instances that were randomly selected 
in a way to have one true positive where the model 
agrees with reality and predicts a high habitat suit- 
ability, one true negative where the model accurately 
predicts a low habitat suitability and one false nega- 
tive, where the classifier predicts low habitat suitabil- 
ity, while it’s not the case in reality. 

After the interpretability of the MLP classifier 
PDP was used to determine if there is an agreement 
between the classifier predictions, the instances true 
label and local interpretability results, PDP plots were 
generated for the 2 first ranked features. 

5 RESULTS AND DISCUSSION 

This section presents and discusses the results of this 
empirical study, namely the models performance, and 
interpretability results. 

5.1 Models Evaluation 

The Hyperparameters combination gave 12 MLP 
classifiers. Table 3 describes the overall performance 
of the 3 first and the last ranked MLP models accord- 
ing to the Borda Count method using accuracy, pre- 
cision, recall, and AUC as voters. The classifiers are 
presented according to their assigned ranks. Accord- 
ing to Table 3, the top-ranked model has 25 neurons in 
its hidden layer, 64 as a batch size, which determines 
the number of training examples utilized in one iter- 
ation (Murphy, 2019), and ’sgd’ as a solver, which 

specifies the algorithm weight optimization over the 
nodes (Fuchs, 2021). To note that this is the classifier 
used in the interpretability phase. 

5.2 Local Interpretability 

To test the trustworthiness of individual predictions, 
a group of 3 instances was randomly chosen, Fig- 
ure2 shows their relative SHAP’s waterfall plot ex- 
planations. The waterfall plot’s purpose is to show the 
SHAP values of each feature as well as its im- pact on 
the final prediction. The model’s prediction is 
represented in the y-axis by f(x), each bar illustrates 
how the feature helps to push the model’s output away 
from the base value E(x) that indicates the average of 
the model output over training data. 

The features with a right arrow influence the pre- 
diction more in favor of an appropriate habitat for 
African elephants, whilst the features with a left arrow 
influence the prediction more in favor of the species’ 
inadequacy for such environments. 

Equation (4) demonstrates how f(x) is calculated. 

F(x) = E(x) + ∑SHAPvalues (1)

The base value in this study is 0.537, it represents 
the average of all observations. The model prediction 
for instance 2 is 1 meaning that the studied species can 
survive in this location, in this case f(x) is obtained 
using Equation (4): 0.536 + 0.01 - 0.02 + 0.02 - 0.03 
+ 0.03 + 0.03 + 0.03 + 0.04 - 0.05 + 0.05 + 0.06 + 
0.06 + 0.11 + 0.12 = 0.996 1, it sums the base value 
E(x) with all SHAP values, the same process is true 
for the other instances. 

 

Figure 2: Instance 2 SHAP’s waterfall plot. 
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Table 3: Borda Count Results. 

MLP Accuracy Precision Recall AUC Rank
[(25,),sgd,64] 0.857059 0.8576 0.856452 0.924786 1

[(30,),adam ,64] 0.854046 0.854450 0.853481 0.923254 2
[(30,),sgd,64] 0.851284 0.851420 0.850775 0.920037 3

[(25,),adam,32] 0.815967 0.816859 0.814878 0.889776 12
 

 
Figure 3: Instance2 SHAP’s waterfall plot. 

 
Figure 4: Instance 3 SHAP’s waterfall plot. 

In the first instance (Figure 2), the classifier pre- 
dicts a low habitat suitability for the location in 
question which was mainly proven by SHAP since 
f(x) =0 and the ’AnnualPrecip’ variable was ranked 
the  first among all  other variables with a  SHAP value  

 
Figure 5: ‘MDR’ Partial Dependence Plot. 

 
Figure 6: ‘Annual Precip’ Partial Dependence Plot. 

of -0.25.   For instance 2 (Figure 3), the MLP classifier 
pre-dicts a high habitat suitability f(x)=1.It was 
noticed that according to SHAP the 1st ranked 
feature was ‘elev’ which increased the base value 
with 12% in comparison with its initial value. 
Instance 3 (Figure 4) presents a false negative since the 
classifier predicts a low habitat suitability f(x)=0 while 
the true label of the instance is 1 which means that the 
models’ prediction affirms the absence of the species 
in this location  while it is not the case in reality. 

In order to gain a deeper understanding of this in- 
stance and discover the reasons behind this inaccurate 
prediction with the point’s true label, PDP plots were 
generated for the first and second ranked features. 

Normally ’MDR’ ranges from -3.017 to 2.439, in 
this case it is equal to -0.95. According to the PDP 
plot in Figure 5, the max reached value at this posi- 
tion is less than 0.4, which means that the classifier 
predicts a low habitat suitability and that agrees well 
with SHAP explanations since f(x) was equal to 0. 
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The ‘AnnualPrecip’ range is between -2.388 and 
5.115, its value in the studied position is approxi- 
mately 0.82. According to the PDP plot in Figure 6, 
the mean reached value in this point is less than -0.25, 
which agrees with SHAP results where f(x) is equal to 
0, and explains more why the model predicted a false 
0 since both values 0.4 and -0.25 in the PDP plots 
(Figure 5 and Figure 6) are far from being around 1. 

6 THREATS TO VALIDITY AND 
CONCLUSION 

This work includes limitations that should be taken 
into account when evaluating its findings. During the 
data retrieval phase, only one occurrence dataset was 
used, incorporating additional data types to the used 
tabular dataset may generate better results. 

Optimizing the built MLP classifier and creating 
more black box models, as well as comparing SHAP 
with other global and local interpretability techniques 
would undoubtedly provide better explanations to the 
misclassified instances. 

To conclude, several MLP models were used to 
study the distribution of the Loxodonta Africana, the 
top performing model was used to predict the species’ 
occurrence and absence values. Based on SHAP’s re- 
sults, the ‘AnnualPrecip’ contributed significantly to 
the proposed model’s output since the studied species 
lives in the African Savanna known with its tropical 
wet and dry climate where rain falls in a single sea- 
son and the rest of the year is dry. 

SHAP allowed the conduction of models analysis 
in depth and leads the selection of appropriate fea- 
tures making it a suitable explanation technique for 
biodiversity experts to consider when drawing critical 
decisions. 

Future work would attempt to include more black 
box models, and compare their performance as well 
as their interpretability with the obtained results using 
different techniques such as SHAP’s summary plot, 
FI, and LIME. 
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