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Abstract: In order to improve the quality of patient care, efficient surgical management is significant for overall hospital 
management. This study proposes a robust optimization model that minimizes delay in surgery by taking the 
surgical sequence into account. We verified an influence of the risk-averse tendency on the schedule. In the 
numerical analysis, the schedule created by the robust optimization model was compared with that of the 
stochastic programming model. The results suggest that robust optimization models tend to avoid long delays.

1 INTRODUCTION 

Efficient surgical management is important for the 
quality of patient care and hospital management. The 
quality of patient care is affected because of the long 
waiting time of patients owing to the delay from the 
scheduled end time of surgery. In terms of hospital 
management, surgeries account for most of the 
hospital revenue and expenditure (Jackson, 2002; 
Macario et al.; 1995). Therefore, an operating room 
schedule is created to improve its operating rate and 
reduce the cost of surgery. 

In the scheduling flow of the operating room, the 
surgeon and patient decide the surgery date through 
mutual agreement. The surgeon then reports the 
estimated duration of surgery to the operating room 
manager. The manager decides when and in which 
operating room to perform the surgery, based on 
information such as the estimated duration of surgery. 
However, there is uncertainty regarding the duration 
of the surgery. Factors of uncertainty include the 
patient's condition, lack of information on the 
preoperative diagnosis, and the surgeon's skill. 
Surgery is often not performed according to the 
scheduled end time based on the reported duration. In 
addition, there may be a risk of delay, with surgery 
being delayed significantly from the scheduled end 
time. Long delays lead to increased overtime for 
surgical staff, not only increasing costs, but also 
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reducing staff satisfaction. Therefore, to manage the 
operating room efficiently, robust scheduling that 
considers the uncertainty of the surgical duration is 
required. In the operating room scheduling, it is 
necessary to consider decision-making to avoid the 
risk of delay. 

Operating room scheduling has been studied 
extensively (Cardoen et al., 2010; Gerchak et al., 
1996; Lamiri et al., 2008). For example, Addis et al. 
(2016) proposed the operating room rescheduling by 
considering the uncertainty of patient arrival and the 
duration of surgery. Ito et al. (2019) formulated a 
single operating room scheduling problem that 
considers the uncertainty of the surgical duration. A 
risk measure called conditional value-at-risk (CVaR) 
was used to reflect the tendency toward delayed risk 
aversion. Another technique that reflects this 
scheduling trend is robust optimization. Aslani et al. 
(2021) proposed a robust optimization model with a 
radix constraint for the first-time and repeat patients 
in urology, considering the risk of a significant 
increase in the arrival of a number of first-time 
patients. Shi et al. (2019) formulated a robust 
optimization model for a home health care routing 
and scheduling problem with considering uncertain 
travel and service times. The authors compared the 
solutions obtained by the stochastic programming 
model and the robust optimization model. Denton et 
al. (2010) proposed an operating room scheduling 
model with robust optimization to address the 
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uncertainty of the surgical duration. However, the 
previous study did not consider the sequence of 
surgeries in the operating room. When scheduled, in 
practice, it is necessary to consider the sequence of 
surgeries within the operating room, because it is 
more convenient to perform surgeries belonging to 
the same department consecutively when arranging 
surgical equipment and adjusting schedules. 

In this study, we propose a robust optimization 
model that considers the sequence of surgeries and 
minimizes the delay. In the numerical analysis, the 
delay was calculated for uncertain surgical duration 
parameter sets. We compared it with a stochastic 
programming model to verify whether the risk-averse 
tendency is reflected in the schedule. 

2 MATHMATICAL MODEL 

2.1 Single Operating Room Scheduling  

We propose a robust optimization model for the 
single-operating-room scheduling problem under 
uncertain parameter sets, the worst-case that results in 
maximum total surgical duration. Single operating 
room scheduling determines the procedures for 
surgeries in an operating room. The operating room 
scheduling model and the formulation of the 
maximum surgical duration problem, which is 
considered the main problem, is presented below. 
Note that the stochastic programming model is the 
model from Ito et al. (2022). 
Notation 
Index Sets 𝐽: Set of surgeries. 𝐷: Set of departments. 𝐸ௗ: Set of surgeries belonging to the same department 𝑑, 𝑑 ∈ 𝐷. 
Parameters 𝑤: Weight of surgery 𝑗, 𝑗 ∈ 𝐽. 𝑑: The time from the operating room opening to the 
time when surgery 𝑗 should be completed, 𝑗 ∈ 𝐽. 𝑝, 𝑝 : Upper and lower bounds on the duration of 
surgery 𝑗, 𝑗 ∈ 𝐽. 𝜏 : Constant control conservative. Set how 
conservatively you want to control the worst-case 
scenario from the decision -maker’s perspective. This 
represents the number of surgeries for which the 
upper bound of the surgical duration is reached. 
Variables 𝑝: Duration of surgery 𝑗, 𝑗 ∈ 𝐽. 𝑐: Finishing time of surgery 𝑗, 𝑗 ∈ 𝐽. 

𝑡: Delay in surgery 𝑗 from the expected end time, 𝑗 ∈𝐽. 𝑧: Surgery precedence binary variable, where 𝑧 =1 if surgery 𝑖 is processed before surgery 𝑗, 𝑧 = 0 
otherwise, 𝑖, 𝑗 ∈ 𝐽, 𝑖 ≠ 𝑗. 𝛼, 𝛽: dual variables, 𝑗 ∈ 𝐽. 
Formulation Minimize  𝑤𝑡∈  (1)

Subject to 

 𝑝𝑧∈\ሼሽ + 𝑝 ≤ 𝑐, ∀𝑗 ∈ 𝐽, (2)

𝑡 + 𝑑 ≥ 𝑐, ∀𝑗 ∈ 𝐽, (3)𝑧 + 𝑧 = 1, ∀𝑖 ≠ 𝑗 ∈ 𝐽, (4)𝑧 + 𝑧 + 𝑧 ≤ 2, ∀𝑖 ≠ 𝑘 ≠ 𝑗 ∈ 𝐽, (5)

ቮ 𝑧∈ −  𝑧ᇲ∈ ቮ = 1, 
∀𝑖 ≠ 𝑖ᇱ ∈ 𝐸ௗ, ∀𝑑 ∈ 𝐷, 

(6)

 ቀ𝑝 − 𝑝ቁ∈ ≥ α𝜏 +  ቀ𝑝 − 𝑝ቁ 𝛽∈ , (7)

1𝑝 − 𝑝 𝛼 + 𝛽 ≥ 1, ∀𝑗 ∈ 𝐽, (8)

𝑝 ≤ 𝑝 ≤ 𝑝, ∀𝑗 ∈ 𝐽, (9)𝛼, 𝛽, 𝑐, 𝑡 ≥ 0, ∀𝑗 ∈ 𝐽, (10)𝑧 ∈ ሼ0, 1ሽ, 𝑖 ≠ 𝑗 ∈ 𝐽. (11)

In the formulation above, the objective function 
(1) minimizes the delay in surgery 𝑗  from the 
expected end time. Constraint (2) defines the surgery 
completion time according to the surgery sequencing 
relationships. Constraint (3) determines the delay in 
surgery. Constraints (4) and (5) ensure the feasibility 
of the surgery sequence by eliminating cyclic 
sequences. Constraint (6) sequentially allocates 
surgeries 𝑖 and 𝑖ᇱ because surgeries 𝑖 and 𝑖ᇱ are in the 
same department, and hence, it is more convenient to 
perform surgeries in the same department 
consecutively when arranging surgical equipment 
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and adjusting schedules. Constraints (7) and (8) are 
the objective function values for the dual problem. 
Constraint (9) bounds the surgical duration using 
upper and lower bounds on the duration of surgery 𝑗. 
Constraint (10) is a non-negative constraint. 
Constraint (11) is a binary constraint: 

2.2 Surgical Duration Uncertainty 

As discussed in the Introduction, real-world surgical 
durations are often subject to uncertainties. A robust 
optimization model that considers uncertainty may be 
more suitable and reasonable for decision making. 
Our study involved uncertainty regarding surgical 
duration. We assumed that the uncertain surgical 
duration 𝑞  for each surgery 𝑗 is with respect to the 
uncertainty set, without assumptions on distribution. 
The formulations are as follows: 
Formulation Maximaize  𝑞∈  (12)

Subject to 𝑞 = 𝑝 − 𝑝, ∀𝑗 ∈ 𝐽, (13)

 ൭ 𝑞𝑝 − 𝑝൱∈ ≤ 𝜏, (14)

0 ≤ 𝑞 ≤ 𝑝 − 𝑝,   ∀𝑗 ∈ 𝐽. (15)

 In the above formulation, the objective function (12) 
defines the maximum surgical duration. Constraint 
(13) sets the left side of constraint (9) to zero and 
makes constraint (15) a nonnegative constraint to 
create a dual problem. The left side expresses an 
upper bound on the number of surgeries that will 
achieve their worst-case upper bound on surgical 
duration. Constraint (14) controls excessively 
conservatively, which is a weakness of robust 
optimization. 

3 NUMERICAL ANALYSES 

3.1 Data and Analysis Procedures 

We solve the single operating room scheduling 
problem using Gurobi 9.5.1. The computational 
equipment is an Intel(R) Core (TM) i7-7500U CPU 
@ 2.90 GHz 8.00 GB. Specifically, there is one 

operating room, five surgeries, and the lower bound 𝑝 of the surgical duration is defined as 𝔼ൣ𝑝൧ − 𝜎, 
and the upper bound 𝑝 is defined as 𝔼ൣ𝑝൧ + 𝜎.  

Table 1: Two types of instances 

Instance 1 
Surgery 𝑗 1 2 3 4 5 𝔼ൣ𝑝൧(min) 120 120 120 120 120 𝜎(min) 20 40 60 80 100 

Instance 2 
Surgery 𝑗 1 2 3 4 5 𝔼ൣ𝑝൧(min) 160 140 120 100 80 𝜎(min) 20 40 60 80 100 

Then, 𝔼ൣ𝑝൧ and 𝜎 represent the expected value and 
standard deviation of the duration of surgery 𝑗 , 
respectively. The conservative 𝜏 is varies from 1 to 
0—5. These two types of instances are listed in Table 
1. As shown in Table 1, instance 1 has the same 
expected surgical duration for all surgeries. In 
contrast, the standard deviations were different. In 
instance 2, the standard deviation is the same as that 
in instance 1, but the expected value is different. All 
weights 𝑤 are 1. The time from the operating room 
opening to the time when surgery 𝑗  should be 
completed, 𝑑 is 8 h or 480 min. Here, 𝑑 means the 
regular opening time of the operating room; it is 
desirable that all surgeries be completed within the 
closing time. 

We compared the schedule created using the robust 
optimization model with that derived using the 
stochastic programming model. The occurrence 
probability of the 1000 scenarios used in the 
stochastic programming model was assumed to 
follow a uniform distribution. The surgical duration 
in each scenario followed a log-normal distribution. 

3.2 Results 

The results of comparing the two models for each 
instance are shown in Tables 2 and 3. All instances 
are solved within 10 seconds of CPU time. Tables 2 
and 3 show the sequence of surgeries, expected delay, 
and number of scenarios in which the delay is greater 
than or equal to 1000 min for schedules created using  
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Table: 2 Results of instance 1. 

Model 
Constant 

controlling 
conservative, 𝜏 

Surgical sequence Expected delay (min) 
Number of parameters 
with significant delays 

Stochastic 
programming - 2, 1, 3, 4, 5 170.07 6 

Robust 
optimization 

0 5, 4, 3, 2, 1 206.17 23 1 5, 1, 2, 3, 4 191.26 15 2 4, 1, 2, 3, 5 172.46 6 3 4, 1, 2, 3, 5 172.46 6 4 2, 1, 3, 4, 5 170.07 6 5 2, 1, 3, 4, 5 170.07 6 

Table 3: Results of instance 2. 

Model 
Constant 

controlling 
conservative, 𝜏 

Surgical sequence Expected delay 
time(min) 

Number of parameters 
with significant delays 

Stochastic 
programming - 3, 4, 5, 2, 1 181.17 25 

Robust 
optimization 

0 5, 4, 3, 1, 2 190.69 25 1 5, 4, 3, 2, 1 185.08 24 2 5, 4, 3, 2, 1 185.08 24 3 5, 4, 3, 2, 1 185.08 24 4 5, 4, 3, 2, 1 185.08 24 5 2, 1, 3, 4, 5 205.78 8 

 

the stochastic programming model and robust 
optimization model at each control conservative τ. 
From Table 2, the expected delay of the schedule 
created using the stochastic programming model and 
robust optimization model when τ = 5 is the lowest. 

The scenario in which the delay was more than 
1000 minutes was also the lowest. The number of 
parameters with a significant delay of more than 1000 
min reached a maximum at τ = 0. In summary, as τ 
increases, the results of the robust optimization model 
approach those of the stochastic programming model. 
This indicates that the robust optimization model 
without distribution assumptions performs as well as 

the stochastic programming model, depending on the 
setting of the control conservative τ. 

According to Table 3, the schedule created using 
the stochastic programming model exhibits the lowest 
expected delay. The number of parameter sets with a 
delay of more than 1000 min were the minimum in 
the schedule created by the robust optimization model 
when τ = 5. In addition, while the expected delay 
increases as 𝜏 increases, the number of parameter sets 
in which a delay of more than 1000 minutes occurs 
decreases. 

These results suggest that the robust optimization 
model performs as well as the stochastic 
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programming model, and tends to avoid significant 
delays under certain conditions. Thus, it is suggested 
that robust optimization models may be able to reflect 
the risk-averse tendencies of operating room 
managers in their schedules. 

4 CONCLUDING REMARKS 

In this study, we proposed a robust optimization 
model that minimizes the delay in surgery by 
considering the sequence of surgery. We also verified 
whether the risk-averse tendency is reflected in the 
schedule. The numerical analysis suggests that robust 
optimization models tend to avoid long delays. From 
the numerical analysis, compared to stochastic 
programming models, the robust optimization model 
is more effective for operating room managers who 
desire to avoid long delays. 

In future work, we will consider the relationship 
between conservatism, delay and duration of surgery 
set in a robust optimization model. We will clarify 
this relationship by performing a numerical analysis 
by increasing the set of surgical durations, which is 
the input. We will expand the settings from a single 
operating room to multiple operating rooms and use 
real data to refine the schedules. 
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