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Abstract: Academia and industry have devoted significant effort to the research and development of smart wearable 
devices applied to health monitoring. The photoplethysmography (PPG) sensor is widely used for monitoring 
biosignals, such as heart and respiratory rate (RR), which are influenced by the cardiovascular system. This 
work focuses on analyzing methods for RR estimation regarding the effect of breathing on the PPG signal 
variation. This work describes, implements, and analyzes four methods for estimating RR. These methods are 
based on capturing RR using Fast Fourier Transform, median, and extracting physiological characteristics 
induced by respiration in the PPG signal. The most efficient method merges three RR calculations analyzed 
on the same signal, achieving nearly 93% of efficacy in the best scenario. The method efficacies were 
calculated using PPG signals from the BIDMC and CapnoBase databases collected from patients during 
hospital care. The analysis allows for understanding and mitigating the RR estimation challenges and 
evaluating the most efficacy method for a wearable device monitoring scenario. 

1 INTRODUCTION 

The aging population, the availability of mobile 
broadband connectivity, and the development of 
sophisticated technologies have driven the adoption 
of personalized, digital, or remote patient monitoring 
methods. This process was further accelerated with 
the emergence of the coronavirus pandemic, which 
increased pressure on limited hospital facilities, 
requiring medical service providers to accelerate the 
research and implementation of new technologies for 
monitoring health outside the hospital (Olivadoti, 
2022), especially in the patient's home. 

Sensor innovations allow vital signs to be 
measured with clinical-grade accuracy in a residential 
setting. Wearable devices are more accessible, 
enabling home monitoring of philological signs, such 
as body temperature, heart rate, Respiratory Rate 
(RR), blood pressure, and oxygen saturation. 

RR is a valuable diagnostic and prognostic marker 
of health. In hospital healthcare, it is a highly 
sensitive marker of acute deterioration. For example, 
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an elevated RR predicts cardiac arrest and in-hospital 
mortality and may indicate respiratory dysfunction. 
Consequently, RR is measured between four and six 
hours in hospitalized patients with acute illness. RR 
is also used in emergency triage. In primary care, RF 
is used to identify pneumonia and as a marker of 
pulmonary embolism. However, RR is usually 
measured by manually counting chest wall 
movements (outside intensive care) and is a time-
consuming, imprecise, and poorly performed process 
(Charlton et al., 2018). 

The optical photoplethysmograph (PPG) sensor is 
commonly found among wearable physiological 
signal monitoring devices, such as pulse oximeters, 
due to its simplicity, low cost, and non-invasive 
approach. The PPG sensor is directly related to the 
cardiovascular system, detecting blood content and 
volume changes in the microvascular system. 
Because the cardiovascular and respiratory systems 
are correlated, researchers have made efforts to 
develop algorithms capable of inferring the 
respiration rate from the PPG signal. 
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The main objective of this work is to present RR 
inference methods from PPG signals for obtaining the 
best efficiency for absolute error equal to 0 breaths 
per minute (rpm) in the analyzed data. 

2 THEORETICAL FOUNDATION 

PPG is used to measure blood volume changes in the 
microvascular tissue bed under the skin; these 
changes occur due to the pulsatile nature of the 
circulatory system (Kamal et al., 1989). As an optical 
technique, PPG requires a light source and a 
photodetector. Light passing through biological tissue 
can be absorbed by different substances, including 
pigments in skin, bones, and arterial and venous 
blood. Most changes in blood flow occur primarily in 
the arteries and arterioles. PPG sensors optically 
detect changes in blood flow volume (i.e., changes in 
detected light intensity) in the microvascular tissue 
bed, either through reflection or transmission through 
the tissue (Tamura et al., 2014). 

Figure 1 exemplifies a PPG waveform consisting 
of direct current (DC) and alternating current (AC) 
components. The DC component corresponds to the 
transmitted or reflected optical signal detected in the 
tissue; this component depends on the tissue structure 
and the average volume of arterial and venous blood. 
The AC component shows changes in blood volume 
between the cardiac cycle's systolic and diastolic 
phases; the AC component's fundamental frequency 
depends on the heart rate and is superimposed on the 
DC component (Tamura et al., 2014). 

 
Figure 1: PPG waveform example (Tamura et al., 2014). 

PPG pulse wave morphology is influenced by (i) 
the heart, which considers cardiac ejection 
characteristics, including heart rate and rhythm, and 
stroke volume; (ii) circulation, including 
cardiovascular properties such as arterial stiffness and 
blood pressure; (iii) additional physiological 
processes, including breathing and the autonomic 
nervous system, that can be affected by stress; and 
(iv) diseases (Mejıa-Mejıa et al., 2021). The quality 
of the PPG signal depends on the wavelength of the 
light, measurement location, i.e., sensor attachment 
location, contact force, motion artifacts, the breathing 
of the individual being measured, and ambient 
temperature (Tamura & Maeda, 2018). These factors 
generate various types of additive noise (artifacts) 
that can be contained in PPG signals, affecting signal 
characteristics. 

Respiratory-induced changes in intrathoracic 
pressure are transmitted to the central veins, 
generating a change in blood pressure that the 
spectrum of the PPG signal can detect. Breathing can 
induce variations in the PPG signal in three ways 
(Dehkordi, 2018): 
 Respiratory-Induced Intensity Variation (RIIV) - 

Changes in venous return due to changes in 
intrathoracic pressure throughout the respiratory 
cycle cause a modulation of the baseline (i.e., the 
continuous component - DC) of the PPG signal; 

 Respiratory-Induced Amplitude Variation 
(RIAV) - During inspiration, the systolic volume 
of the left ventricle decreases due to changes in 
intrathoracic pressure, reducing the pulse 
amplitude and the opposite happens during 
expiration; 

 Respiratory-Induced Heart Rate Variation 
(RIFV) - Heart rate varies throughout the 
respiratory cycle, increasing during inspiration 
and decreasing during expiration. 

3 RELATED WORK 

Table 1 stands 19 works and the one proposed here 
concerning (i) the year of publication, (ii) the 
foundation that guides the extraction of the RR, (iii) 
the extraction method used, (iv) the domain in which 
the signals were analyzed; and (v) database used to 
obtain the PPG signal. 

The Base column of Table 1 shows that the RR 
extraction from most works is based on the 
physiological characteristics of breathing, with a 
smaller portion of the works employing the PPG 
signal filtering process. When we analyze the filtering 
methods in isolation,  represented  by  Fl,  we  realize  
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Table 1: Related work comparison. 

Article Base Method Domain Dataset 
Pimentel et al., 2017 Rpc FFT*, RIIV, RIAV, RIFV, Fusion Freq. CapnoBase, BIDMC
Orphanidou, 2017 Rpc EEMD, RIAV, RIFV Tempo Ad hoc 
Motin et al., 2018 Fl FFT, EEMD Freq. CapnoBase, MIMIC
Khreis et al., 2018 Rpc RIIV, RIAV, RIFV Time CapnoBase

Birrenkott et al., 2018 Rpc FFT*, RIIV, RIAV, RIFV Freq. CapnoBase, MIMIC
Motin et al., 2019 Fl EMD, EEMD, CEEMD, CEEMDAN, ICEEMDAN Time CapnoBase, MIMIC

Yang, 2019 Rpc FFT*, RIIV, RIAV, RIFV, Fusion Freq. Ad hoc 
Pollreisz and Nejad, 

2020 Rpc FFT*, RIIV, RIAV, RIFV, Fusion Freq. Ad hoc 

Motin et al., 2020 Fl FFT*, EEMD, RIIV, RIAV, RIFV Freq. Ad hoc 
Pollreisz and 

TaheriNejad, 2020 Rpc FFT*, RIFV Freq. Ad hoc 

Khreis et al., 2020 Rpc FFT*, RIIV, RIAV, RIFV Freq. CapnoBase, Sherpam
Lazazzera and Carrault, 

2020 Fl, Rpc FFT*, EMD, DWT, RIIV, RIAV, RIFV, Fusion Freq. CapnoBase 

Kozumplik et al., 2021 Rpc FFT*, RIIV, RIAV Freq., Time CapnoBase, BIDMC
Fikriastuti and 

Muhaimin, 2021 Rpc FFT, RIIV, RIAV, RIFV, Fusion Freq. CapnoBase 

Protopsaltis et al., 2021 Rpc FFT*, RIIV, RIAV, RIFV, Fusion Freq. CapnoBase, Ad hoc
Haddad et al., 2021 Rpc RIIV, RIAV, RIFV, Fusion Time CapnoBase
Icazatti et al., 2021 Fl FIR Time BIDMC, CCSHS
Adami et al., 2021 Fl FFT*, EMD, DWT Freq. BIDMC, MIT-BIH
Chen et al. 2021 Rpc FFT*, RIIV, RIAV, RIFV, Fusion Freq. Ad hoc 

This work Fl, Rpc FFR*, Median, RIIV, Fusion Freq., Time BIDMC, CapnoBase

LEGEND: Rpc – Respiratory physiological characteristics; Fl – Only applying Filters 
 Freq. – Frequency domain; Time – Time domain 
 FFT – Fast Fourier Transform; FFT* – FFT used to extract the spectral frequency without capturing RR directly 
 RIIV, RIAV, RIFV – Respiratory-Induced Variation regarding Intensity, Amplitude and Frequency, respectively 
 Fusion – extract RR correlating RIIV, RIAV, RIFV; EMD – Empirical Mode Decomposition 
 EEMD, CEEMD, CEEMDAN, ICEEMDAN – Special methods based on EMD 
 DWT – Discrete Wavelet Transform; Median – extracts RR from the baseline variation of the PPG signal median 
 
that most of the works (Motin et al., 2018) (Motin et 
al., 2019) (Motin et al., 2020) (Lazazzera and 
Carrault, 2020) (Adami et al., 2021) extracts RR 
using EMD and its variations (see column Method). 

We identified the predominance of RIIV, RIAV, 
and RIFV modulations in the analysis referring to the 
extraction of RR based on respiratory physiological 
characteristics, represented by Rpc in the Base 
column. 

Additionally, we divided the articles that extract 
the RR based on the physiological characteristics of 
breathing into three sets. These sets are composed of 
works that assess the performance of RIIV, RIAV, 
and RIIF: (i) only individually (Pollreisz and 
TaheriNejad, 2020) (Lazazzera and Carrault, 2020) 
(Kozumplik et al., 2021); (ii) individually, but 
consider RR obtained with the highest quality index 
(Khreis et al., 2018)(Birrenkott et al., 2018)(Khreis et 
al., 2020); (iii) merging the partial RR values 
obtained in each modulation to calculate the final RR 
(Pimentel et al., 2017) (Orphanidou, 2017) (Yang, 

2019) (Pollreisz and Nejad, 2020) (Lazazzera and 
Carrault, 2020) (Fikriastuti, and Muhaimin, 2021) 
(Protopsaltis et al., 2021) (Haddad et al., 2021) (Chen 
et al., 2021). 

The Domain column points out that most of the 
works estimate RR by analyzing the signals in the 
frequency domain, except for (Orphanidou, 2017) 
(Khreis et al., 2018) (Motin et al., 2019) (Haddad et 
al., 2021) (Icazatti et al., 2021) that employ the time 
domain. Consequently, we explored the RR 
extraction with methods that analyze both the time 
and frequency domains, and we chose to employ the 
Fast Fourier Transform (FFT) in all implemented 
methods. 

The Database column shows that most works use 
CapnoBase, followed by the MIMIC and BIDMC 
databases. This reason led us to choose the 
CapnoBase and BIDMC databases in this work, 
which are freely available and organized to obtain RR 
from the PPG signal analysis. Additionally, we 
decided to include the Synthetic Dataset from the 
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Respiratory Rate Estimation project (Charlton, 2016) 
to assess the ideal measurement time window, given 
that data is in a noise-free environment. 

The work proposed here developed three 
algorithms entitled “FFT Method”, “Median 
Method”, and “RIIV Method” to study the 
performance when extracting the respiratory rate in 
signals containing respiration-induced baseline 
modulation. Besides, the work proposed here 
implements the “Fusion Method”, which in its initial 
stage evaluates RRs obtained with the three baseline 
methods and merges these values when a given 
criterion is accepted; otherwise, the measurement is 
discarded. 

4 METHODS FOR ESTIMATING 
RESPIRATORY RATE 

We implemented four methods to analyze the 
effectiveness and efficiency of RR estimations from 
the PPG signal. These methods enable estimating RR 
(i) using an FFT; (ii) Median; (iii) exploring breath-
induced intensity variations, i.e., RIIV; and (iv) 
integrating multiple RR estimates. 

4.1 Fast Fourier Transform Method 

The Fast Fourier Transform (FFT) quickly calculates 
the discrete Fourier transform of a data sequence, 
allowing us to obtain the signal frequency spectrum. 
FFT is one of the most used methods to analyze 
signals in the frequency domain because time is 
mathematically eliminated during the transformation 
process, resulting only in signal frequency 
components (Tamura and Maeda, 2018). 

This method uses the SciPyfft function of the 
Python SciPy library to return the discrete Fourier 
transform of a real or complex sequence (Bluestein, 
1970). The extraction of RR from the PPG signal 
follows the following steps: 
 Converting the PPG signal from the time domain 

to the frequency domain applying FFT; 
 Transforming the frequency value to “rpm” by 

multiplying the dominant peak value by 60; 
 Identifying the dominant frequencies by 

extracting the RR value within the acceptable 
range for humans - between 4 rpm (0.06 Hz) and 
60 rpm (1 Hz). 

4.2 Median Method 

The Median Filter allows extracting the baseline 

present in the PPG signal (Awodeyi et al., 2013). The 
Median Method explores the baseline variation by 
calculating the PPG signal median. 

This method uses the numpy.median function of 
the Python Numpy library to return the median of the 
vector elements. The RR extraction from the PPG 
signal requires the following steps: 
 Calculating the median with a sliding vector of the 

signal sample rate size; 
 Applying the FFT in the resulting vector and 

selecting the dominant frequency peak within the 
valid RR range; 

 Multiplying the dominant frequencies by 60 to 
convert to “rpm”. 

4.3 RIIV Method 

The RIIV Method explores baseline variations 
obtained through linear interpolation between the 
PPG signal peaks. We implemented this method 
using the SciPy.find_peaks and SciPy.interpolate, 
present in the Python SciPy library, which returns a 
vector containing all the peaks of a signal and 
function whose calling method interpolates to find the 
value of new points (Bluestein, 1970). 

RR can be acquired with an analysis in time or 
frequency. Time analysis is achieved by counting 
peaks or valleys in the signal. Frequency analysis 
requires the FFT application; in this case, RR is the 
dominant signal frequency generated by the FFT 
within the RR human spectrum. The RR measured by 
the respiration-induced variation methods is 
performed via the following steps: 
 Extraction of the induced baseline variation in the 

PPG signal to get the respiratory signal in time; 
 FFT Application on the respiratory signal and 

selection of the dominant frequency peak within 
the valid RR spectrum; 

 Multiplying the dominant frequencies by 60 to 
convert to “rpm”. 

4.4 Fusion Method 

Merging RR estimates complements the three 
methods discussed earlier. This method ascends the 
RR values obtained by the FFT, Median, and RIIV 
methods, creating a three-position vector containing 
the smallest (min), intermediate (itr), and largest 
(max) values, and considers an error (ε) between 
these values to determine the merge rule. 

The determination of the error value is empirical, 
and for this work, ε=0 rpm was chosen to perform an 
in-depth analysis of the results. 

The RR fusion estimate is constructed using the 
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following conditions and considering their ordering: 
 If the difference between the smallest and largest 

vector value is less than or equal to the error, then 
RR is the average of the three values. The reason 
is to assume that if the three samples are close, 
then they must be close to the true RR value; 

 If the above conditions are not satisfied, RR is not 
measured. As there is no consensus on the best 
estimate, the method characterizes the sample as 
a noisy signal, and the estimated value is 
discarded. RR cannot be measured in an extreme 
situation where this condition occurs in all 
samples. 

RR = ቐmin + itr + max3  if |min −  max| ≤  ε not evaluated       otherwise                    
5 EXPERIMENTAL  

RESULTS – SYNTHETIC DATA 

Synthetic Dataset is a database created in the 
Respiratory Rate Estimation project that contains 
synthetic ECG and PPG signals (Charlton, 2016). 
These signals were developed to verify the 
performance of methods to estimate RR in a scenario 
without external noise. The dataset includes PPG 
signals in the RR range between 4 and 60 rpm, 
modulated in isolation concerning baseline, 
amplitude, and frequency. It contains mathematically 
equated PPG signals, not including external 
interferences during its construction, enabling to get 
accurate information on the influence of the window 
size used for the RR measurement. 

The initial length of the observation window was 
empirically selected to be equal to 10s. Note that a 
huge observation window requires a long time to 
obtain a sample value; however, a tiny observation 
window can lead to inaccuracy. The initial value was 
considered the “smallest observation window” to 
measure the RR. Subsequently, a value equivalent to 
“smallest window” was added to find an observation 
window size in which the absolute error between the 
reference value and the estimated value remained 
unchanged. This is considered the minimum precision 
window; upper observation windows should not 
change the RR results due to data subsampling. 

All the methods analyzed in this section presented 
stable values with an absolute error equal to zero for 
observation windows greater than 50s. The 
observation window of 10s was the only one that 
presented an absolute error equal to 2 rpm, being 
considered the highest error found. The window of 

30s presented an absolute error equal to zero. 
Some estimates obtained with 40s windows were 

worse than the 30s estimates due to the signal being 
synthetic, so the multiplicity of 40s generates a 
precision error for the 500Hz samples. This finding 
was essential to understand the influence of the 
sampling rate in obtaining the best observation 
window. Additionally, this finding indicates that it is 
impossible to define an optimal observation window 
value because it depends on the PPG signal. 

6 EXPERIMENTAL  
RESULTS – REAL DATA 

The CapnoBase dataset (Karlen, 2010) contains ECG, 
pulse oximetry with PPG, and CO2 data from 42 
cases, each described by an 8min recording. In 
addition, CapnoBase provides the RR measured for 
everyone, enabling us to evaluate the methods used. 

BIDMC (Pimentel et al., 2018) is a dataset used to 
assess the performance of RR methods. BIDMC 
contains information from ECG, PPG pulse oximetry, 
and respiratory signs from impedance 
pneumography. All these signals were acquired from 
53 intensive care patients, with recordings lasting 
8min for each patient. 

Figure 2 presents the configurations performed to 
obtain the experimental data. The CapnoBase and 
BIDMC databases underwent an equalization process 
to obtain consistent RF reference values throughout 
the sampling interval. The equalization generated the 
banks called CapnoBase* and BIDMC*, which 
contain sensory data from 42 and 53 people, 
respectively; this data corresponds to 95 PPG signals, 
each with 360s of sampling. 

RR results

BIDMC*
53

Sliding observation 
windows (30s, 60s)

+ 
632
60.040 FFT

RIIV

RIAV

RIFV

EMD

+

-Efficacy

Reference value

CapnoBase*

Equalization

CapnoBase

Equalization

BIDMC

42
Samples

-Efficacy
Reference value

× 
95 360.240

Assessments

Fusion +60.040 

60.040 

60.040 

60.040 
60.040 

60.040 

180.120

180.120

60.040 

 
Figure 2: Settings performed to obtain experimental data. 

These samples were evaluated by the FFT, 
Median, RIIV, and Fusion methods in sliding 
observation windows of 30s and 60s to assess 
estimation errors with different window sizes. 

Additionally, we chose to use sliding windows 
with a base of 1s to smooth the passage from one 
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sample to another – this approach was also adopted 
by Fikriastuti and Muhaimin (2021). Using a sliding 
window of 1s, within the range of 360s, implied 331 
and 301 samples for the observation windows of 30s 
and 60s, respectively. We chose to work with only six 
minutes (360s) of the databases containing eight-
minute samples, removing the initial and final 
minutes of each patient; this choice was made 
empirically to remove the edges of the databases and 
eliminate possible erroneous measurements. 

This procedure results in 632 observation 
windows for each of the 95 PPG signals; 
consequently, 60,040 evaluations must be carried out 
using three of the four proposed methods – except for 
the Fusion Method, which takes the results of the 
FFT, Median, and RIIV methods as input. The 
execution of all experiments results in 360,240 RR 
estimates, whose absolute error and corresponding 
effectiveness are evaluated by comparing with the 
reference values included in the CapnoBase and 
BIDMC databases. 

The Fusion Method evaluates the quality of the 
signal when it integrates the three RR values 
obtained—performing this method on CapnoBase 
data removed 5722 and 4949 samples for observation 
windows of 30s and 60s, respectively. Similarly, 
BIDMC had 7493 and 6745 samples removed for 
observation windows of 30s and 60s, respectively. 
This removal is not directly related to the noise in the 
database but instead to the discrepancy between the 
FFT, Median, and RIIV methods, which did not allow 
the Fusion Method to choose the best estimate to be 
taken. Because of these removals, all the percentage 
analyses presented in this section subtract the samples 
classified as noisy from the total amount of samples 
for the Fusion Method. 

The two databases contain the reference RRs for 
each PPG signal. However, in some cases, the 
reference values to assess the CapnoBase RR were 
only present in the range of 7s to 72s or smaller 
intervals. In comparison, each patient has a total of 
480s (8min) to store the PPG signal and its respective 
respiratory reference signal (CO2). To obtain the RR 
reference values over the entire 360s interval 
explored in the database, we applied an FFT on the 
CO2 signal. 

To maintain similarity in the analysis of the two 
databases, we applied the same procedure to the 
Impedance signal present in the BIDMC database. 
This process in both databases was called 
Equalization. However, the Equalization approach 
can fail when the analyzed window contains noise 
that overlaps the respiratory signal, as illustrated in 
Figure 3. Since the respiratory signal is not evaluated  
    

 
Figure 3: Example of CapnoBase data containing intense 
noise that overlaps with (a) PPG and (b) CO2 signal, and (c) 
RR reference values. 

correctly, the RR estimates will likely suffer 
deviations that can alter the efficacy analysis of the 
evaluated methods. 

We decided to evaluate two window observation 
sizes (30s and 60s), as the variability contained in the 
databases can generate artifacts that can be minimized 
in larger windows. Finally, we chose to work with 
only 6 minutes of the databases containing eight-
minute samples, discarding the initial and final 
minutes of each patient. Figure  shows the percentage 
of samples with 100% accuracy in the RR obtained 
with each evaluated method, considering the data 
provided by CapnoBase and BIDMC for both 
observation windows. Regarding only the CapnoBase 
dataset, the result analysis shows an average variation 
of practically 5% error with the observation window 
reduction. This variation indicates that the proposed 
methods improve the RR estimates as the observation 
window increases. Additionally, the Fusion Method 
obtains the highest efficacy, improving the quality of 
the estimates obtained with the other methods. 

 
Figure 4: Percentage of samples reaching 100% efficacy 
using CapnoBase and BIDMC datasets and sliding 
observation windows of 30s and 60s. 

The results of BIDMC indicate many similarities 
in the data contained in the databases. Clear examples 
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are the Fusion Method, which had the best results for 
the BIDMC and CapnoBase databases, and the RIIV 
method, which had the lowest estimates in both 
databases. Additionally, the 60s observation window 
performed poorly compared to the results obtained 
with 30s windows. 

Figure  presents the same experiment as Figure  
but highlights the number of RR samples that had 
errors of 3 rpm or more. Once again, it is possible to 
observe that the Fusion Method achieves the best 
results for both databases and observation windows, 
with the worst results obtained with the RIIV Method. 
Although RR estimates with errors of 3 rpm or more 
may be unacceptable, the number of samples with 
these values is proportionally low when using Fusion 
Method. Additionally, samples with high errors are 
interlaced with samples of greater efficacy, enabling 
filtering software to remove sudden variations 
between samples and improving the average accuracy 
of the RR estimate. 

 
Figure 5: Percentage of samples with errors upper to 3 rpm 
of RR using CapnoBase and BIDMC datasets and sliding 
observation windows of 30s and 60s. 

Additionally, Figure  and Figure  display that all 
methods are more effective when working with the 
CapnoBase database, and Fusion and RIIV methods 
have the best and worst performances among the 
methods, respectively. However, the same efficacy 
was not achieved with the BIDMC database. A 
possible reason for this achievement is acquired when 
visually analyzing the PPG signals; i.e., a higher 
number of samples with artifacts was identified in the 
BIDMC database, which is the main reason for the 
methods having lower performance compared to the 
evaluations made with CapnoBase. 

7 CONCLUSION 

This work evaluated the effectiveness of four 
methods for inferring the respiratory rate of PPG 

signals available in synthetic databases. The Fusion 
Method showed the highest efficiency among the 
evaluated methods, mainly because the merger 
achieved, on average, the best results of the correlated 
methods. The proposed methods can be easily 
implemented within firmware on a wearable device, 
making it possible to evaluate the methods explored 
in this work in real scenarios and in real-time. As a 
future work, we intend to compare the methods 
proposed here with other works described in the 
literature to assess the relative effectiveness of the 
approaches. 
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